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Background: Applied proof theory



What is applied proof theory?

There is a famous quote due to G. Kreisel (A Survey of Proof Theory II):

“What more do we know when we know that a theorem can be proved by limited
means than if we merely know that it is true?”

In other words, the proof of a theorem gives us much more information than the
mere truth of that theorem.

Applied proof theory is a branch of logic that uses proof theoretic techniques to
exploit this phenomenon.



People do applied proof theory without realising it...

PROBLEM. Give me an upper bound on the nth prime number p,.

1. Whatis p,? I know it exists because of Euclid...

2. Specifically, givenpi, . .., pn—1, Lknowthat N:=p; - ... - ps—1 + 1 contains a
new prime factor ¢, and sop, < ¢ < N.
3. In other words, the sequence {p, } satisfies

1

Pr<pre... P +1< (po1)”
4. By induction, it follows thate.g. p, < 2%".
This is an extremely simple example of applied proof theory in action! From the

proof that there are infinitely many primes, we have inferred a bound on the nth
prime.



... but it’s not always that simple

Theorem (Littlewood 1914)
The functions of integers

@ ¥(x) — x, and

(b) m(x) — li(x)

change signs infinitely often, where 7w (x) is the number of prime < x, 1) (x) is the is logarithm
of the Lc.m. of numbers < xand li(x) = [(1/log(u))du.

The original proof is utterly nonconstructive, using among other things a case
distinction on the Riemann hypothesis. At the time, no numerical value of x for
which 7(x) > li(x) was known.

In 1952, Kreisel analysed this proof and extracted recursive bounds for sign changes
(On the interpretation of non-finitist proofs, Part II):
“Concerning the bound ... note that it is to be expected from our principle, since if the
conclusion ... holds when the Riemann hypothesis is true, it should also hold when
the Riemann hypothesis is nearly true: not all zeros need lieon o = 2, butonly those
whose imaginary part lies below a certain bound ... and they need not lie on the line
o = 3, butnearit”




A completely routine example — from my own work done here at Darmstadt!

Theorem (Kirk and Sims, Bulletin of the Polish Academy of Sciences 1999)

Suppose that C is a closed subset of a uniformly convex Banach spaceand T : C — Cis
asymptotically nonexpansive with int(fix(T)) # (. Then foreachx € C the sequence {T"x}
converges to a fixed point of T.

Theorem (P., Journal of Mathematical Analysis and Applications 2019)

LetT : C — C be a nonexpansive mapping in L, for2 < p < oo, and suppose that
B,[q] C fix(T) forsomeq € L, andr > 0. Suppose thatx € Cand ||x — q|| < K, and
definex, := T"x. Thenforany e > Owe have

v 2 f(e) (T — 2| < €)

where

ep - 12

f© = |



Modern applied proof theory

® Origins in the work of Kreisel and the “unwinding” of proofs
[Kreisel, 1951, Kreisel, 1952]. Early case studies in number theory.

® Applications in mathematics were brought to maturity by Kohlenbach and his
collaborators from late 90s onwards (see the textbook [Kohlenbach, 2008] and
the recent survey papers [Kohlenbach, 2017, Kohlenbach, 2019] for an
overview).

® There are now hundreds of papers proving new theorems that were obtained
using proof theoretic ideas and methods, the majority published in specialised
journals in the areas of application, including nonlinear analysis, ergodic
theory, convex optimization, ... (see the proof mining bibliography).

® In parallel, there are logical metatheorems that explain individual applications
as instances of general logical phenomena (the first in [Kohlenbach, 2005] and
the most recent in [Neri and Pischke, 2024]).

® Now starting to expand and establish new connections with automated
reasoning and formal mathematics
[Koutsoukou-Argyraki, 2021, Neri and Powell, 2023].


https://sites.google.com/view/nicholaspischke/proof-mining-bibliography/alphabetical

What people working in applied proof theory might do
® Use logical methods to establish quantitative versions of known results in
mainstream (non-logic) mathematics.

® Show that a collection of theorems are all instances of a more general, abstract
theorem.

® Define new classes of mappings or new types of spaces.

® Develop sophisticated logical systems for reasoning about specific
mathematical objects.

® Study a hitherto unexplored area of mathematics to see if proof theoretic
methods might be effective and useful. This is very hard but very rewarding
when it works.

® Make important contributions to core logic, including computability theory
and theoretical computer science.

® Recently: Formalise their work in a proof assistant (e.g. Lean) or consider
automated methods.

Applied proof theory is characterised by thinking about and doing mathematics from a
proof-theoretic perspective.



The rest of this talk

One line summary: Applied proof theory has never really tackled probability in a
systematic way. We've now started to do this and it is a lot of fun.

® Metastable monotone convergence.
® Metastable martingale convergence.
¢ Almost-martingales in stochastic optimization.

® The future: Proof mining in probability theory.



Metastable monotone convergence



Monotone convergence theorem

Theorem (First year analysis)

Let K > 0 and suppose that {x, } is a monotone sequence of reals with |x,| < K foralln € N.
Then {x, } converges.

Is there a computable, uniform rate of convergence for all sequences in this class?
Le. a function ¢k () such that

Ve > 0Vi,j > del(e) (i — x| < )
Absolutely not:

® There exist monotone sequences of rationals with |x,| < Iwhich do not possess
a computable rate of convergence (Specker sequences - already mentioned in
Nicholas’ introduction).

® For any function ¢(&) we can construct a montone sequence of rationals in
[0, 1] which do not convergence with rate ¢(¢).

We need to consider a different notion of quantitative convergence.



Alogical approach to the MCT — The statement

The following steps are entirely logic-based (i.e. have nothing to do with
convergence):

MCT :=Ve > 03nVi,j > n(jx — x| <e¢)
< Ve > 0InVkVi,j € [mn+k (Jx —x] < e)
< —=Ve > 0InVkVi,j € [mn+ k| (Jxi — x| < &)
< —Je >0VnIk3i,j € [mn+k](Jxi —x] > ¢)
<= -3 >039: N> NVnIi,je€ [mn+gn)](jx —x| > ¢)
<= Ve >0Vg:N— NInVi,je [mn+gn)(jx—x <e) := MCT”

Theorem (Metastable monotone convergence theorem — first version)

Let K > 0 and suppose that {x, } is a monotone sequence of reals with |x,| < K foralln € N.
Then forany e > Oand g : N — N there exists somen € Nsuch that |x; — x;| < € forall

L,j € [mn+g(n)].

