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Background: Applied proof theory



What is applied proof theory?

There is a famous quote due to G. Kreisel (A Survey of ProofTheory II):

“What more do we know when we know that a theorem can be proved by limited
means than if wemerely know that it is true?”

In other words, the proof of a theorem gives us muchmore information than the

mere truth of that theorem.

Applied proof theory is a branch of logic that uses proof theoretic techniques to

exploit this phenomenon.



People do applied proof theory without realising it...

Problem. Give me an upper bound on the nth prime number pn.

1. What is pn? I know it exists because of Euclid...

2. Specifically, given p1, . . . , pn−1, I know thatN := p1 · . . . · pn−1 + 1 contains a

new prime factor q, and so pn ≤ q ≤ N.

3. In other words, the sequence {pn} satisfies

pn ≤ p1 · . . . · pn−1 + 1 ≤ (pn−1)
n−1

4. By induction, it follows that e.g. pn < 2
2
n
.

This is an extremely simple example of applied proof theory in action! From the

proof that there are infinitely many primes, we have inferred a bound on the nth
prime.



... but it’s not always that simple

Theorem (Littlewood 1914)

The functions of integers
(a) ψ(x)− x, and
(b) π(x)− li(x)
change signs infinitely often, whereπ(x) is the number of prime≤ x,ψ(x) is the is logarithm
of the l.c.m. of numbers≤ x and li(x) =

∫ x
0
(1/ log(u))du.

The original proof is utterly nonconstructive, using among other things a case
distinction on the Riemann hypothesis. At the time, no numerical value of x for
which π(x) > li(x)was known.

In 1952, Kreisel analysed this proof and extracted recursive bounds for sign changes

(On the interpretation of non-finitist proofs, Part II):
“Concerning the bound ... note that it is to be expected from our principle, since if the
conclusion ... holds when the Riemann hypothesis is true, it should also hold when
theRiemannhypothesis is nearly true: not all zeros need lie onσ = 1

2
, but only those

whose imaginary part lies below a certain bound ... and they need not lie on the line
σ = 1

2
, but near it”



A completely routine example – frommy own work done here at Darmstadt!

Theorem (Kirk and Sims, Bulletin of the Polish Academy of Sciences 1999)

Suppose that C is a closed subset of a uniformly convex Banach space and T : C → C is
asymptotically nonexpansive with int(fix(T)) ̸= ∅. Then for each x ∈ C the sequence {Tnx}
converges to a fixed point of T.

Theorem (P., Journal ofMathematical Analysis and Applications 2019)

Let T : C → C be a nonexpansive mapping in Lp for 2 ≤ p <∞, and suppose that
Br[q] ⊂ fix(T) for some q ∈ Lp and r > 0. Suppose that x ∈ C and ∥x − q∥ < K, and
define xn := Tnx. Then for any ε > 0we have

∀n ≥ f (ε)(∥Txn − xn∥ ≤ ε)

where

f (ε) :=
⌈
p · 23p+1 · Kp+2

εp · r2

⌉



Modern applied proof theory

• Origins in the work of Kreisel and the “unwinding” of proofs

[Kreisel, 1951, Kreisel, 1952]. Early case studies in number theory.

• Applications in mathematics were brought to maturity by Kohlenbach and his

collaborators from late 90s onwards (see the textbook [Kohlenbach, 2008] and

the recent survey papers [Kohlenbach, 2017, Kohlenbach, 2019] for an

overview).

• There are now hundreds of papers proving new theorems that were obtained

using proof theoretic ideas andmethods, the majority published in specialised

journals in the areas of application, including nonlinear analysis, ergodic

theory, convex optimization, . . . (see the proof mining bibliography).

• In parallel, there are logical metatheorems that explain individual applications

as instances of general logical phenomena (the first in [Kohlenbach, 2005] and

the most recent in [Neri and Pischke, 2024]).

• Now starting to expand and establish new connections with automated

reasoning and formal mathematics

[Koutsoukou-Argyraki, 2021, Neri and Powell, 2023].

https://sites.google.com/view/nicholaspischke/proof-mining-bibliography/alphabetical


What people working in applied proof theory might do

• Use logical methods to establish quantitative versions of known results in

mainstream (non-logic) mathematics.

• Show that a collection of theorems are all instances of a more general, abstract

theorem.

• Define new classes of mappings or new types of spaces.

• Develop sophisticated logical systems for reasoning about specific

mathematical objects.

• Study a hitherto unexplored area of mathematics to see if proof theoretic

methods might be effective and useful. This is very hard but very rewarding
when it works.

• Make important contributions to core logic, including computability theory

and theoretical computer science.

• Recently: Formalise their work in a proof assistant (e.g. Lean) or consider

automatedmethods.

Applied proof theory is characterised by thinking about and doingmathematics froma
proof-theoretic perspective.



The rest of this talk

One line summary: Applied proof theory has never really tackled probability in a
systematic way. We’ve now started to do this and it is a lot of fun.

• Metastable monotone convergence.

• Metastable martingale convergence.

• Almost-martingales in stochastic optimization.

• The future: Proof mining in probability theory.



Metastable monotone convergence



Monotone convergence theorem

Theorem (First year analysis)

Let K > 0 and suppose that {xn} is a monotone sequence of reals with |xn| ≤ K for all n ∈ N.
Then {xn} converges.

Is there a computable, uniform rate of convergence for all sequences in this class?

I.e. a function ϕK(ε) such that

∀ε > 0∀i, j ≥ ϕK(ε)(|xi − xj| < ε)

Absolutely not:

• There exist monotone sequences of rationalswith |xn| ≤ 1 which do not possess

a computable rate of convergence (Specker sequences - already mentioned in

Nicholas’ introduction).

• For any function ϕ(ε)we can construct a montone sequence of rationals in
[0, 1]which do not convergence with rate ϕ(ε).

Weneed to consider a different notion of quantitative convergence.



A logical approach to the MCT –The statement

The following steps are entirely logic-based (i.e. have nothing to do with

convergence):

MCT := ∀ε > 0∃n∀i, j ≥ n (|xi − xj| < ε)

⇐⇒ ∀ε > 0∃n∀k ∀i, j ∈ [n; n+ k] (|xi − xj| < ε)

⇐⇒ ¬¬∀ε > 0∃n ∀k∀i, j ∈ [n; n+ k] (|xi − xj| < ε)

⇐⇒ ¬∃ε > 0∀n∃k∃i, j ∈ [n; n+ k] (|xi − xj| ≥ ε)

⇐⇒ ¬∃ε > 0∃g : N → N ∀n ∃i, j ∈ [n; n+ g(n)] (|xi − xj| ≥ ε)

⇐⇒ ∀ε > 0∀g : N → N∃n∀i, j ∈ [n; n+ g(n)] (|xi − xj| < ε) := MCT∗

Theorem (Metastable monotone convergence theorem – first version)

Let K > 0 and suppose that {xn} is a monotone sequence of reals with |xn| ≤ K for all n ∈ N.
Then for any ε > 0 and g : N → N there exists some n ∈ N such that |xi − xj| < ε for all
i, j ∈ [n; n+ g(n)].

