Higher-Order Computability 5. Exercise Sheet

Department of Mathematics

Summer Semester 2019
Dr. Thomas Powell

Homework

Key to exercises: $(\mathrm{P})=$ programming component $(+)=$ more difficult or open ended.

Exercise H1

Let $F \in C_{2}$ be defined by $F(\beta):=\beta(0)+\beta(1)+\ldots+\beta(\beta(0))$. Describe two different associates α and α^{\prime} which both represent F.

Exercise H2

Define the limit space ($\mathbb{N}, \rightarrow_{0}$) in the usual way by $p_{n} \rightarrow_{0} p$ iff there exists some $N \in \mathbb{N}$ such that $\forall n>N\left(p_{n}=p\right)$.
(a) Prove that for any limit space $\left(X, \rightarrow_{X}\right)$ we have $\mathscr{C}(\mathbb{N}, X) \cong X^{\mathbb{N}}$.
(b) Prove that for any $\Phi \in \mathscr{C}(\mathscr{C}(\mathbb{N}, X), \mathbb{N})$ and $\alpha \in \mathscr{C}(\mathbb{N}, X) \cong X^{\mathbb{N}}$ there exists some $n \in \mathbb{N}$ such that for any $\beta \in X^{\mathbb{N}}$:

$$
\alpha={ }_{n} \beta \Rightarrow \Phi(\alpha)=\Phi(\beta)
$$

Exercise H3

Prove that the functional $\theta:((N \rightarrow \rho) \rightarrow N) \rightarrow(N \rightarrow \rho) \rightarrow \rho^{*} \rightarrow N$ given by

$$
\theta_{\omega, \alpha}(s):= \begin{cases}0 & \text { if } \exists t \preceq s(\omega(\hat{t})<|t|) \\ 1+\theta_{\omega, \alpha}(s * \alpha(|s|)) & \text { otherwise }\end{cases}
$$

is definable using the scheme of Spector bar recursion

$$
\operatorname{SBR}_{\rho, N}\left(\omega, g, h, s^{\rho^{*}}\right)=_{N} \begin{cases}g(s) & \text { if } \omega(\hat{s})<|s| \\ h\left(s, \lambda x \cdot \operatorname{SBR}_{\rho, N}(\omega, g, h, s * x)\right. & \text { otherwise }\end{cases}
$$

for suitable g and h.

Exercise H4 (P)

Implement bar recursion as a functional program in your favourite language and run it on some simple input parameters.

Exercise H5 (+)

The scheme of finite bar recursion of type ρ, τ is given by the defining equation:

$$
\operatorname{FBR}_{\rho, \tau}(g, h, s)={ }_{\tau} \begin{cases}g(s) & \text { if } n<|s| \\ h\left(s, \lambda x \cdot \mathrm{FBR}_{\rho, \tau}(g, h, s * x)\right) & \text { if } n \geq|s|\end{cases}
$$

Explore the connection between finite bar recursion and primitive recursion in all finite types.