Question: Can we compute n in € and g?



Alogical approach to the MCT - The proof

Suppose that {x,} C [—K, K] is monotone but not Cauchy. Then there is some e > 0
such that foralln € N, we can find k € N with:

3i,j € [min 4+ k] (Jxi — x| > €)
Letg : N — Nbe a function that finds such a kin terms of ni.e. foralln € N:

3i,j € [mg(m)] (Jx — x| = €)
for g(x) :== x4+ g(n).
Then iterating g, for alle € N:

3i,j € [5(0):5° 7 (0)] (Jxi — %] > ¢) ()
In other words, in each of the intervals
[0:5(0)1, [5(0):3” (0)], 5" (0):37 ()], ...

the sequence {x, } experiences a distinct e-jump (or fluctuation).

But a monotone sequence in [—K, K] can experience at most 2K/« distinct
e-fluctuations, so (*) must fail for some e < [2K/e]|. Contradiction!



Alogical approach to the MCT — The payoff

Theorem (Metastable monotone convergence theorem)

Take K,e > Oandg : N — N. Then there exists some N € N (depending only on K, € and g)
such that for any monotone sequence {x, } in [—K, K], there exists n < N such that
|xi — x| < eforalli,j € [n;n+ g(n)]. Moreover, we can define

Ne(e.g) =5/ (0)

Jorg(x) := x + g(x).

Theorem (Generalised metastable convergence theorem)

Take ¢ : (0,1) — R, & > Oandg : N — N. Then there exists some N € N such that for
any sequence {x, } in some metric space (X, d) that experiences at most ¢ (<) distinct
e-fluctuations, there existsn < N such that d(xi,x;) < € foralli,j € [n;n + g(n)].

Moreover, we can define

No(e.g) =3 *(0)

Jorg(x) :=x +g(x).



[Tao, 2007] (Tao'’s blog)

Soft analysis, hard analysis, and the finite
convergence principle

expository, math.CA, math.CO, math.LO, opinion finite
principle, hard anzl
soft analysis Terence Tac

convergen

pigeonhole principle, proof theory, Ramsay thaory,

In the field of analysis, it is commaon to make a distinction between “hard”,
“guantitative”, or "finitary” analysis on one hand, and "soft”, "gqualitative”, or
“infinitary” analysis on the other. "Hard analysis™ is mostly concerned with
finite quantities (e.g. the cardinality of finite sets, the measure of bounded
sets, the value of convergent integrals, the norm of finite-dimensional vectaors,
etc.) and their guantitative properties (in particular, upper and lower bounds).
"Soft analysis”, on the other hand, tends to deal with more infinitary objects
(e.g. sequences, measurable sets and functions, 7-algebras, Banach spaces,
etc.) and their gualitative properties (convergence, boundedness, integrability,
completeness, compactness, etc.). To put it more symbolically, hard analysis is
the mathematics of =, \, (J[), and '_'1:11; soft analysis is the mathematics of 0,
oo, €, and —.

At first glance, the two types of analysis look very different; they deal with
different types of objects, ask different types of questions, and seem to use
different techniques in their proofs. They even usel2] different axioms of
mathematics; the axiom of infinity, the axiom of choice, and the Dedekind
completeness axiom for the real numbers are often invoked in soft analysis,
but rarely in hard analysis. (As a consequence, there are occasionally some
finitary results that can be proven easily by soft analysis but are in fact
impoessible to prove via hard analysis methods; the Paris-Harrington theorem
gives a famous example.) Because of all these differences, it is common for
analysts to specialise in only one of the two types of analysis. For instance, as
a general rule {and with notable exceptions), discrete mathematicians,
combuter scientists. real-variable harmonic analvsts. and analvtic number



[Tao, 2007] (Tao'’s blog)

Finite convergence prmclple Ifs = (and F —~ Z, isa
functionand () < 1, < < lissuchthat |[1s
suﬁﬁc]mﬂy la.tge dspend.mg onF a.nd then there exists

M such that |7,

= forall

This principle is easily proven by appealing to the first pigeonhole principle with
the sparsified sequence 7, . 7, T, .. where the indices are defined
recursively by iy 1= land 7, 1= 1; I. This gives an explicit bound on
Mas M =i 1. Note that the ﬁrst p\geonhole principle corresponds to the
= 1, the second pigeonhole principle to the case ['(\) = k, and
the third to the case ['( V) = N. A particularly useful case for applications is
when F grows exponentially in N, in which case M grows tower-exponentially in
1/=.

Informally, the above principle asserts that any sufficiently long (but finite)
bounded monotone sequence will experience arbitrarily high-quality amounts
of metastability with a specified error tolerance =, in which the duration F{N) of
the metastability exceeds the time N of onset of the metastability by an
arbitrary function F which is specified in advance.

Let us now convince ourselves that this is the true finitary version of the
infinite convergence principle, by deducing them from each other:



[Tao, 2008]: A convergence theorem...

NORM CONVERGENCE OF MULTIPLE ERGODIC AVERAGES
FOR COMMUTING TRANSFORMATIONS

TERENCE TAO

ABSTRACT. Let Ty,..., T} : X —+ X be commuting measure-preserving trans-

lity space (X, X, p). We show that the multiple er-
godic averages & SNZ! [1(172). .. fi(1]x) are convergent in L3(X, X, p) as
N = o0 for all f1,..., fy € L(X, X, u); this was previously established for
I'=2 by Conze and Lesigne [3] and for gencral I assuming some additional
ergodicity hypotheses on the maps T; and T;T; ! by Frantzikinakis and Kra
[A (with the = 3 case of this result established earlier in [30]), Our approach
is combinatorial and finitary in nature, inspired by recont developments ro-
garding the hypergraph regularity and removal lemmas, although we will not
noed the full strength of those lemmas. In particular, the { = 2 case of our
arguments are a finitary analogue of those in [3].

formations on a_ probs

1. INTRODUCTION

The purpose of this paper is to establish the following norm convergence result for
multiple commuting transformations.
Theorem 1.1 (Norm convergence). Let | > 1 be an integer. Assume that Ty, ... T} :

X 3 X are ing invertible e-preserving ife ti of a measure
space (X, X, ). Then for any fi,..., fi € L=(X, X, 1), the averages

N Zhu‘;‘:) 1)

are eonvergent in L3(X, X, ).