Question: Can we compute n in ε and g?



A logical approach to the MCT –The proof

Suppose that {xn} ⊂ [−K,K] is monotone but not Cauchy. Then there is some ε > 0

such that for all n ∈ N, we can find k ∈ Nwith:

∃i, j ∈ [n; n+ k] (|xi − xj| ≥ ε)

Let g : N → N be a function that finds such a k in terms of n i.e. for all n ∈ N:

∃i, j ∈ [n; g̃(n)] (|xi − xj| ≥ ε)

for g̃(x) := x + g(n).

Then iterating g̃, for all e ∈ N:

∃i, j ∈ [g̃(e)(0); g̃(e+1)(0)] (|xi − xj| ≥ ε) (∗)

In other words, in each of the intervals

[0; g̃(0)], [g̃(0); g̃(2)(0)], [g̃(2)(0); g̃(3)(0)], . . .

the sequence {xn} experiences a distinct ε-jump (or fluctuation).

But a monotone sequence in [−K,K] can experience at most 2K/ε distinct
ε-fluctuations, so (∗) must fail for some e ≤ ⌈2K/ε⌉. Contradiction!



A logical approach to the MCT –The payoff

Theorem (Metastable monotone convergence theorem)

Take K, ε > 0 and g : N → N. Then there exists someN ∈ N (depending only on K, ε and g)
such that for anymonotone sequence {xn} in [−K,K], there exists n ≤ N such that
|xi − xj| < ε for all i, j ∈ [n; n+ g(n)]. Moreover, we can define

NK(ε, g) := g̃(⌈2K/ε⌉)(0)

for g̃(x) := x + g(x).

Theorem (Generalised metastable convergence theorem)

Takeϕ : (0, 1) → R, ε > 0 and g : N → N. Then there exists someN ∈ N such that for
any sequence{xn} in somemetric space (X, d) that experiences atmostϕ(ε) distinct
ε-fluctuations, there exists n ≤ N such that d(xi, xj) < ε for all i, j ∈ [n; n+ g(n)].
Moreover, we can define

Nϕ(ε, g) := g̃(⌈ϕ(ε)⌉)(0)

for g̃(x) := x + g(x).



[Tao, 2007] (Tao’s blog)



[Tao, 2007] (Tao’s blog)



[Tao, 2008]: A convergence theorem...



[Tao, 2008] ... in metastable form

Later there is a footnote...



[Avigad and Rute, 2014] One of many examples of explicit bounds on

fluctuations andmetastable rates (authors are logicians)



[Kohlenbach and Safarik, 2014] A deep explanation of the underlying logical

phenomena



Metastable convergence: Themain points

• There are natural situations where it is impossible to provide computable rates

of convergence.

• Where direct rates are not possible, one can often produce either fluctuation
bounds ormetastable rates that are both computable and highly uniform.

• Mathematicians outside of logic are very interested in fluctuations and

metastability.

• Researchers in applied proof theory have been able to:

• Extract explicit fluctuation bounds or metastable rates in many different scenarios;

• Do this in an abstract and general setting;

• Explain why this is possible from a logical point of view.

• The apparently elementary monotone convergence theorem contained a wealth

of riches when analysed from a logical perspective!



In detail: Metastable martingale

convergence



Martingales

Let (Ω,F ,P) be a probability space andF0 ⊆ F1 ⊆ . . . ⊆ F be a filtration. Let

{Xn} be a sequence of real-valued random variables adapted to {Fn} (i.e. Xn is
Fn-measurable) such thatE[|Xn|] <∞ for all n ∈ N.
We call {Xn} amartingale if

E[Xn+1 | Fn] = Xn almost surely

for all n ∈ N. It is a submartingale ifE[Xn+1 | Fn] ≥ Xn and a supermartingale if
E[Xn+1 | Fn] ≤ Xn.

Example

Suppose that a gambler repeatedly flips a biased coin repeatedly, winning one euro

with probability p and losing one euro with probability 1− p each time. Let Xn be
their fortune after n coin flips.

• If p = 1/2 then {Xn} is a martingale.
• If p > 1/2 then {Xn} is a submartingale.
• If p < 1/2 then {Xn} is a supermartingale.



Martingale convergence

Martingales are the stochastic analogue of monotone sequences.

Theorem (Our old friend the monotone convergence theorem)

Let K > 0 and suppose that {xn} is a monotone sequence of reals with |xn| ≤ K for all n ∈ N.
Then {xn} converges.

Theorem (The stochastic analogue: Doob’s convergence theorem)

Let K > 0 and suppose that {Xn} is a sub- or supermartingale withE[|Xn|] < K for all
n ∈ N. Then {Xn} converges almost surely i.e.

P ({ω ∈ Ω | {Xn(ω)} converges}) = 1

Note: Martingales generalise monotone sequences of reals, so we also cannot expect

direct rates of (almost sure) convergence...



A logical approach to Doob -The statement

The following steps are logic-based or use continuity properties of P:

P ({Xn} converges) = 1

⇐⇒ P

(
∞⋂
m=0

∞⋃
n=0

∞⋂
k=0

∀i, j ∈ [n; n+ k]
(
|Xi − Xj| < 2

−m)) = 1

⇐⇒ ∀m

[
P

(
∞⋃
n=0

∞⋂
k=0

∀i, j ∈ [n; n+ k]
(
|Xi − Xj| < 2

−m)) = 1

]

⇐⇒ ∀m, λ > 0∃n

[
P

(
∞⋂
k=0

∀i, j ∈ [n; n+ k]
(
|Xi − Xj| < 2

−m)) > 1− λ

]
⇐⇒ ∀ε, λ > 0∃n∀k [P (∀i, j ∈ [n; n+ k] (|Xi − Xj| < ε)) > 1− λ]

⇐⇒ ¬∃ε, λ > 0∀n∃k [P (∀i, j ∈ [n; n+ k] (|Xi − Xj| < ε)) ≤ 1− λ]

⇐⇒ ¬∃ε, λ > 0∃g : N → N ∀n [P (∀i, j ∈ [n; n+ g(n)] (|Xi − Xj| < ε)) ≤ 1− λ]

⇐⇒ ∀ε, λ > 0∀g : N → N ∃n [P (∀i, j ∈ [n; n+ g(n)] (|Xi − Xj| < ε)) > 1− λ]



The goal

By analysing the proof of Doob’s theorem can we prove the following?

Theorem (Metastable martingale convergence theorem)

Take K, ε, λ > 0 and g : N → N. Then there exists someN ∈ N (depending only on K, ε, λ
and g) such that for any sub- or supermartingale {Xn}with

sup
n∈N

E[|Xn|] < K

there exists n ≤ N such that

|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ. Moreover, we can define

NK(λ, ε, g) := . . .



