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A bit about me...

• Trained as a mathematician (functional analysis, combinatorics, logic).

• PhD inmathematical logic at QMUL (Computer Science department).

• Focus on proof theory and its applications in both maths and CS. Postdoc

positions in France (IHÉS and IHP), Austria (Innsbruck) and Germany (TU

Darmstadt).

• Now a lecturer in theMathematical Foundations of Computation group at Bath.



Structure of talk

I have twomain goals:

1. Short introduction to applied proof theory.

2. Outline some new ideas.

Please feel free to interrupt and ask questions!



Applied ProofTheory: A very short

introduction



What is applied proof theory?

There is a famous quote due to G. Kreisel (A Survey of ProofTheory II):

“What more do we know when we know that a theorem can be proved by limited
means than if wemerely know that it is true?”

In other words, the proof of a theorem gives us muchmore information than the

mere truth of that theorem.

Applied proof theory is a branch of logic that uses proof theoretic techniques to

exploit this phenomenon.



Everyone does applied proof theory

Problem. Give me an upper bound on the nth prime number pn.

1. What is pn? I know it exists because of Euclid...

2. Specifically, given p1, . . . , pn−1, I know thatN := p1 · . . . · pn−1 + 1 contains a

new prime factor q, and so pn ≤ q ≤ N.

3. In other words, the sequence {pn} satisfies

pn ≤ p1 · . . . · pn−1 + 1 ≤ (pn−1)
n−1

4. By induction, it follows that e.g. pn < 2
2
n
.

This is a simple example of applied proof theory in action! From the proof that there
are infinitely many primes, we have inferred a bound on the nth prime.



... but it’s not always that simple

Theorem (Littlewood 1914)

The functions of integers
(a) ψ(x)− x, and
(b) π(x)− li(x)
change signs infinitely often, whereπ(x) is the number of prime≤ x,ψ(x) is the is logarithm
of the l.c.m. of numbers≤ x and li(x) =

∫ x
0
(1/ log(u))du.

The original proof is utterly nonconstructive, using among other things a case
distinction on the Riemann hypothesis. At the time, no numerical value of x for
which π(x) > li(x)was known.

In 1952, Kreisel analysed this proof and extracted recursive bounds for sign changes

(On the interpretation of non-finitist proofs, Part II):
“Concerning the bound ... note that it is to be expected from our principle, since if the
conclusion ... holds when the Riemann hypothesis is true, it should also hold when
theRiemannhypothesis is nearly true: not all zeros need lie onσ = 1

2
, but only those

whose imaginary part lies below a certain bound ... and they need not lie on the line
σ = 1

2
, but near it”



What applied proof theory looks like today

Theorem (Kirk and Sims, Bulletin of the Polish Academy of Sciences 1999)

Suppose that C is a closed subset of a uniformly convex Banach space and T : C → C is
asymptotically nonexpansive with int(fix(T)) ̸= ∅. Then for each x ∈ C the sequence {Tnx}
converges to a fixed point of T.

Theorem (P., Journal ofMathematical Analysis and Applications 2019)

Let T : C → C be a nonexpansive mapping in Lp for 2 ≤ p <∞, and suppose that
Br[q] ⊂ fix(T) for some q ∈ Lp and r > 0. Suppose that x ∈ C and ∥x − q∥ < K, and
define xn := Tnx. Then for any ε > 0we have

∀n ≥ f (ε)(∥Txn − xn∥ ≤ ε)

where

f (ε) :=
⌈
p · 23p+1 · Kp+2

εp · r2

⌉



Is this just about quantitative information?

The following is lifted directly from Kohlenbach (Some logical metatheorems with
applications in functional analysis, Trans. Amer. Math. Soc 2005):

Corollary

Let P (resp. K) be aAω
definable Polish space (resp. compact metric space) and B∀,

C∃ be as before ∀- resp. ∃-formulas. IfAω[X, d,W] proves that

∀x ∈ P ∀y ∈ K ∀zX, f : X → X (f n. e. ∧ Fix(f ) ̸= ∅ ∧ ∀u ∈ N B∀ ⇒ ∃v ∈ N C∃),

then we can extract from the proof a computable functionalΦ : NN × N → N (on
representatives rx : N → N of elements x ∈ P) such that for all rx ∈ NN

, b ∈ N

∀y ∈ K ∀z ∈ X, f : X → X (f n. e. ∧ ∀u ≤ Φ(rx, b) B∀ ⇒ ∃v ≤ Φ(rx, b) C∃)

holds in any (nonempty) hyperbolic space (X, d,W)whose metric is bounded by
b ∈ N.