[Tao, 2008] ... in metastable form

Theorem 1.6 (Finitary norm convergence). Letl > 1 be an integer, let F : N - N
be a function, and let € > 0. Then there erists an integer M* > 0 with the following
property: If P > 1 and f1,..., fi : Zh — [~1,1] are arbitrary funetions on Z},,
then there erists an integer 1 < M < M* sueh that we have the “L? metastabilily”

(1) AN (- f) = Ane(frs - fi)llzemey < €
for all M < N,N' < F(M), where we give Zt, the uniform probability measure.

Remark 1.7. For applications, Theorem [1.6] is only of interest in the regime where
F(M) is much larger than M, and P is extremely large compared to I, F, or €. The
key points are that the funetion F' is arbitrary (thus one has arbitrarily high quality
regions of L2 metastability), and that the upper bound M* on M is independent. of
P. The I = 1 version of this theorem was essentially established (with ZﬁD replaced
by an arbitrary measure-preserving system) in [1].

Later there is a footnote...

1In proof theory, this finitisation is known as the Gddel functional interpretation of the infini-
tary statement, which is also closely related to the Kriesel no-counterexample interpretation [14],
15] or Herbrand normal form of such statements; see for further discussion. We thank Ulrich
Kohlenbach for pointing out this connection.




[Avigad and Rute, 2014] One of many examples of explicit bounds on
fluctuations and metastable rates (authors are logicians)

Oscillation and the mean ergodic theorem for
uniformly convex Banach spaces

JEREMY AVIGAD? and JASON RUTE}
1 Philosophy and Mathematical Sciences, Carnegie Mellon University, Pittsburgh, USA
(e-mail: avigad @cmu.edu)
* Dep of Math ics, Pennsylvania State University, State College,
PA 16802, USA

(Received 8 May 2013 and accepted in revised form 20 August 2013)

Abstract. Let B be a p-uniformly convex Banach space, with p>2. TLet T be a
linear operator on [, and let A,x denote the ergodic average (1/n)};_,T"x. We
prove the following variational inequality in the case where T is power bounded from
above and below: for any increasing sequence (f)gen of matural numbers we have
2% IAn X — Ayx||” < C |x||P, where the constant C depends only on p and the
madulus of uniform convexity. For T a non-expansive operator, we oblain a weaker
bound on the number of e-fluctuations in the sequence. We clarify the relationship
between bounds on the number of e-fluctuations in a sequence and bounds on the rate
of metastability, and provide lower bounds on the rate of metastability that show that our
main result is sharp.



[Kohlenbach and Safarik, 2014] A deep explanation of the underlying logical
phenomena

Fluctuations, effective learnability and metastability in analysis ®CmssMark

Ulrich Kohlenbach®, Pavol Safarik

Department of Math ics, Technische Universitat I 3 7, 64289 D 3
Germany
ARTICLE INFO ABSTRACT
Article history This paper di what kind of quantitative information one can extract under
Avwailable online 20 August 2013 which circumstances from proofs of convergence statements in analysis. We show
Dedicated 1o Profussor Sergoi that from proofs using only a limited amount of the law-of-excluded-middle,
Artemov on the occasion of his 60th one can extract funetionals (13, L), where L is a learning procedure for a rate
birthday of convergence which succeeds after at most [(a)-many mind changes. This
(B, L)-learnability provides ive i ion strictly in between a full rate
MSC: of convergence (obtainable in general only from semi-construetive proofs) and a rate
03F10 of metastability in the sense of "I'no (extractable alse from classical proofs). In fact,
:';E;{‘_ it corresponds to rates of metastability of a particular simple form. Morcover, if
't'rm;; a certain gap condition is satisfied, then B3 and L yield a bound on the number
o of possible fluctuations. We explain recent applications of proof mining to ergodic
Keywords: theory in terms of these results.

© 2013 Elsevier B.V. All rights reserved.

Fluctuations

Effective learnability
Metastability

Proof mining

Nonlinear ergodic theory
Hard analysis



Metastable convergence: The main points

® There are natural situations where it is impossible to provide computable rates
of convergence.

® Where direct rates are not possible, one can often produce either fluctuation
bounds or metastable rates that are both computable and highly uniform.

® Mathematicians outside of logic are very interested in fluctuations and
metastability.

® Researchers in applied proof theory have been able to:
® Extract explicit fluctuation bounds or metastable rates in many different scenarios;
® Do thisin an abstract and general setting;

® Explain why this is possible from a logical point of view.

® The apparently elementary monotone convergence theorem contained a wealth
of riches when analysed from a logical perspective!



In detail: Metastable martingale
convergence



Martingales

Let (2, F, P) be a probability space and 7o C F; C ... C F be a filtration. Let
{X,} be a sequence of real-valued random variables adapted to { F,} (i.e. X, is
Fu-measurable) such that E[|X,|] < coforalln € N.

We call {X,} a martingale if
E[Xpt1 | Fu] = X» almost surely

foralln € N. Itis a submartingale if E[X,41 | Fu] > X» and a supermartingale if
EXnt1 | Fu] < X

Suppose that a gambler repeatedly flips a biased coin repeatedly, winning one euro
with probability p and losing one euro with probability 1 — p each time. Let X, be
their fortune after » coin flips.

® Ifp =1/2then {X,} is a martingale.
® Ifp > 1/2then {X,} is a submartingale.
® Ifp < 1/2then {X,} is a supermartingale.



Martingale convergence

Martingales are the stochastic analogue of monotone sequences.

Theorem (Our old friend the monotone convergence theorem)

Let K > 0 and suppose that {x, } is a monotone sequence of reals with |x,| < K foralln € N.
Then {x, } converges.

Theorem (The stochastic analogue: Doob's convergence theorem)

Let K > O and suppose that {X, } is a sub- or supermartingale with E[|X,|] < K forall
n € N. Then {X,} converges almost surely i.e.

P ({w € Q| {Xu(w)} converges}) =1

Note: Martingales generalise monotone sequences of reals, so we also cannot expect
direct rates of (almost sure) convergence...