Maybe there is also a connection with fluctuations?

For ε > 0 define the random variable Jε(Xn) to be the maximum number of

ε-fluctuations experienced by the sequence {Xn}.

Theorem ([Neri and P., 2024])

For anyϕ : (0, 1) → R, ε > 0 and g : N → N there exists N ∈ N such that for any
sequence of random variables {Xn}with

E [Jε(Xn)] < ϕ(ε)

there exists n ≤ N such that

|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ. Moreover, we can define

NK(λ, ε, g) := g̃(⌈ϕ(ε)/λ⌉)(0)

for g̃(x) := x + g(x).



Proof of the theorem

Suppose for contradiction that for all n ∈ N:

P (∃i, j ∈ [n; n+ g(n)](|Xi − Xj| ≥ ε)) ≥ λ (∗)

so in particular, for all e ∈ N:

P (Ae) ≥ λ for Ae := ∃i, j ∈ [g̃(e)(0); g̃(e+1)(0)](|Xi − Xj| ≥ ε)

For any k ∈ Nwe have

(k+ 1)λ ≤
k∑

e=0

P(Ae) =
k∑

e=0

E (IAe) = E

[
k∑

e=0

IAe

]
≤ E [Jε(Xn)] < ϕ(ε)

which is a contradiction for

k :=
⌈ϕ(ε)
λ

⌉
Therefore P(Ae) < λ for some e ≤ k and therefore (∗) fails for some

n ≤ g̃(k)(0)



Now it should be easy?

We need a function ϕK(ε) such that for any sub- or supermartingale {Xn}with

sup
n∈N

E[|Xn|] < K

we have

E[Jε(Xn)] < ϕ(ε)

Theorem (Chashka, seeTheorem 34 of [Kachurovskii, 1996])

For any K > 0 there exists amartingale {Xn}with

sup
n∈N

E[|Xn|] < K

such that
E
[√

Jε(Xn)
]
= ∞

It turns out you only really get nice fluctuation behaviour for L2-martingales.



For martingales, crossings are far easier to characterise
For a < b define the random variable UN,[a,b](Xn) to be the maximum number of

times {Xn} upcrosses the interval [a, b] up to timeN.

Theorem (Doob’s upcrossing inequality for supermartingales)

E
[
U∞,[a,b](Xn)

]
≤

|a|+ supn∈N E(|Xn|)
b− a

The intuitive idea: Imagine that {Xn} represents a stock, and consider an
investment strategy that buys the stock whenever its price falls below a, and sells it
whenever its price rises above b. Let YN denote your winnings after timeN.

• YN is at least as good as the number of upcrossings times (b− a)

YN ≥ (b− a)UN,[a,b](Xn)− (XN − a)− (∗)

• Because {Xn} is a supermartingale (i.e. the stock value decreases on average),
this strategy can’t win on average: E[YN] ≤ 0.

The inequality then follows by taking expectations on both sides of (∗).



Metastability for L1-bounded crossings C[a,b](Xn) (= down + upcrossings)

Theorem ([Neri and P., 2024])

For anyλ, ε, L,M > 0 and g : N → N there exists N ∈ N such that for any sequence of
random variables {Xn} such that

P (|Xn| ≥ M) <
λ

2

and E
[
C[a,b](Xn)

]
< L for [a, b] ∈ P(r, l)

whereP(r, l) denotes the partition of [−r, r] into l equal subintervals and

r := M
(
1+

2

p

)
and l := p+ 2 and p :=

⌈
8M
ε

⌉
there exists n ≤ N such that

|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ. Moreover, we can define

NL,M(λ, ε, g) := g̃(e)(0)

for g̃(x) := x + g(x) and

e :=
2(p+ 2)L

λ



Ametastable martingale convergence theorem

Theorem ([Neri and P., 2024])

Take K, ε, λ > 0 and g : N → N. Then there exists someN ∈ N (depending only on K, ε, λ
and g) such that for any sub- or supermartingale {Xn}with

sup
n∈N

E[|Xn|] < K

there exists n ≤ N such that

|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ. Moreover, we can define

NK(λ, ε, g) := g̃(e)(0) for e := c
(
K
λε

)
2

where c > 0 is a suitable constant that can be defined explicitly.



We can use our general framework to do a lot more

Some of our results onmartingales:

stochastic process {Xn} iterations of g̃
constant, monotone K/ε
almost sure monotone cK/λε

L2-martingales cK2/λε2

L1-martingales cK2/λ2ε2

L1-almost-martingales cK2/λ2(1+r)ε2 some r ≥ 0

Notes:

• Most of these rates are optimal in a certain sense, but achieving optimal rates

and showing that they are optimal was not easy.

• Similar rates can be obtained in other situations where crossing bounds are

present e.g. ergodic theory.



For example, [Hochman, 2009] has many beautiful results on upcrossings...



Almost martingales in stochastic

optimization



Almost monotone sequences in (nonstochastic) optimization: An example

X is a normed space. A mapping T : X → X isψ-weakly contractive on some closed,
convex C ⊆ X if

∥Tx − Ty∥ ≤ ∥x − y∥ − ψ(∥x − y∥)

for x, y ∈ C, whereψ : [0,∞) → [0,∞) is a nondecreasing function withψ(0) = 0

andψ(t) > 0 for t > 0.

Theorem ([Alber and Guerre-Delabriere, 1997])

Suppose that x∗ is a fixed point of T, and the algorithm {xn} is defined according to the
Krasnoselskii-Mannmethod:

xn+1 = (1− αn)xn + αnTxn

for x0 ∈ C and {αn} ⊂ [0, 1]with
∑∞

i=0
αi = ∞. Then xn → x∗.

Proof.
1 Show that ∥xn+1 − x∗∥ ≤ ∥xn − x∗∥ − αnψ(∥xn − x∗∥)

2 Prove that whenever un+1 ≤ un − αnψ(un) with

∑∞
i=0

αi = ∞ then un → 0.

(Rates of convergence for a generalised version of this result obtained in

[Powell andWiesnet, 2021].)



More examples from applied proof theory

Almost-monotone sequences can be found everywhere numerical analysis and

optimization (where they are connected to the concept of Fejér monotonicity).

Analysing these is a crucial step in obtaining explicit rates of convergence or

metastability.

• First clear example from applied proof theory in

[Kohlenbach and Lambov, 2004] (I think):

an+1 ≤ (1+ bn)an + cn with
∑
bi <∞ and

∑
ci <∞

Rates of metastability for {an} calculated and used to produce quantitative
results on asymptotically nonexpansive mappings.

• Numerous applied proof theory papers from the last years use variants of the

following:

sn+1 ≤ (1− an)sn + anrn + vn with
∑
αi = ∞, lim supn→∞ rn ≤ 0,

∑
vn <∞

See [Pinto, 2023] for a detailed overview of the many variants.

