Higher-Order Computability 1. Exercise Sheet

Department of Mathematics
 Dr. Thomas Powell

Summer Semester 2019

Homework

Key to exercises: $(\mathrm{P})=$ programming component $(+)=$ more difficult or open ended.

Exercise H1

Define the usual addition function $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ as a closed term $t: N \rightarrow N \rightarrow N$ of System T. Do the same for the multiplication and exponential functions.

Exercise H2

Prove that all primitive recursive functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ are definable as a closed term $t: \underbrace{N \rightarrow \ldots \rightarrow N}_{k \text { times }} \rightarrow N$ of System T. Recall the definition of the Ackermann function $A: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$:

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ A(m-1, A(m, n-1)) & \text { if } m>0 \text { and } n>0\end{cases}
$$

Exercise H3

Give closed expressions for $A(1, n)$ and $A(2, n)$. What about $A(3, n)$ and $A(4, n)$?

Exercise H4 (P)

Write a program in your favourite language which implements the Ackermann function. What is the smallest input that breaks your computer?

Exercise H5

Prove the following for all $m, n \in \mathbb{N}$:
(a) $A(m, n)>n$.
(b) $A(m, n+1)>A(m, n)$.
(c) $A(m+1, n)>A(m, n)$.
(d) $A(m+1, n) \geq A(m, n+1)$.

Exercise H6

Show that A is definable in System T as a closed term t of type $N \rightarrow N \rightarrow N$.

Exercise H7 (+)

Let \succ be the ordering on $\mathbb{N} \times \mathbb{N}$ define by $(m, n) \succ\left(m^{\prime}, n^{\prime}\right)$ if $m=m^{\prime}+1$ or $m=m^{\prime}$ and $n=n^{\prime}+1$. Consider the following scheme of recursion over \succ :

$$
f(m, n)=h\left(m, n, \lambda m^{\prime}, n^{\prime} . f\left(m^{\prime}, n^{\prime}\right) \text { if }(m, n) \succ\left(m^{\prime}, n^{\prime}\right) \text { else } 0\right)
$$

Show that the Ackermann function can be defined using recursion of this kind. Can recursion over \succ be simulated in System T?
Exercise H8 (P+)
Design your own programming language which comprises the terms of System T and write a compiler for it.