Alogical approach to Doob - The statement

The following steps are logic-based or use continuity properties of IP:

P ({X,} converges) =1

@P(ﬁ Gﬁw,je [+ k] (1% — X <2’")> =1

m=0 n=0 k=0

— Vm [IP’ (G ﬁVi,iG [n;m + K] (le -X| < Z_m)> _1]

n=0 k=0

< VYm,A > 03n {IP <ﬂ\ﬁ,je [n;n+ k] (1% — Xj| <2’”)> > 1—)\]
k=0

<= Ve, A>0InVk [P(Vi,j€ [mn+k (|Xi—X| <¢e)) >1— )]

<= —Je,A>0VnIk [P(Vi,j € mn+kl (X —X| <e)) <1-—)]

< -3, A>0F: N> NV [P(Vi,j€ mn+gn)] (X —X| <e)) <1-]]

<= Ve, A>0Vg:N— N3In [P(Vi,j € [mn+gn)] (X —X| <e)) >1— A



The goal

By analysing the proof of Doob’s theorem can we prove the following?

Theorem (Metastable martingale convergence theorem)

TakeK,e, X\ > Oandg : N — N. Then there exists some N € N (depending onlyon K, e, A
and g) such that for any sub- or supermartingale {X, } with

supE[|X,|] < K
neN

there existsn < N such that
|Xi —X| <e forall i,j€ [m;n+g(n)
with probability > 1 — X. Moreover, we can define

NK(A, E,g) =...



Maybe there is also a connection with fluctuations?

For ¢ > 0 define the random variable J. (X,) to be the maximum number of
e-fluctuations experienced by the sequence {X,}.

Theorem ([Neri and P., 2024

Forany ¢ : (0,1) — R,e > Oandg : N — Nthereexists N € N such that for any
sequence of random variables { X, } with

E [J- (X:)] < ¢(e)
there exists n < N such that
|Xi —Xj| <e forall i,j€ [n;n+ g(n)]
with probability > 1 — X. Moreover, we can define
Nk(A,e,9) == g(ﬂﬁ(s)//\])(o)

forg(x) := x + g(x).



Proof of the theorem

Suppose for contradiction that foralln € N:
P(3i,j € [mn+gm](X - X[ > €)) = A
so in particular, foralle € N:
P(4) > X for A :=3i,j € [5(0); 5 (0)](1% — X}| > ¢)

For any k € N we have

ZIAE] < B[1(%)] < 6(2)

e=0

k k
k+DA<D PA) =D E(l,) =

which is a contradiction for

=[5

Therefore P(A,) < A for some e < k and therefore (x) fails for some

<3"(0)

()



Now it should be easy?

We need a function ¢k (¢) such that for any sub- or supermartingale {X,} with
supE[|X,|] < K
neN

we have

E[Je(Xa)] < ¢(e)

Theorem (Chashka, see Theorem 34 of [Kachurovskii, 1996

Forany K > O there exists a martingale {X,, } with

supE[|X,|] < K
neN

such that
IE[ ]E(X,,)] =0

It turns out you only really get nice fluctuation behaviour for L,-martingales.



For martingales, crossings are far easier to characterise

For a < b define the random variable Uy, [ 1} (X») to be the maximum number of
times {X, } upcrosses the interval [a, b] up to time N.

Theorem (Doob's upcrossing inequality for supermartingales)

|a| 4 sup, ey E(|Xa|)
b—a

E [Uso, a5 (Xn)] <

The intuitive idea: Imagine that {X, } represents a stock, and consider an
investment strategy that buys the stock whenever its price falls below 4, and sells it
whenever its price rises above b. Let Yy denote your winnings after time N.

® Vyisatleastas good as the number of upcrossings times (b — a)

Yn 2> (b—a)Uy o (Xn) — (Xn—a)” (%)

® Because {X,} is a supermartingale (i.e. the stock value decreases on average),
this strategy can't win on average: E[Yy] < 0.

The inequality then follows by taking expectations on both sides of ().



Metastability for L;-bounded crossings Cy, 3 (X;) (= down + upcrossings)

Theorem ([Neri and P., 2024

Forany X\,e,L,M > Oandg : N — Nthereexists N € Nsuch that for any sequence of
random variables {X, } such that

P(|X,| > M) < % and E [Cpay(X)] < L for[a,b] € P(r,])

where P(r, 1) denotes the partition of [—r, 7] into | equal subintervals and
r::M(lJr%) and l:i=p+2 and p== [g]
there existsn < N such that
|Xi —X| <e forall i,j€ [n;n+g(n)
with probability > 1 — X. Moreover, we can define
Niu(,e,9) :=5(0)
forg(x) i= x + g(x) and

_2(p+2)L

(3 Y



A metastable martingale convergence theorem

Theorem ([Neri and P., 2024

Take K, e, X > Oand g : N — N. Then there exists some N € N (depending onlyon K, e, A
and g) such that for any sub- or supermartingale { X, } with

supE[|X,|] < K
neN

there exists n < N such that
|Xi — Xj| <e forall i,j€ [n;n+g(n)]
with probability > 1 — X. Moreover, we can define

2
Ni(h,9) = 59(0) for e = c (A’i)

where ¢ > O s a suitable constant that can be defined explicitly.



We can use our general framework to do a lot more

Some of our results on martingales:

stochastic process {X, } iterations of g
constant, monotone K / €
almost sure monotone K/ Ae
L,-martingales K2/
Li-martingales K? /N2
Li-almost-martingales | ¢K*/ X2+ &2 somer > 0

Notes:

® Most of these rates are optimal in a certain sense, but achieving optimal rates
and showing that they are optimal was not easy.

® Similar rates can be obtained in other situations where crossing bounds are
present e.g. ergodic theory.



For example, [Hochman, 2009] has many beautiful results on upcrossings...

The Arnals of Prababiliy

2009, Vol. 37, No. 6. 2135-2149

DOI: 10.1214/9-AOP46

© Institute of Mathematical Statistiss, 2009

UPCROSSING INEQUALITIES FOR STATIONARY SEQUENCES
AND APPLICATIONS

BY MICHAEL HOCHMAN
Hebrew University of Jerusalem

For arrays (S; ;)1<i=; of random variables that are stationary in an ap-
propriate sense, we show that the fluctuations of the process (S]_,,]gil can
‘be bounded in terms of a measure of the “mean subadditivity” of the process
(Si.j)1<i<j- We derive universal upcrossing inequalities with exponential
decay for Kingman's subadditive ergodic theorem, the Shannon-MacMillan—
Breiman theorem and for the convergence of the Kolmogorov complexity of
a stationary sample.

1. Introduction. Let us say that a sequence (X,), of real numbers has k
crossings (or upcrossings) of an interval [s, 1] if there are indices

Isii<ji<iz<jp<-<ik<jk

such that X; < s and X, > r. Allowing X, to be random, it easily follows that
lim X, exists a.s. if and only if, for every interval of positive length, the probability
of infinitely many crossings of the interval is 0.