There are explicit recursive inequalities in 30–40 papers in applied proof theory.

There are thousands of such papers in ordinary optimization.



There is a useful survey paper covering mainstreammathematics

[Franci and Grammatico, 2022]

Annual Reviews in Control 53 (2022) 161–186
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Convergence of sequences: A survey✩

Barbara Franci a,∗, Sergio Grammatico b

a Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
b Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Convergence

A B S T R A C T

Convergent sequences of real numbers play a fundamental role in many different problems in system theory,
e.g., in Lyapunov stability analysis, as well as in optimization theory and computational game theory. In this
survey, we provide an overview of the literature on convergence theorems and their connection with Féjer
monotonicity in the deterministic and stochastic settings, and we show how to exploit these results.

1. Introduction

Why Are Convergence Theorems Necessary?
The answer to this ‘‘naive’’ question is not simple.

cit. Boris T. Polyak, 1987 (Polyak, 1987, Section 1.6.2).

While the answer may have become clearer through the years,
since many problems in applied mathematics rely on convergence
theorems, it is still not simple. Besides the theoretical investigation,
in fact, one fundamental aspect is how convergence theorems can be
of practical use, i.e., if the assumptions are plausible for a variety of
applications, for instance, in systems theory. Moreover, convergence
theorems may also give qualitative information, e.g., if convergence is
guaranteed for any initial point and in what sense (strongly, weakly,
almost surely, in probability), which affects the range of application.
The aim of this paper is to collect these results toward a complete
overview, thus to be able to find the one that most suits the application
at hand. In fact, many convergence results find their use in theoretical
applications, such as Lyapunov stability analysis (Benaim, 1996; Be-
naïm, 1999; Khalil & Grizzle, 2002; Polyak, 1987), variational analysis
(Iusem, Jofré, Oliveira, & Thompson, 2017, 2019; Malitsky, 2015,
2020; Yousefian, Nedić, & Shanbhag, 2014, 2017) and game equilib-
rium seeking (Facchinei & Pang, 2007; Franci & Grammatico, 2020a;
Franci, Staudigl, & Grammatico, 2020; Koshal, Nedic, & Shanbhag,
2013), in automatic control, such as model predictive control (Lee
& Nedić, 2015) and network control problems (Shi, Johansson, &
Johansson, 2013), as well as in other engineering areas, e.g., train-
ing and learning in generative adversarial networks (Bot, Sedlmayer
and Vuong, 2020; Franci & Grammatico, 2020b, 2021b), vehicle flow

✩ This work was partially supported by NWO under research projects OMEGA (613.001.702) and P2P-TALES (647.003.003), and by the ERC under research
project COSMOS (802348).
∗ Corresponding author.

E-mail addresses: b.franci@maastrichtuniversity.nl (B. Franci), s.grammatico@tudelft.nl (S. Grammatico).

control in traffic networks (Duvocelle, Meier, Staudigl, & Vuong, 2019)
and in modeling the prosumer behavior in smart power grids (Franci
& Grammatico, 2020a; Franci et al., 2020; Kannan, Shanbhag, & Kim,
2013; Yi & Pavel, 2019).

1.1. Lyapunov decrease and Féjer monotonicity

In the mathematical literature, many convergence results hold for
sequences of numbers while in system and control theory, the state
and decision variables are usually vectors of real numbers. It is therefore
important to understand the deep connection between the two theories.
The bridging idea is to associate a real number to the state vector,
i.e., via a function, and then prove convergence exploiting the prop-
erties of such a function. The most common example of this approach
is that of Lyapunov theory where a suitable Lyapunov function is
shown to be decreasing along the evolution of the state variable, thus
obtaining convergence of the state vector to a target set (Benaim, 1996;
Khalil & Grizzle, 2002; Polyak, 1987). An alternative approach is to
consider the distance from a target set and show that such a distance
vanishes eventually via a suitable technical result on the convergence
of the distance-valued sequence of real numbers.

In this work, we focus mostly on the latter methodology. To explain
our choice, let us note that solving an optimization problem consist
of designing a sequence of vectors that converge to the solution, the
minimum of a given cost function. Similarly, in algorithmic game
theory, one usually aims at constructing a sequence that converge to
an equilibrium, e.g., a Nash equilibrium, the optimum for each player
given the actions of the other players. The key point here is that, in
general, the target set is not known a priori, yet the distance of the

https://doi.org/10.1016/j.arcontrol.2022.01.003
Received 4 November 2021; Received in revised form 20 January 2022; Accepted 21 January 2022



Contains a huge survey of lemmas involving almost-monotone sequences
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B. Franci and S. Grammatico

Table 1
Convergence results for Féjer monotone sequences, deterministic sequences of real numbers and with variable metric (separated by the horizontal lines, respectively). For the
applications, MI stands for Monotone Inclusion, VI for variational inequalities, NE for Nash Equilibrium problems, LYAP for Lyapunov analysis and NC for nonconvex optimization.

Result Reference Application Reference

Proposition 3.1 Bauschke et al. (2011, Proposition 5.4)
Theorem 3.2 Combettes (2001b, Theorem 3.8)
Lemma 3.3 Opial et al. (1967) (Opial) MI - Theorem 6.1 Malitsky and Tam (2020, Theorem 2.5)

VI - Theorem 6.4 Malitsky (2020, Theorem 1)

Lemma 3.4 Combettes (2001b, Lemma 3.1) NC - Theorem 6.9 Di Lorenzo and Scutari (2016, Theorem 3)
Corollary 3.5 Scutari and Sun (2019, Lemma 9)
Lemma 3.6 Bauschke et al. (2011, Lemma 5.31) VI - Theorem 6.4 Malitsky (2020, Theorem 1)
Corollary 3.7 Malitsky (2015, Lemma 2.8) VI - Theorem 6.5 Malitsky (2015, Theorem 3.2)

LYAP - Theorem 6.8 Polyak (1987, Theorem 1.4.1)
Corollary 3.8 Polyak (1987, Lemma 2.2.2)
Lemma 3.9 Polyak (1987, Lemma 2.2.3) NE - Theorem 6.7 Kannan and Shanbhag (2012, Theorem 2.4)
Lemma 3.10
Lemma 3.11 Xu (2003, Lemma 2.1)
Lemma 3.12 Extension of Xu (2002, Lemma 2.5) NE - Theorem 6.6 Duvocelle et al. (2019, Theorem 3.1)
Corollary 3.13 Lei, Shanbhag and Chen (2020, Proposition 3)
Corollary 3.14 Qin, Shang, and Su (2008, Lemma 1.1)
Corollary 3.15 Xu (1998, Lemma 3) MI - Theorem 6.3 Dadashi and Postolache (2019, Theorem 3.1)
Proposition 3.16 Alber, Iusem, and Solodov (1998, Proposition 2)
Lemma 3.17 He and Yang (2013, Lemma 7)
Lemma 3.18 Maingé (2008, Lemma 2.2)
Lemma 3.19 Malitsky and Tam (2018, Lemma 2.7) MI - Theorem 6.2 Malitsky and Tam (2020, Theorem 2.9)

Proposition 5.1 Combettes and Vũ (2013, Proposition 3.2) MI - Theorem 8.1 Vũ (2013, Theorem 3.1)
Theorem 5.2 Combettes and Vũ (2013, Theorem 3.3) MI - Theorem 8.1 Vũ (2013, Theorem 3.1)
Corollary 5.3 Combettes and Vũ (2013, Proposition 4.1)

constructed sequence from such set can be analyzed anyways. On the
contrary, in Lyapunov stability analysis, the target set is usually known
a priori.

