# Higher-Order Computability <br> 3. Exercise Sheet 

TECHNISCHE UNIVERSITA゙T DARMSTADT

## Department of Mathematics <br> Dr. Thomas Powell

Summer Semester 2019

## Homework

Key to exercises: $(\mathrm{P})=$ programming component $(+)=$ more difficult or open ended.

## Exercise H1

The drinkers paradox (with a number parameter) is given by

$$
\text { DP : } \forall n \exists x(P(n, x) \Rightarrow \forall y P(n, y))
$$

where $P(n, x)$ some decidable predicate in the language of Peano arithmetic.
(a) Argue that in general there is no computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ which witnesses the functional interpretation of the drinkers paradox i.e.

$$
\forall n, y(P(n, f n) \Rightarrow P(n, y))
$$

(b) On the other hand, find a computable functional $\Phi: \mathbb{N} \times \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ that witnesses the negative translation + functional interpretation of the drinkers paradox i.e.

$$
\forall n, g(P(n, \Phi n g) \Rightarrow P(n, g(\Phi n g))) .
$$

(c) Give a formal description of $\Phi$ as both

- a term of System T of type $N \rightarrow(N \rightarrow N) \rightarrow N$,
- an oracle Turing machine.


## Exercise H2 (+)

Write down the functional interpretation of the following formula

$$
\text { (*) } \forall x(\exists y \forall z P(x, y, z) \Rightarrow \exists v Q(x, v)) \text {. }
$$

Explain how, given witnesses for the functional interpretation of $(*)$ together with a witness $\Phi$ for the negative translation + functional interpretation of $\forall x \exists y \forall z P(x, y, z)$, we can construct a function $h: \mathbb{N} \rightarrow \mathbb{N}$ satisfying $\forall x Q(x, h x)$.

## Exercise H3 (+)

Repeat exercise H1, but this time with the following minimum principle:

$$
\exists i A(i) \Rightarrow \exists j(A(j) \wedge \forall k<j \neg A(k)) .
$$

where $A(i): \equiv \exists x Q(i, x)$ for some decidable formula $Q(i, x)$.