There are a number of classical limit theorems in probability that can be for-
mulated and proven in this way, the best known of which is Doob’s upcrossing
inequality for L! martingales [6]: if (Sn)f:o:l isan L! martingale, then, fors <1,

sup,, [|Sll1

k(r —s)
(see also Dubins [7]). A similar inequality was proven by Bishop for the time aver-
ages S, = % " X, of an L' stationary process (X,)2%, [1, 2]. Assuming non-
negativity of the process instead of integrability, Ivanov [8] proved the following
beautiful result: for everv ¢ < ¢+

P((Sa)n has k upcrossings of [s, 1]) <



Almost martingales in stochastic
optimization



Almost monotone sequences in (nonstochastic) optimization: An example

X isanormed space. Amapping T : X — X is 1p-weakly contractive on some closed,
convex C C X if

1T = Tyl| < [lx =yl = (Il — ylI)
forx,y € C, where ) : [0,00) — [0, 00) is a nondecreasing function with ¢(0) = 0
and ¢ (t) > ofort > 0.

Theorem ([Alber and Guerre-Delabriere, 1997

Suppose that x™ is a fixed point of T, and the algorithm {x, } is defined according to the
Krasnoselskii-Mann method:

Xnt1 = (1 - Oln)xn + a,Txy,
forxo € Cand {an} C [0,1] with Y 2, i = oo. Thenx, — x*.

Proof.
© Show that [[xu41 — x™|| < [jon — ™| — antp(||xen —x7])

@® Prove that whenever | u,11 < un — awt)(uy)

with Y2 a; = oo thenu, — 0.

(Rates of convergence for a generalised version of this result obtained in
[Powell and Wiesnet, 2021].)



More examples from applied proof theory

Almost-monotone sequences can be found everywhere numerical analysis and
optimization (where they are connected to the concept of Fejér monotonicity).
Analysing these is a crucial step in obtaining explicit rates of convergence or
metastability.

® First clear example from applied proof theory in
[Kohlenbach and Lambov, 2004] (I think):

a1 < (T4 by)an + o with Y b < ocand Y ¢ < oo‘

Rates of metastability for {a, } calculated and used to produce quantitative
results on asymptotically nonexpansive mappings.

® Numerous applied proof theory papers from the last years use variants of the
following:

Sn1 < (1 — an)$n + antn + vy with > i = 00, limsup,_, . 7 < 0, > vy < 00 ‘

See [Pinto, 2023] for a detailed overview of the many variants.

There are explicit recursive inequalities in 30—40 papers in applied proof theory.
There are thousands of such papers in ordinary optimization.



There is a useful survey paper covering mainstream mathematics
[Franci and Grammatico, 2022]

Annual Reviews in Control 53 (2022) 161-186

Contents lists available at ScienceDirect

Annual Reviews in Control

I EL journal homepage: www.elsevier.com/locate/arcontrol

Review article

Convergence of sequences: A survey”

Barbara Franci®", Sergio Grammatico”

£

Gheckc
i

i

* Department of Data Science and Knowledge Engincering, Maastricht University, Maastricht, The Netherlands

® Delft Center for Systems and Gontrol, Delft University of Technology, Delft, The Netherlands

ARTICLE INFO ABSTRACT
Keywords: Gonvergent sequences of real numbers play a fundamental role in many different problems in system theory,
Convergence

e.g., in Lyapunov stability analysis, as well as in optimization theory and computational game theory. In this

survey, we provide an overview of the literature on convergence theorems and their connection with Féjer
‘monotonicity in the deterministic and stochastic settings, and we show how to exploit these results.

1. Introduction

Why Are Convergence Theorems Necessary?
The answer to this “naive” question is not simple.
cit. Boris T. Polyak, 1987 (Polyak, 1987, Section 1.6.2).

While the answer may have become clearer through the years,
since many problems in applied mathematics rely on convergence
theorems, it is still not simple. Besides the theoretical investigation,
in fact, one fundamental aspect is how convergence theorems can be
of practical use, i.c., if the assumptions are plausible for a variety of
applications, for instance, in systems theory. Moreover, convergence
theorems may also give qualitative information, e.g., if convergence is

control in traffic networks (Duvocelle, Meier, Staudigl, & Vuong, 2019)
and in modeling the prosumer behavior in smart power grids (Franci
& Grammatico, 2020a; Franci et al., 2020; Kannan, Shanbhag, & Kim,
2013; Yi & Pavel, 2019).

1.1. Lyapunov decrease and Féjer monotonicity

In the literature, many results hold for
sequences of numbers while in system and control theory, the state
and decision variables are usually vectors of real numbers. It is therefore
important to understand the deep connection between the two theories.
The bridging idea is to associate a real number to the state vector,
i.e., via a function, and then prove convergence exploiting the prop-
erties of such a function. The most common example of this approach
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Table 1

Contains a huge survey of lemmas involving almost-monotone sequences
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Convergence results for Féjer monotone sequences, deterministic sequences of real numbers and with variable metric (separated by the horizontal lines, respectively). For the
applications, MI stands for Monotone Inclusion, V1 for variational inequalities, NE for Nash Equilibrium problems, LYAP for Lyapunov analysis and NC for nonconvex optimization.

Result Reference

Application Reference

Proposition 3.1

Bauschke et al. (2011, Proposition 5.4)
Theorem 3.2 8)

Combettes (2001b, Theorem 3.

