
Higher-Order Computability
1. Exercise Sheet

Department of Mathematics Summer Semester 2019
Dr. Thomas Powell 30 April

Homework

Key to exercises: (P) = programming component (+) = more difficult or open ended.

Exercise H1
Define the usual addition function + : N × N → N as a closed term t : N → N → N of System T. Do the same for the
multiplication and exponential functions.

Exercise H2
Prove that all primitive recursive functions f : Nk → N are definable as a closed term t : N → . . .→ N

︸ ︷︷ ︸

k times

→ N of System T.

Recall the definition of the Ackermann function A : N×N→ N:

A(m, n) =







n+ 1 if m= 0

A(m− 1,1) if m> 0 and n= 0

A(m− 1, A(m, n− 1)) if m> 0 and n> 0

Exercise H3
Give closed expressions for A(1, n) and A(2, n). What about A(3, n) and A(4, n)?

Exercise H4 (P)
Write a program in your favourite language which implements the Ackermann function. What is the smallest input that
breaks your computer?

Exercise H5
Prove the following for all m, n ∈ N:

(a) A(m, n)> n.

(b) A(m, n+ 1)> A(m, n).

(c) A(m+ 1, n)> A(m, n).

(d) A(m+ 1, n)≥ A(m, n+ 1).

Exercise H6
Show that A is definable in System T as a closed term t of type N → N → N .

Exercise H7 (+)
Let � be the ordering on N×N define by (m, n)� (m′, n′) if m= m′+1 or m= m′ and n= n′+1. Consider the following
scheme of recursion over �:

f (m, n) = h(m, n,λm′, n′. f (m′, n′) if (m, n)� (m′, n′) else 0).

Show that the Ackermann function can be defined using recursion of this kind. Can recursion over � be simulated in
System T?

Exercise H8 (P+)
Design your own programming language which comprises the terms of System T and write a compiler for it.

1