How does it work? (The official version)

We obtained a bound on the nth prime from Euclid’s proof without any special

techniques. However, serious applications usually involve some of the following,

either implicitly or explicitly:

• proof interpretations, particularly Gödel’s Dialectica interpretation

• computability and complexity in higher types, logical relations (particularly

majorizability)

• axiomatic systems and type theory.

In all cases, one also needs to do some seriousmathematics! (It is helpful to have
collaborators from the fields of application).



How does it work? Blog post by T. Tao, 2007

Soft analysis, hard analysis, and the finite
convergence principle
23 May, 2007 in expository, math.CA, math.CO, math.LO, opinion | Tags: finite convergence principle, hard analysis, pigeonhole principle,
proof theory, Ramsey theory, soft analysis

In the field of analysis, it is common to make a distinction between “hard”, “quantitative”, or “finitary” analysis
on one hand, and “soft”, “qualitative”, or “infinitary” analysis on the other. “Hard analysis” is mostly concerned
with finite quantities (e.g. the cardinality of finite sets, the measure of bounded sets, the value of convergent
integrals, the norm of finite-dimensional vectors, etc.) and their quantitative properties (in particular, upper and
lower bounds). “Soft analysis”, on the other hand, tends to deal with more infinitary objects (e.g. sequences,
measurable sets and functions, -algebras, Banach spaces, etc.) and their qualitative properties (convergence,
boundedness, integrability, completeness, compactness, etc.). To put it more symbolically, hard analysis is the
mathematics of , , , and [1]; soft analysis is the mathematics of 0, , , and .

At first glance, the two types of analysis look very different; they deal with different types of objects, ask
different types of questions, and seem to use different techniques in their proofs. They even use[2] different
axioms of mathematics; the axiom of infinity, the axiom of choice, and the Dedekind completeness axiom for
the real numbers are often invoked in soft analysis, but rarely in hard analysis. (As a consequence, there are
occasionally some finitary results that can be proven easily by soft analysis but are in fact impossible to prove
via hard analysis methods; the Paris-Harrington theorem gives a famous example.) Because of all these
differences, it is common for analysts to specialise in only one of the two types of analysis. For instance, as a
general rule (and with notable exceptions), discrete mathematicians, computer scientists, real-variable harmonic
analysts, and analytic number theorists tend to rely on “hard analysis” tools, whereas functional analysts,
operator algebraists, abstract harmonic analysts, and ergodic theorists tend to rely on “soft analysis” tools. (PDE
is an interesting intermediate case in which both types of analysis are popular and useful, though many
practitioners of PDE still prefer to primarily use just one of the two types. Another interesting transition occurs
on the interface between point-set topology, which largely uses soft analysis, and metric geometry, which
largely uses hard analysis. Also, the ineffective bounds which crop up from time to time in analytic number
theory are a sort of hybrid of hard and soft analysis. Finally, there are examples of evolution of a field from soft
analysis to hard (e.g. Banach space geometry) or vice versa (e.g. recent developments in extremal
combinatorics, particularly in relation to the regularity lemma).)

It is fairly well known that the results obtained by hard and soft analysis respectively can be connected to each
other by various “correspondence principles” or “compactness principles”. It is however my belief that the
relationship between the two types of analysis is in fact much closer[3] than just this; in many cases, qualitative
analysis can be viewed as a convenient abstraction of quantitative analysis, in which the precise dependencies
between various finite quantities has been efficiently concealed from view by use of infinitary notation.
Conversely, quantitative analysis can often be viewed as a more precise and detailed refinement of qualitative
analysis. Furthermore, a method from hard analysis often has some analogue in soft analysis and vice versa,
though the language and notation of the analogue may look completely different from that of the original. I
therefore feel that it is often profitable for a practitioner of one type of analysis to learn about the other, as they
both offer their own strengths, weaknesses, and intuition, and knowledge of one gives more insight[4] into the
workings of the other. I wish to illustrate this point here using a simple but not terribly well known result, which
I shall call the “finite convergence principle” (thanks to Ben Green for suggesting this name; Jennifer Chayes
has also suggested the “metastability principle”). It is the finitary analogue of an utterly trivial infinitary result –
namely, that every bounded monotone sequence converges – but sometimes, a careful analysis of a trivial result
can be surprisingly revealing, as I hope to demonstrate here.