Lemma 3.3 Opial et al. (1967) (Opial) MI - Theorem 6.1 Malitsky and Tam (2020, Theorem 2.5)
VI - Theorem 6.4 Malitsky (2020, Theorem 1)

Lemma 3.4 Combettes (2001b, Lemma 3.1) NC - Theorem 6.9 Di Lorenzo and Scutari (2016, Theorem 3)

Corollary 3.5 Scutari and Sun (2019, Lemma 9)

Lemma 3.6 Bauschke et al. (2011, Lemma 5.31) VI - Theorem 6.4 Malitsky (2020, Theorem 1)

Corollary 3.7 Malitsky (2015, Lemma 2.8)

Corollary 3.8 Polyak (1987, Lemma 2.2.2)
Polyak (1987, Lemma 2.2.3)

Xu (2003, Lemma 2.1)

Extension of Xu (2002, Lemma 2.5)

Corollary 3.13 Lei, Shanbhag and Chen (2020, Proposition 3)

y 314 Qin, Shang, and Su (2008, Lemma 1.1)

Xu (1998, Lemma 3)

Alber, Tusem, and Solodov (1998, Proposition 2)
He and Yang (2013, Lemma 7)

Maingé (2008, Lemma 2.2)

Malitsky and Tam (2018, Lemma 2.7)

Corollary

Proposition 3.16
Lemma 3.17
Lemma 3.18
Lemma 3.19

VI - Theorem 6.5
LYAP - Theorem 6.8

Malitsky (2015, Theorem 3.2)
Polyak (1987, Theorem 1.4.1)

NE - Theorem 6.7 Kannan and Shanbhag (2012, Theorem 2.4)

NE - Theorem 6.6

Duvocelle et al. (2019, Theorem 3.1)

MI - Theorem 6.3 Dadashi and Postolache (2019, Theorem 3.1)

MI - Theorem 6.2 Malitsky and Tam (2020, Theorem 2.9)

Proposition 5.1
Theorem 5.2
Corollary 5.3

Combettes and Vi (2013, Proposition 3.2)
Combettes and Vit (2013, Theorem 3.3)
Combettes and Vii (2013, Proposition 4.1)

MI - Theorem 8.1
MI - Theorem 8.1

Vi (2013, Theorem 3.1)
Vit (2013, Theorem 3.1)

constructed sequence from such set can be analyzed anyways. On the
contrary, in Lyapunov stability analysis, the target set is usually known
a priori.

By exploiting the relation between the iterations and a suitable
distance-like function, we show in this paper that convergence theo-
rems represent a key ingredient for a wide variety of system-theoretic

1.2. What this survey is about

In this survey, we present a number of convergence theorems for
sequences of real (random) numbers. We show how they can be used
in combination with (quasi) Féjer monotone sequences or Lyapunov
functions to obtain convergence of an terative algorithm, essentially

problems in fixed-point theory, game theory and
(Bauschke, Combettes, et al., 2011; Combettes, 2001b; Eremin & Popov,
2009; Facchinei & Pang, 2007; Polyak, 1987). In many cases, the study
of iterative algorithms allows for a systematic analysis that follows
from the concept of Féjer monotone sequence. The basic idea behind
Féjer monotonicity is that at each step, each iterate is closer to the
target set than the previous one. In a sense, the distance used for Féjer
sequences can be seen as a specific class of Lyapunov function and
Féjer icity shows that it is along the iterates. The

a ical system, to a desired solution. Moreover,
we present some applications to show how they can be adopted in a
variety of settings. Specifically, we present convergence results for both
deterministic and stochastic sequences of real numbers and we also
include some results on Féjer monotone sequences and with variable
metric. We show that these results help proving not only convergence
of an iterative algorithm but also the Law of Large Numbers, with
applications in model predictive control (Lee & Nedié, 2015) and
opinion dynamics (Shi et al., 2013) among others.

We vomnrt m Tahlec 1 and 9 the recilic far dafarminictin and
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Table 3

Convergence results for deterministic sequences of real numbers divided by their form,
In the first line, the most general inequality is presented. NN stands for a sequence of
nonnegative real numbers, while v/(X) indicates if the inequality in the corresponding
lemma contains (or not) a term of that column type. C* is a general “coefficient’,
whose specific form can be retrieved from the column.

Seq(k+ 1) Coeff.  Seq(k) Negative Noise
e < o (A - et

Lemma 3.4 NN v v v

Lemma 3.6 N (1464 v v

Corollary 37 NN 1 v x

Corollary 38 NN x v

Lemma 3.9 Real x v

Lemma 3.10 NN v v

Lemma 3.1 NN x s

Lemma 3.12 NN X o et

Corollary 3,13 NN x S+

Corollary 3.14 NN x v

Corollary 315 NN x e

Proposition 3.16 NN x ap

Lemma 3.17 N x St

v v
Lemma 3.18 Real sy
Lemma 3.19 N My By

3.2, Convergent sequences of real numbers

We now introduce a number of results on sequences of real numbers.
We note that even if the following results are for general sequences of
real numbers, their importance for system theory lies on the fact that
they can be paired with (quasi) Féjer monotonicity (see Remark 3.5).
In Table 3, we summarize the results presented in this section, with
emphasis on the auxiliary sequences that may affect convergence.

Let us note that, in the first line of Table 3, C* is a coefficient which,
depending on the form, represents the level of expansion or contraction,
£F can be seen as an additive noise and 0* is a “negative term", because
of the minus sign, which decreases the value of the sequence v*. For a
graphical interpretation of the effects of those sequences, we also refer
to Fig. 4 later on, which is specifically related to Lemma 3.6.

The first lemma that we report is widely used and it has a number of
consequences that are widely used as well. We do not include the proof
since it is very similar to the proof of the forthcoming Lemma 3.10.

Lemma 3.4 (Lemma 3.1, Combettes, 2001b). Let y € (0, 1] and let (v),p

Contains a huge survey of lemmas involving almost-monotone sequences
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where 7 € (0,1), (7*)e is a decreasing positive sequence such that
Trom)? < o, and let 0 < ¥ < & < oo for all k € N. Then,
T ok < o,

With the same arguments as for Lemma 3.4, the following corollary
can be proven. Interestingly, this result concerns the finite sum of the
sequence.

Corollary 3.5 (Lemma 9, Scutari & Sun, 2019). Let (%) be a real
sequence and let (0*),¢;; and (e*)cy be nonnegative sequences such that
g€k < oo and such that

=0

for N & N. Then, either E5! v+ — —co, or ZN5! v4*" converges to a
finite value and T2, 0 < oo

N-1 et N1 gt
Proof. It suffices to set v} = XN vk, 0 = TN gk and &k =
YN ek and then apply Lemma 3.4. [

The next lemma is a consequence and a generalization of
Lemma 3.4. It has its stochastic counterpart in the well know Robbins—
Siegmund Lemma ( Lemma 4.1) (Robbins & Siegmund, 1971). It is
taken from Bauschlke et al. (2011) yet here we provide a different proof.
For a graphical interpretation, we refer to Fig. 4.