By exploiting the relation between the iterations and a suitable
distance-like function, we show in this paper that convergence theo-
rems represent a key ingredient for a wide variety of system-theoretic
problems in fixed-point theory, game theory and optimization
(Bauschke, Combettes, et al., 2011; Combettes, 2001b; Eremin & Popov,
2009; Facchinei & Pang, 2007; Polyak, 1987). In many cases, the study
of iterative algorithms allows for a systematic analysis that follows
from the concept of Féjer monotone sequence. The basic idea behind
Féjer monotonicity is that at each step, each iterate is closer to the
target set than the previous one. In a sense, the distance used for Féjer
sequences can be seen as a specific class of Lyapunov function and
Féjer monotonicity shows that it is decreasing along the iterates. The
concept was first introduced in 1922 (Fejér, 1922), but the term Féjer
monotone sequence was first used thirty years later in 1954 (Motzkin &
Schoenberg, 1954) and a huge part of the studies on its properties was
made in the 60s (Eremin, 1968a, 1968b, 1969; Eremin & Popov, 2009)
and still continues (Combettes, 2001a, 2001b; Combettes & Pesquet,
2015; Combettes & Vũ, 2013; Kohlenbach, Leuştean, & Nicolae, 2018).

Unfortunately, Féjer monotonicity is hard to obtain, therefore the
concept is typically relaxed to a quasi-Féjer property, where a vanishing
error must be considered. Such an error term in the distance inequality
is common in many equilibrium problems (Bauschke et al., 2011; Duflo,
2013; Duvocelle et al., 2019; Franci & Grammatico, 2020a; Iusem
et al., 2017; Kannan et al., 2013; Malitsky & Tam, 2020; Polyak,
1987; Van Nguyen, 2017), especially in the stochastic case where
the concept of quasi-Féjer monotone sequence was first introduced
(Ermol’Ev, 1969; Ermoliev & Wets, 1988). However, these properties
are not necessarily enough to ensure convergence, hence, (quasi) Féjer
monotonicity is often used in combination with convergence results
on sequences of real numbers. These technical results have been used
in many theoretical and computational applications that range from
stochastic Nash equilibrium seeking (Franci & Grammatico, 2020a;
Franci et al., 2020; Koshal et al., 2013) to machine learning (Bot,
Sedlmayer et al., 2020; Duvocelle et al., 2019; Franci & Grammatico,
2020b).

1.2. What this survey is about

In this survey, we present a number of convergence theorems for
sequences of real (random) numbers. We show how they can be used
in combination with (quasi) Féjer monotone sequences or Lyapunov
functions to obtain convergence of an iterative algorithm, essentially
a discrete-time dynamical system, to a desired solution. Moreover,
we present some applications to show how they can be adopted in a
variety of settings. Specifically, we present convergence results for both
deterministic and stochastic sequences of real numbers and we also
include some results on Féjer monotone sequences and with variable
metric. We show that these results help proving not only convergence
of an iterative algorithm but also the Law of Large Numbers, with
applications in model predictive control (Lee & Nedić, 2015) and
opinion dynamics (Shi et al., 2013) among others.

We report in Tables 1 and 2 the results for deterministic and
stochastic sequences respectively, with the corresponding bibliographic
source and application.

The paper is organized as follows. In the next section, we recall
some preliminary notions on the concept of ‘‘convergence’’ and of
random variables. Section 3 is devoted to deterministic convergence
results while the stochastic case is discussed in Section 4. An extension
with variable metric is considered in Section 5. Sections 6–8 propose
applications of the convergence lemmas for deterministic, stochastic,
and variable metric sequences, respectively.

1.3. What this survey is not about

This is not a survey on solution algorithms for optimization prob-
lems and variational inequalities. Some relevant references on iterative
methods include Bauschke et al. (2011), Combettes and Pesquet (2021),
Doob (1953), Facchinei and Pang (2007), Polyak (1987), Rockafellar
(1970) and the references therein.

We also remark that, despite the notion of Féjer sequence is used
throughout the paper, this is not a survey on the properties of Féjer
monotone sequences. The interested reader may refer to Bauschke et al.
(2011), Berg, Engel, Pazderski, and Stolle (1995), Combettes (2001a,
2001b), Combettes and Pesquet (2015), Combettes and Vũ (2013) and
Kohlenbach et al. (2018).
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Table 3
Convergence results for deterministic sequences of real numbers divided by their form.
In the first line, the most general inequality is presented. NN stands for a sequence of
nonnegative real numbers, while ✓(✗) indicates if the inequality in the corresponding
lemma contains (or not) a term of that column type. 𝐶𝑘 is a general ‘‘coefficient",
whose specific form can be retrieved from the column.

Seq(𝑘 + 1) Coeff. Seq(𝑘) Negative Noise
𝑣𝑘+1 ≤ 𝐶𝑘 𝑣𝑘 −𝜃𝑘 +𝜀𝑘

Lemma 3.4 NN 𝛾 ✓ ✓

Lemma 3.6 NN (1 + 𝛿𝑘) ✓ ✓

Corollary 3.7 NN 1 ✓ ✗

Corollary 3.8 NN (1 + 𝛿𝑘) ✗ ✓

Lemma 3.9 Real 𝛾𝑘 ✗ ✓

Lemma 3.10 NN (1 − 𝛿𝑘) ✓ ✓

Lemma 3.11 NN (1 − 𝛿𝑘) ✗ 𝛿𝑘𝛽𝑘

Lemma 3.12 NN (1 − 𝛿𝑘) ✗ 𝛿𝑘𝛽𝑘 + 𝜀𝑘

Corollary 3.13 NN (1 − 𝛿𝑘) ✗ 𝛿𝑘(𝛽𝑘 + 𝜂𝑘)
Corollary 3.14 NN (1 − 𝛿𝑘) ✗ ✓

Corollary 3.15 NN (1 − 𝛿𝑘) ✗ 𝜂𝑘 + 𝜀𝑘

Proposition 3.16 NN 1 ✗ 𝑎𝛽𝑘

Lemma 3.17 NN (1 − 𝛿𝑘) ✗ 𝛿𝑘𝛾𝑘 + 𝛽𝑘

1 ✓ ✓

Lemma 3.18 Real (1 + 𝛿𝑘) 𝛿𝑘𝑣𝑘−1 ✓

Lemma 3.19 NN 1∕𝛾 𝛽𝑘+1∕𝛾 𝛽𝑘∕𝛾

3.2. Convergent sequences of real numbers

We now introduce a number of results on sequences of real numbers.
We note that even if the following results are for general sequences of
real numbers, their importance for system theory lies on the fact that
they can be paired with (quasi) Féjer monotonicity (see Remark 3.5).
In Table 3, we summarize the results presented in this section, with
emphasis on the auxiliary sequences that may affect convergence.