The correspondence principle

(emphasis mine)

“It is fairlywell known that the results obtainedbyhardand soft analysis respectively
can be connected to each other by various “correspondence principles” or “compact-
ness principles”. It is however my belief that the relationship between the two types
of analysis is in fact much closer than just this ... ”

“I wish to illustrate this point here using a simple but not terribly well know result,
which I shall call the “finite convergence principle” ... It is the finitary analogue of
an utterly trivial infinitary result – namely, that every bouned monotone sequence
convergences – but sometimes, a careful analysis of a trivial result can be surpris-
ingly revealing, as I hope to demonstrate here.”



An evenmore utterly trivial infinitary result: The drinkers paradox

In any pub there is someone such that if they are drinking, then everyone is drinking

ALTERNATIVELY:

∃x ∈ P (D(x) → ∀y ∈ P D(y))

Proof.

Either everyone is drinking, so we can pick x := c to be some canonical drinker c ∈ P
OR there is at least someone y ∈ D not drinking, in which case we pick x := y.

In a pub with infinitely many drinkers, this becomes computationally problematic...

There is no effective way of finding x.

The drinkers paradox is an infinitary theorem.



Let’s finitise it!

∃x ∈ P (D(x) → ∀y ∈ P D(y))
⇔ ∃x ∈ P ∀y ∈ P (D(x) → D(y))
⇔ ¬¬∃x ∈ P ∀y ∈ P (D(x) → D(y))
⇔ ¬∀x ∈ P ∃y ∈ P ¬(D(x) → D(y))
⇔ ¬∃f : P → P ∀x ∈ P ¬(D(x) → D(fx))
⇔ ∀f : P → P ∃x ∈ P (D(x) → D(fx)) (∗)

We can now solve x in f : Either fx is drinking, so we can set x := c, OR fx is not
drinking, in which case set x := fc.

Original DP: In any pub there is a person x such that if they are drinking, then everyone is
drinking

Finitary DP: Given a pub and any function f , there is a person x ∈ {c, fc} such that if they
are drinking, then person fx is drinking

The formula (∗) corresponds to the classical Dialectica interpretation of the original
DP!The witnesses {c, fc} give rise to the corresponding Herbrand disjunction.



Tao’s example

Monotone convergence principle (MCP): Let {xn} be an increasing sequence in
[0, 1]. Then for any ε > 0 there exists someN ∈ N such that |xm − xn| ≤ ε for all
m, n ≥ N.

Finite convergence principle (FCP): If ε > 0 and f : N → N and

0 ≤ x0 ≤ . . . ≤ xM ≤ 1

is such thatM is sufficiently large depending of ε and f , then there exists
0 ≤ N ≤ N + f (N) ≤ M such that |xm − xn| ≤ ε for allN ≤ m, n ≤ N + f (N).

Two interesting observations:

1. FCP ≈ classical Dialectica intepretation of MCP

2. By analysing the proof of MCP we can extract a bound onM, which is f̃ ⌊1/ε⌋(0)
for f̃ (x) := x + f (x).



Why is Tao interested in finitary theorems?

“So, we’ve now extracted a quantitative finitary equivalent of the infinitary principle
that every boundedmonotone sequence converges. But canwe actually use this finite
convergence principle for some non-trivial finitary application?The answer is a defi-
nite yes: the finite convergence principle (implicitly) underlies the famous Szemerédi
regularity lemma, which is a major tool in graph theory, and also underlies some
rather lesswell knownregularity lemmas, suchas thearithmetic regularity lemmaof
Green. More generally, this principle seems to often arise in any finitary application
in which tower-exponential bounds are inevitably involved.”

Quantitative, finitary versions of mathematical principles are of interest in their

own right, and play a role in mathematics entirely independently of proof theory.

But actually finding the correct finitization of a give principle is surprisingly hard!



Why are we interested in finitary theorems?