Lemma 3.6 (Lemma 5.31, Bauschke et al, 2011). Let (t")en, (0%)ers
(¢¥)yen and (8%);eyy be nonnegative sequences such that 32, ¢* < co and
T, 6¢ < o0 and

V< (14 580k — 6% + ¢X, for all k e N. 3.2)

Then, $5%., 6% < 00 and (v*),cy is bounded and converges to a nonnegative
variable.

Proof. Define f* = [, (1 +4) and note that f* converges to some /i
since (), is summable. Moreover, it holds that
I3

=

1464 =
and, for all k € N

ke
P
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iterative proces

find inequality

A < Ok gk

analysis

Fig. 7. Schematic representation of how the convergence lemmas for sequences can
be used. Given the iterative process, a suitable nonnegative function (Lyapunov or
distance-like) should be designed. Then, exploiting the properties of the application at
hand, an inequality involving the iterates at times k+1 and k can be retrieved. Hence,
one should check if the inequality corresponds to a known result (Table 3 for sequences
of real numbers) and use the corresponding result to prove convergence. The whole
process may take repeated steps to find a suitable function and/or inequality. The same
reasoning applies to the stochastic case, in which one should have an expected valued
inequality (with E[¢**1]) and refer to Table 4 for a convergence result on stochastic
sequences. See also Fig. § for an example.

Proof. Let x* € (A + B)'(0). It is possible to show, by using
monotonicity and some norm properties, that the following inequality
holds:

[Ix5HT — ¥ |1% + 2 (B = Bk, x* = XKy

1
(L) e e

. along with general heuristics for using them:
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of strong monotonicity of the operator 4, they also prove convergence
with linear rate, using Lemma 3.19.

Theorem 6.2 (Theorem 2.9, Malitsky & Tam, 2020). Let A : H = H
be maximally monotone and y-strongly monotone and B : H — H be
monotone and ¢-Lipschitz continuous. Suppose « € (n;) Then, the
sequence (x*),.cyy generated by (6.8) converges R-linearly to the unique point
X € X such that 0 € (A + B)().

Proof. Similarly to the proof of Theorem 6.1 but using strong mono-

tonicity, one obtains the inequality

(14 2p) X+ = x*||? + 2a( B(x**!) - B(xF),
+ (1 —at) | - XK

<[lx* = x| + 2a(B(x*) = B(x*"1), x*

k)

(6.10)

Lk 2
+ Sk =X
51 I

Setting 7 = (1 +240) > 1, v, = vk = x*|I? and f := LlIxF - x7|° +
2a(B(x*)= B (x*"1) , x* =x*)+ 3 |lx* —x~1|1, one can apply Lemma 3.19
to conclude that the sequence (x*),¢;; converges to the unique solution
 and with a linear rate. []

Application of Corollary 3.15. As an application of Corollary 3.15, let us

consider the inertial forward-backward algorithm proposed in Dadashi

and Postolache (2019) for approximating a zero of an inclusion problem
x € (A+B)yO)

x k "

W= T (5F =y BxK)

6.11

{La i o

where J,, , is the resolvent of A (Definition A.1) and ¢t is an error

vector. By using Corollary 3.15 the authors prove the following result.

Theorem 6.3 (Theorem 3.1, Dadashi & Postolache, 2019). Let B be a-
cocoercive and let A be maximally monotone. Let vy, f..yy € (0, 1) be such
that v, + i, +7, = 1 and

limg oo 7 =0, and T, 7, = oo,

limy o, e* =0,

0<asy <b<land0<c<p<d<l,
0<c<a <2aandlim_ (@ - ay,) =0.

AW

Then, the sequence (x*),cy generated by (6.11) converges to the point

e At el .




Almost-supermartingales

Half of [Franci and Grammatico, 2022] deals with results on stochastic sequences,
none of which have been considered by applied proof theorists. The following result
is particularly important:

Lemma 4.1 (Robbins-Siegmund Lemma). Let (vF)cry, (0% iery (€¥)ien
and (8*)y.cry be nonnegative sequences such that 33° ) ek < oo, 377 6% < o0
and

B[Pl < (14 650 + & — 6" as, forall k e N 4.1)

Then, Y22, 0% < oo and (v%);cp converges a.s. to a nonnegative random
variable.

Proof. The proof follows by rewriting the sequence as in Lemma 3.6.
Then, it is possible to show that the sequence

n-1
V= - Z(gk )
k=0
is a supermartingale. The claim then follows by the Martingale Conver-

gence Theorem (Theorem 2.4). See Robbins and Siegmund (1971) for
technical details. [

It can be found in any text on stochastic optimization, and is used to establish the
convergence of algorithms in game theory, convex optimization, machine learning,



A quantitative Robbins-Siegmund theorem

Theorem (Neri and P., coming soon...)

Let {Xy}, {An}, {Bn} and {C, } be nonnegative stochastic processes adapted to some filtration
Fo such that
]E[Xn+1 | ]:n] S (1 +An)Xn - Bn + Cn

almost surely foralln € N. Suppose that K > E[Xo] and that p, T : (0,1) — [1, 00) are
monotone and satisfy

P (ﬁ(l +4,) > p()\)> <\ and P (i Cp = a(A)) <A

i=0 i=0

forall X € (0,1). Then foranye, A > Oand g : N — N there exists somen < Nx,p.0 (A, €)
such that
|Xi —X| <e forall i,j€ [n;n+g(n)

with probability > 1 — X, where

0(2)-(K+0(2)))2

Nk, p.o (A €) :=39(0) for e:=¢ < -

where ¢ > 0is a suitable constant that can be defined explicitly.



The future: Proof mining in probability
theory



Progress so far

Covered in this talk:

® Abroad understanding of martingales (and related things) from a
computational perspective.

® A quantitative Robbins-Siegmund theorem, plus a toolkit for obtaining

metastable rates for general almost-supermartingales.

Recent work by collaborators:

® A beautiful “proof-theoretically tame” logical system for probability, and a
metatheorem that guarantees the extractability of numerical information that
is independent of the underlying probability space [Neri and Pischke, 2024].

® New convergence rates for strong laws of large numbers [Neri, 2024].