Let us note that, in the first line of Table 3, 𝐶𝑘 is a coefficient which,
depending on the form, represents the level of expansion or contraction,
𝜀𝑘 can be seen as an additive noise and 𝜃𝑘 is a ‘‘negative term", because
of the minus sign, which decreases the value of the sequence 𝑣𝑘. For a
graphical interpretation of the effects of those sequences, we also refer
to Fig. 4 later on, which is specifically related to Lemma 3.6.

The first lemma that we report is widely used and it has a number of
consequences that are widely used as well. We do not include the proof
since it is very similar to the proof of the forthcoming Lemma 3.10.

Lemma 3.4 (Lemma 3.1, Combettes, 2001b). Let 𝛾 ∈ (0, 1] and let (𝑣𝑘)𝑘∈N,
(𝜃𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N be nonnegative sequences such that ∑∞

𝑘=0 𝜀
𝑘 <∞ and

𝑣𝑘+1 ≤ 𝛾𝑣𝑘 − 𝜃𝑘 + 𝜀𝑘 for all 𝑘 ∈ N. (3.1)

Then, the following statements hold:

(i) (𝑣𝑘)𝑘∈N is bounded;
(ii) (𝑣𝑘)𝑘∈N converges;
(iii) ∑∞

𝑘=0 𝜃
𝑘 < ∞;

(iv) If 𝛾 ≠ 1, then ∑∞
𝑘=0 𝑣

𝑘 < ∞.

Remark 3.5. If 𝑣𝑘 = ‖𝑥𝑘 − 𝑥̄‖, for some sequence (𝑥𝑘)𝑘∈N and a given
𝑥̄ ∈  , having that (𝑣𝑘)𝑘∈N satisfies the inequality (3.1) implies that
(𝑥𝑘)𝑘∈N is a quasi-Féjer monotone sequence relative to the set  .

We also note that the function 𝑉 (𝑥𝑘) = ‖𝑥𝑘 − 𝑥̄‖ = 𝑣𝑘 can also be
seen as a decreasing Lyapunov function associated to the sequence that
tends toward zero when 𝜀𝑘 = 0 for all 𝑘 ∈ N (Polyak, 1987, Section 2.2).

Remark 3.6. The case where (𝑣𝑘)𝑘∈N can be a negative sequence and
with 𝛾 = 1 is addressed in Bertsekas and Tsitsiklis (2000, Lemma 1).
There, it is also pointed out that if 𝑣𝑘 is negative and satisfies (3.1), it
may diverge to −∞ when (𝜃𝑘)𝑘∈N is not summable.

For a specific choice of the noise term instead, the following result
can be proven (Kannan & Shanbhag, 2012, Lemma 3.3). Suppose

𝑣𝑘+1 ≤ 𝛾𝑣𝑘 + 𝜂𝑘𝛽, for all 𝑘 ∈ N

where 𝛾 ∈ (0, 1), (𝜂𝑘)𝑘∈N is a decreasing positive sequence such that
∑∞
𝑘=0(𝜂

𝑘)2 < ∞, and let 0 ≤ 𝑣𝑘 ≤ 𝑣̄ < ∞ for all 𝑘 ∈ N. Then,
∑∞
𝑘=1 𝜂

𝑘𝑣𝑘 <∞.

With the same arguments as for Lemma 3.4, the following corollary
can be proven. Interestingly, this result concerns the finite sum of the
sequence.

Corollary 3.5 (Lemma 9, Scutari & Sun, 2019). Let (𝑣𝑘)𝑘∈N be a real
sequence and let (𝜃𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N be nonnegative sequences such that
∑∞
𝑘=0 𝜀

𝑘 <∞ and such that
𝑁−1
∑

𝑛=0
𝑣𝑘+𝑁+𝑛 ≤

𝑁−1
∑

𝑛=0
𝑣𝑘+𝑛 −

𝑁−1
∑

𝑛=0
𝜃𝑘+𝑛 +

𝑁−1
∑

𝑛=0
𝜀𝑘+𝑛.

for 𝑁 ∈ N. Then, either ∑𝑁−1
𝑛=0 𝑣𝑘+𝑛 → −∞, or ∑𝑁−1

𝑛=0 𝑣𝑘+𝑛 converges to a
finite value and ∑∞

𝑘=0 𝜃
𝑘 <∞.

Proof. It suffices to set 𝑣𝑘1 =
∑𝑁−1
𝑛=0 𝑣𝑘+𝑛, 𝜃𝑘1 =

∑𝑁−1
𝑛=0 𝜃𝑘+𝑛 and 𝜀𝑘1 =

∑𝑁−1
𝑛=0 𝜀𝑘+𝑛 and then apply Lemma 3.4. □

The next lemma is a consequence and a generalization of
Lemma 3.4. It has its stochastic counterpart in the well know Robbins–
Siegmund Lemma ( Lemma 4.1) (Robbins & Siegmund, 1971). It is
taken from Bauschke et al. (2011) yet here we provide a different proof.
For a graphical interpretation, we refer to Fig. 4.

Lemma 3.6 (Lemma 5.31, Bauschke et al., 2011). Let (𝑣𝑘)𝑘∈N, (𝜃𝑘)𝑘∈N,
(𝜀𝑘)𝑘∈N and (𝛿𝑘)𝑘∈N be nonnegative sequences such that ∑∞

𝑘=0 𝜀
𝑘 < ∞ and

∑∞
𝑘=0 𝛿

𝑘 < ∞ and

𝑣𝑘+1 ≤ (1 + 𝛿𝑘)𝑣𝑘 − 𝜃𝑘 + 𝜀𝑘, for all 𝑘 ∈ N. (3.2)

Then, ∑∞
𝑘=0 𝜃

𝑘 <∞ and (𝑣𝑘)𝑘∈N is bounded and converges to a nonnegative
variable.

Proof. Define 𝛽𝑘 =
∏𝑘

𝑖=1(1 + 𝛿
𝑖) and note that 𝛽𝑘 converges to some 𝛽

since (𝛿𝑘)𝑘∈N is summable. Moreover, it holds that

1 + 𝛿𝑘 =
𝛽𝑘

𝛽𝑘−1

and, for all 𝑘 ∈ N

𝑣𝑘+1 ≤ 𝛽𝑘

𝛽𝑘−1
𝑣𝑘 + 𝜀𝑘 − 𝜃𝑘.

