Higher-Order Computability 1. Exercise Sheet

Department of Mathematics Dr. Thomas Powell

Summer Semester 2019 30 April

k times

Homework

Key to exercises: (P) = programming component (+) = more difficult or open ended.

Exercise H1

Define the usual addition function $+ : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as a closed term $t : N \to N \to N$ of System T. Do the same for the multiplication and exponential functions.

Exercise H2

Prove that all primitive recursive functions $f : \mathbb{N}^k \to \mathbb{N}$ are definable as a closed term $t : \underbrace{N \to \ldots \to N}_{k \to \infty} \to N$ of System T.

Recall the definition of the Ackermann function $A : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$:

$$A(m,n) = \begin{cases} n+1 & \text{if } m = 0\\ A(m-1,1) & \text{if } m > 0 \text{ and } n = 0\\ A(m-1,A(m,n-1)) & \text{if } m > 0 \text{ and } n > 0 \end{cases}$$

Exercise H3

Give closed expressions for A(1, n) and A(2, n). What about A(3, n) and A(4, n)?

Exercise H4 (P)

Write a program in your favourite language which implements the Ackermann function. What is the smallest input that breaks your computer?

Exercise H5

Prove the following for all $m, n \in \mathbb{N}$:

- (a) A(m,n) > n.
- (b) A(m, n+1) > A(m, n).
- (c) A(m+1,n) > A(m,n).
- (d) $A(m+1,n) \ge A(m,n+1)$.

Exercise H6

Show that *A* is definable in System T as a closed term *t* of type $N \rightarrow N \rightarrow N$.

Exercise H7 (+)

Let \succ be the ordering on $\mathbb{N} \times \mathbb{N}$ define by $(m, n) \succ (m', n')$ if m = m' + 1 or m = m' and n = n' + 1. Consider the following scheme of recursion over \succ :

$$f(m, n) = h(m, n, \lambda m', n', f(m', n') \text{ if } (m, n) \succ (m', n') \text{ else } 0).$$

Show that the Ackermann function can be defined using recursion of this kind. Can recursion over \succ be simulated in System T?

Exercise H8 (P+)

Design your own programming language which comprises the terms of System T and write a compiler for it.