[Neri and Pischke, 2024]

PROOF MINING AND PROBABILITY THEORY

MORENIKEJI NERI* AND NICHOLAS PISCHKE"

@ Department of Computer Science, University of Bath,
Claverton Down, Bath, BA2 7AY, United Kingdom,

® Department of Mathematics, Technische Universitiit Darmstadt,
SchlossgartenstraBe 7, 64280 Darmstadt, Cermany,

E-mails: mn728@bath.ac.uk, pischke@mathematik_tu-darmstadt.de

ABSTRACT. We extend the theoretical framework of proof mining by establishing general logical
metatheorems that allow for the extraction of the computational content of theorems with
prima facie “non-computational” proofs from probability theory, thereby unlocking a major
branch of mathematics as a new area of application for these methods. Concretely, we devise
proof-theoretically tame logical systems that, for one, allow for the formalization of proofs
involving algebras of sets together with probability contents as well as associated Lebesgue
integrals on them and which, for another, are amenable to proof-theoretic metatheorems in
the style of proof mining that guarantee the extractability of effective and tame bounds from
larges classes of ineffective existence proofs in probability theory. Moreover, these extractable
bounds are guaranteed to be highly uniform in the sense that they will be independent of
all parameters relating to the underlying probability space, particularly regarding events or
measures of them. As such, these results, in particular, provide the first logical explanation for
the success and the observed uniformities of the previous ad hoc case studies of proof mining
in these areas and further illustrate their extent. Beyond these systems, we provide extensions
for the proof-theoretically tame treatment of o-algebras and associated probability measures
sional approach to infinite unions. Lastly, we establish a general proof-theoretic
ple that allows for the lift of quantitative information on a relationship between
different modes of convergenee for sequences of real numbers to sequences of random variables.

Keywords: Proof mining; Metatheorems; Probability theory; Egorov’s theorem; Dominated
convergence theorem.
MSC2020 Classification: 03F10, 03135, 28A12, 28A25, 60A10

1. INTRODUCTION

One of the fundamental driving questions of proof theory is the following: What is the compu-
tational content of a mathematical theorem and how can it be exhibited? Proof mining, which
emerged as a subficld of mathematical logic in the 1990s through the work of Ulrich Kohlenbach
and his collaboratord] aims at answering that question by extracting this computational content
from theorems with proofs as they are found in the mainstream mathematical literature. This




[Neri, 2024]

QUANTITATIVE STRONG LAWS OF LARGE NUMBERS

MORENIKEJI NERI

Department of Computer Science, University of Bath
E-mail: mn728@bath.ac.uk

AmsTRACT. Using proof-theoretic methods in the style of proof mining, we give novel compu-
tationally effective limit theorems for the g of the Ce of certain

of random variables. These results are intimately related to various Strong Laws of Large Num-
bers and, in that way, allow for the extraction of quantitative versions of many of these results.
In particular, we produce optimal polynomial bounds in the case of pairwise independent ran-
dom variables with uniformly bounded variance, improving on known results; furthermore, we
obtain a new Baum-Katz type result for this class of random variables. Lastly, we are able to
provide a fully quantitative version of a recent result of Chen and Sung that encompasses many
limit theorems in the Strong Laws of Large Numbers literature.

Keywords: Laws of Large Numbers; Large deviations; Limit theorems; Proofl mining.
MSC2020 Classification: 60F10, 60113, 03F99

1. INTRODUCTION

Throughout this article, fix a probability space (€2, F,P) which all the random variables we
work with will act on.

The classical Strong Law of Large Numbers is the following fundamental result due to Kol-
MOgOrov:

Theorem 1.1 (The classical Strong Law of Large Numbers, c.f. Theorem 6.6.1 of [T]). Sup-

pose X1, Xa, ... are independent, identically distributed (iid) real-valued random variables with
E(|X1|) < . Then,

M A XX B(X)

almost surely, that ts, with probability 1.

For ease write S,, == > X; and assume E(X;) = 0. By multiple applications of the
continuity of the probability measure, one can show (following the nation in [2]) that the

conclision of the Strone Law of Laree Numbers is ea lent. to the seanenee of real mimhbers
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ON QUANTITATIVE CONVERGENCE FOR STOCHASTIC
PROCESSES: CROSSINGS, FLUCTUATIONS AND
MARTINGALES

MORENIKEJI NERI AND THOMAS POWELL

ABSTRACT. We develop a general framework for extracting highly uniform
bounds on lacal stability for stochastic processes in terms of information on
fluctuations or cressings. This includes a large class of martingales: As a corol-
lary of our main abstract result, we obtain a quantitative version of Doob’s

convergence theorem for [y-sub- and supermartingales, but more importantly,
demonstrate that our [ramework readily extends to more complex stochastic
processes such as almost-supermartingales, thus paving the way for future ap-
plications in stochastic optimization. Fundamental to our approach is the use
of idecs Trom logic, particularly a careful analysis of the quantifir structure of

and the i d of a number of abstract notions
that represent stochastic convergence in a quantitative manner. In this sense,
our work falls under the ‘proof mining’ program, and indeed, our quanti
tive results provide new examples of the phenomenon, recently made precise

ita-

by the first author and Pischke, that many proofs in probability theory are
titative data
probability

proof-theoretically tame, and amenablo to the extraction of q

that is both of low complexity and independent of the underl
space.

1. INTRODUCTION

Applied proof theory (or proof mining) [30] is a subfield of logic in which proofs
of mathematical theorems are carefully analysed with the aim of strengthening
those theorems, typically through obtaining quantitative information or showing
that they hold in a generalised, more abstract setting. Proof mining has achicved
considerable suceess over the last decades, primarily in areas related to nonlinear
analysis, such as fixed point theory and convex optimization. This paper is part of
a new approach to expand proof mining into probability theory. We aim to set the
groundwork for new applications invelving stochastic proeesses, particularly sto-
chastic optimization, by providing the first quantitative study of martingales from
this perspective. More specifically, we provide quantitative versions of some classic
martingale convergence theorems based on locating regions of local stebility as in
[4], which represent instances of a flexible, general methed for obtaining bounds on
local stability from quantitative information on fuctuations or uperossings.

et v




Future work
® Applications of the quantitative martingale and Robbins-Siegmund theorems
in stochastic optimization and machine learning.

@® Abstract convergence proofs for generalised classes of algorithms in these
areas.

© Expanding the system of [Neri and Pischke, 2024] to include an abstract,
logical treatment of random variables and notions of integrability.

©® Using abstracts convergence results on almost-supermartingales as the basis
for a major effort to build a library of computer formalised proofs for stochastic
optimization'

© The development of algorithms for automating the reduction to a
supermartingale i.e. automatically generating convergence proofs.

and much more ...

THANK YOU!

Isee [Koutsoukou-Argyraki, 2021] for some speculative ideas on the formalisation of applied proof theory.
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