Since 𝛽𝑘 > 0 for all 𝑘 ∈ N, we have

𝑣𝑘+1

𝛽𝑘
≤ 𝑣𝑘

𝛽𝑘−1
+ 𝜀𝑘

𝛽𝑘
− 𝜃𝑘

𝛽𝑘
.

Now, let

𝑣̃𝑘 = 𝑣𝑘

𝛽𝑘−1
, 𝜀̃𝑘 = 𝜀𝑘

𝛽𝑘
, 𝜃𝑘 = 𝜃𝑘

𝛽𝑘

and rewrite the inequality as

𝑣̃𝑘+1 ≤ 𝑣̃𝑘 + 𝜀̃𝑘 − 𝜃𝑘.

Note that 𝑣̃𝑘, 𝜀̃𝑘 and 𝜃𝑘 are nonnegative and ∑∞
𝑘=1 𝜀̃

𝑘 ≤
∑∞
𝑘=1 𝜀

𝑘 < ∞,
hence we can apply Lemma 3.4. It follows that 𝑣̃𝑘 is bounded by 𝛼̄ and
convergent to some 𝑣̄ and that ∑∞

𝑘=1 𝜃
𝑘 <∞. Therefore 𝑣𝑘 is convergent,

i.e.,

𝑣𝑘 = 𝑣𝑘

𝛽𝑘−1
𝛽𝑘−1 = 𝑣𝑘1𝛽𝑘1 → 𝛼̄𝛽 as 𝑘→ ∞,

and bounded
𝑣𝑘

𝛽𝑘−1
< 𝐴⇒ 𝑣𝑘 < 𝐴𝛽𝑘−1 → 𝐴𝛽∞ as 𝑘 → ∞.

Since 𝜃𝑘 = 𝜃𝑘𝛽𝑘 < 𝜃𝑘𝛽∞ for all 𝑘 ∈ N, we conclude that (𝜃𝑘)𝑘∈N is
summable. □



... along with general heuristics for using them:

Annual Reviews in Control 53 (2022) 161–186

176

B. Franci and S. Grammatico

Fig. 7. Schematic representation of how the convergence lemmas for sequences can
be used. Given the iterative process, a suitable nonnegative function (Lyapunov or
distance-like) should be designed. Then, exploiting the properties of the application at
hand, an inequality involving the iterates at times 𝑘+1 and 𝑘 can be retrieved. Hence,
one should check if the inequality corresponds to a known result (Table 3 for sequences
of real numbers) and use the corresponding result to prove convergence. The whole
process may take repeated steps to find a suitable function and/or inequality. The same
reasoning applies to the stochastic case, in which one should have an expected valued
inequality (with E[𝑣𝑘+1]) and refer to Table 4 for a convergence result on stochastic
sequences. See also Fig. 8 for an example.

Proof. Let 𝑥∗ ∈ (𝐴 + 𝐵)−1(0). It is possible to show, by using
monotonicity and some norm properties, that the following inequality
holds:
‖𝑥𝑘+1 − 𝑥∗‖2 + 2𝛼𝑘⟨𝐵(𝑥𝑘+1) − 𝐵(𝑥𝑘), 𝑥∗ − 𝑥𝑘+1⟩+

+
( 1
2
+ 𝜖

)

‖𝑥𝑘+1 − 𝑥𝑘‖2

≤ ‖𝑥𝑘 − 𝑥∗‖2 + 2𝛼𝑘−1⟨𝐵(𝑥𝑘) − 𝐵(𝑥𝑘−1), 𝑥∗ − 𝑥𝑘⟩

+ 1
2
‖𝑥𝑘 − 𝑥𝑘−1‖2.

(6.9)

Then, by doing a telescopic sum, using Lipschitz continuity and the
properties of the parameters involved, the inequality in (6.9) can be
rewritten as

1
2
‖𝑥𝑘+1 − 𝑥∗‖2 + 𝜀

𝑘
∑

𝑖=0
‖𝑥𝑖+1 − 𝑥𝑖‖2

≤ ‖𝑥0 − 𝑥∗‖2 + 2𝜆−1⟨𝐵(𝑥0) − 𝐵(𝑥−1), 𝑥∗ − 𝑥0⟩ +
1
2
‖𝑥0 − 𝑥−1‖2

from which we deduce that (𝑥𝑘)𝑘∈N is bounded and that lim𝑘→∞ ‖𝑥𝑘 −
𝑥𝑘+1‖ = 0. Now, let 𝑥̄ be a cluster point of (𝑥𝑘)𝑘∈N. From the definition
of the algorithm in (6.8) and the properties of 𝐴 + 𝐵, it follows that
0 ∈ (𝐴 + 𝐵)(𝑥̄). Using again (6.9) and Lipschitz continuity it can be
proven that lim𝑘→∞ ‖𝑥𝑘− 𝑥̄‖2 exists. Then, by Lemma 3.3, the sequence
is convergent. □

The authors propose in the same paper also a variant of the algo-
rithm with line search and a second one with inertia, but the conver-
gence proof does not change its essence; in the first case, the authors
use locally Lipschitz continuity (Malitsky & Tam, 2020, Theorem 3.4),
while in the second they exploit the 1∕𝓁-cocoercivity of the operator 𝐵
(Malitsky & Tam, 2020, Theorem 4.3). Moreover, under the assumption

of strong monotonicity of the operator 𝐴, they also prove convergence
with linear rate, using Lemma 3.19.

Theorem 6.2 (Theorem 2.9, Malitsky & Tam, 2020). Let 𝐴 ∶  ⇉ 
be maximally monotone and 𝜇-strongly monotone and 𝐵 ∶  →  be
monotone and 𝓁-Lipschitz continuous. Suppose 𝛼 ∈

(

0, 1
2𝓁

)

. Then, the
sequence (𝑥𝑘)𝑘∈N generated by (6.8) converges R-linearly to the unique point
𝑥̄ ∈  such that 0 ∈ (𝐴 + 𝐵)(𝑥̄).

Proof. Similarly to the proof of Theorem 6.1 but using strong mono-
tonicity, one obtains the inequality

(1 + 2𝜇𝛼)‖𝑥𝑘+1 − 𝑥∗‖2 + 2𝛼⟨𝐵(𝑥𝑘+1) − 𝐵(𝑥𝑘), 𝑥∗ − 𝑥𝑘+1⟩

+ (1 − 𝛼𝓁)‖𝑥𝑘+1 − 𝑥𝑘‖2

≤‖𝑥𝑘 − 𝑥∗‖2 + 2𝛼⟨𝐵(𝑥𝑘) − 𝐵(𝑥𝑘−1), 𝑥∗ − 𝑥𝑘⟩

+ 1
2
‖𝑥𝑘 − 𝑥𝑘−1‖2.

(6.10)

Setting 𝛾 = (1 + 2𝜇𝛼) > 1, 𝑣𝑘 ∶= 1
2‖𝑥

𝑘 − 𝑥∗‖2 and 𝛽𝑘 ∶= 1
2‖𝑥

𝑘 − 𝑥∗‖2 +
2𝛼⟨𝐵(𝑥𝑘)−𝐵

(

𝑥𝑘−1
)

, 𝑥∗−𝑥𝑘⟩+ 1
2‖𝑥

𝑘−𝑥𝑘−1‖2, one can apply Lemma 3.19
to conclude that the sequence (𝑥𝑘)𝑘∈N converges to the unique solution
𝑥̄ and with a linear rate. □

Application of Corollary 3.15. As an application of Corollary 3.15, let us
consider the inertial forward–backward algorithm proposed in Dadashi
and Postolache (2019) for approximating a zero of an inclusion problem
𝑥 ∈ (𝐴 + 𝐵)−1(0):
{

𝑦𝑘 = 𝐽𝛼𝑘𝐴
(

𝑥𝑘 − 𝛼𝑘𝐵𝑥𝑘
)

𝑥𝑘+1 = 𝜈𝑘𝑥𝑘 + 𝛽𝑘𝑦𝑘 + 𝛾𝑘𝑒𝑘
(6.11)

where 𝐽𝛼𝑘𝐴 is the resolvent of 𝐴 (Definition A.1) and 𝑒𝑘 is an error
vector. By using Corollary 3.15 the authors prove the following result.

Theorem 6.3 (Theorem 3.1, Dadashi & Postolache, 2019). Let 𝐵 be 𝛼-
cocoercive and let 𝐴 be maximally monotone. Let 𝜈𝑘, 𝛽𝑘, 𝛾𝑘 ∈ (0, 1) be such
that 𝜈𝑘 + 𝛽𝑘 + 𝛾𝑘 = 1 and

1. lim𝑘→∞ 𝛾𝑘 = 0, and ∑∞
𝑘=1 𝛾𝑘 = ∞,

2. lim𝑘→∞ 𝑒𝑘 = 0,
3. 0 < 𝑎 ≤ 𝜈𝑘 ≤ 𝑏 < 1 and 0 < 𝑐 ≤ 𝛽𝑘 ≤ 𝑑 < 1,
4. 0 < 𝑐 ≤ 𝛼𝑘 < 2𝛼 and lim𝑘→∞

(

𝛼𝑘 − 𝛼𝑘+1
)

= 0.

Then, the sequence (𝑥𝑘)𝑘∈N generated by (6.11) converges to the point
𝑥∗ ∈ (𝐴 + 𝐵)−1(0), where 𝑥∗ = proj(𝐴+𝐵)−1(0)(0).

Proof. Using the nonexpansiveness of the resolvent of a maximally
monotone operator (Bauschke et al., 2011, Corollary 23.9) and the
cocoercivity of the mapping 𝐵, one can prove that the sequence (𝑥𝑘)𝑘∈N
is bounded. Then, using some properties of the resolvent (Dadashi
& Postolache, 2019, Lemma 2.6) and of the convex combination of
bounded sequences (Dadashi & Postolache, 2019, Lemma 2.8) and
using the monotonicity of 𝐴, the following inequality hold:

‖𝑥𝑘+1 − 𝑥∗‖2 ≤ ‖𝑥𝑘 − 𝑥∗‖2 − 𝛿𝑘,

where 𝛿𝑘 is a quantity depending on the error 𝑒𝑘 and on 𝑥∗ and
such that the assumption of Corollary 3.15 are satisfied. Therefore,
convergence holds. □

6.2. Applications to variational inequalities

Application of Lemmas 3.3 and 3.6. The authors in Malitsky (2020)
consider the general variational inequality problem in (6.3) where
𝑔 ∶  → R̄ is a proper convex lower semicontinuous function and
𝐹 ∶ dom 𝑔 →  is monotone. They propose the Golden Ratio Algorithm
(GRAAL) whose iterations are given by

𝑥̃𝑘 = (𝜑−1)𝑥𝑘+𝑥̄𝑘−1
𝜑

𝑥𝑘+1 = prox𝛼𝑔(𝑥̃𝑘 − 𝛼𝐹 (𝑥𝑘))
(6.12)



Almost-supermartingales

Half of [Franci and Grammatico, 2022] deals with results on stochastic sequences,

none of which have been considered by applied proof theorists. The following result

is particularly important:

It can be found in any text on stochastic optimization, and is used to establish the

convergence of algorithms in game theory, convex optimization, machine learning,

. . .



A quantitative Robbins-Siegmund theorem

Theorem (Neri and P., coming soon...)

Let {Xn}, {An}, {Bn} and {Cn} be nonnegative stochastic processes adapted to some filtration
Fn such that

E[Xn+1 | Fn] ≤ (1+ An)Xn − Bn + Cn

almost surely for all n ∈ N. Suppose that K > E[X0] and that ρ, τ : (0, 1) → [1,∞) are
monotone and satisfy

P

(
∞∏
i=0

(1+ An) ≥ ρ(λ)

)
< λ and P

(
∞∑
i=0

Cn ≥ σ(λ)

)
< λ

for allλ ∈ (0, 1). Then for any ε, λ > 0 and g : N → N there exists some n ≤ NK,ρ,σ(λ, ε)
such that

|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ, where

NK,ρ,σ(λ, ε) := g̃(e)(0) for e := c

(
ρ
(
λ
8

)
·
(
K + σ

(
λ
16

))
λε

)
2

where c > 0 is a suitable constant that can be defined explicitly.



The future: Proof mining in probability

theory



Progress so far

Covered in this talk:

• A broad understanding of martingales (and related things) from a

computational perspective.

• A quantitative Robbins-Siegmund theorem, plus a toolkit for obtaining

metastable rates for general almost-supermartingales.

Recent work by collaborators:

• A beautiful “proof-theoretically tame” logical system for probability, and a

metatheorem that guarantees the extractability of numerical information that

is independent of the underlying probability space [Neri and Pischke, 2024].

• New convergence rates for strong laws of large numbers [Neri, 2024].



[Neri and Pischke, 2024]



[Neri, 2024]



[Neri and P., 2024]



Future work

1 Applications of the quantitative martingale and Robbins-Siegmund theorems

in stochastic optimization andmachine learning.

2 Abstract convergence proofs for generalised classes of algorithms in these

areas.

3 Expanding the system of [Neri and Pischke, 2024] to include an abstract,

logical treatment of random variables and notions of integrability.

4 Using abstracts convergence results on almost-supermartingales as the basis

for a major effort to build a library of computer formalised proofs for stochastic

optimization
1

5 The development of algorithms for automating the reduction to a

supermartingale i.e. automatically generating convergence proofs.

andmuchmore ...

Thank you!

1
see [Koutsoukou-Argyraki, 2021] for some speculative ideas on the formalisation of applied proof theory.
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