Purely existential theorems typically use infinitary principles as lemmas i.e.

infinitary principle ⇒ ∃x A(x)

On the face of it, these proofs are nonconstructive, and we have no way of finding x.

But there is a formal way (Dialectica interpretation) to replace the infinitary

principle with its finitary counterpart.

finitary principle ⇒ ∃x ≤ t A(x)

Typically, we can then use a bound for the finitary principle to compute a bound on x.

Remember Kreisel:

“if the conclusion ... holds when the Riemann hypothesis is true, it should also hold
when the Riemann hypothesis is nearly true”



What can we achieve with applied proof theory?

1. Computational information from proofs (including those which are at first

glance completely nonconstructive).

2. Qualitative generalisations of theorems, unifying frameworks.

3. Finitary formulations of infinitary principles, complete with relevant

numerical data.

4. Logical metatheorems and abstract variants of proofs in the literature, which

explain and generalise mathematical phenomena.



What makes an area of mathematics amenable to proof theoretic techniques?

1. Numerical information is relevant in that area.

2. Proofs are non-trivial, and use subtle nonconstructive lemmas, but theorems are
‘nice’ from a proof theoretic perspective.

3. There are many variations of core ideas in different settings.



The situation in 2023

Applied proof theory is a small community. Main strongholds are:

• Germany (TU Darmstadt).

• USA (Carnegie Mellon, Pennsylvania).

• Smaller centres include Romania (Bucharest, Cluj-Napoca) and Portugal

(Lisbon).

In the UK, it’s essentially just Bath (me) and QMUL (Paulo Oliva).

Over the last 20 years or so, several hundred papers, main areas of application being:

• Nonlinear analysis

• Fixed point theory

• Approximation theory

• Ergodic theory

• Convex optimization

Results typically published in specialist journals within areas of application, or

general mathematical journals.



A simple sketch



Contraction mappings

Wework in a Banach space X.

A mapping T : E → E for E ⊆ X is called strongly contractive (or often just a contraction
mapping) if there exists k ∈ [0, 1) such that ∀x, y ∈ E:

∥Tx − Ty∥ ≤ (1− k) ∥x − y∥

Theorem (Banach fixed point theorem)

If T is strongly contractive then it possesses a fixpoint q. Moreover, from any starting point x0
the sequence {xn} defined by xn+1 := Txn converges to q, with rate of convergence

∥xn − q∥ ≤ (1− k)n

k
∥x1 − x0∥

space X + mapping T + algorithm {xn} =⇒ convergence to fixpoint



A generalisation of the Banach fixed point theorem:

Amapping T : E → E for E ⊆ X is calledψ-weakly contractive ifψ : [0,∞) → [0,∞)
is a nondecreasing function withψ(0) = 0 andψ(t) > 0 for t > 0, and ∀x, y ∈ E:

∥Tx − Ty∥ ≤ ∥x − y∥ − ψ(∥x − y∥)

In the case thatψ(t) := kt then T is strongly contractive.

Theorem (Alber and Guerre-Delabriere 1997)

If T is weakly contractive then it possesses a fixpoint q. Moreover, from any starting point x0 the
sequence {xn} defined by xn+1 := Txn converges to q, with rate of convergence

∥xn − q∥ ≤ Ψ−1(Ψ(∥x0 − q∥)− n)

whereΨ is given by

Ψ(s) :=
∫ s dt

ψ(t)

space X + mapping T + algorithm {xn} =⇒ convergence to fixpoint



Example of a weakly contractive mapping

Define X = R and T : [0, 1] → [0, 1] by Tx := sin x. Then we can show that

| sin x − sin y | ≤ |x − y| − 1

8

|x − y|3

and so sin isψ-weakly contractive forψ(t) = 1

8
t3.

The unique fixpoint of sin is x = 0, and defining xn+1 := sin xn we have xn → 0 with

rate of convergence

xn ≤
1√

x−2

0
+ n−1

4



There have been lots of generalisations e.g.

Amapping T : E → E for E ⊆ X is called totally asymptoticallyψ-weakly contractive
ifψ, ϕ : [0,∞) → [0,∞) are nondecreasing functions withψ(0) = ϕ(0) = 0 and

ψ(t), ϕ(t) > 0 for t > 0, and ∀x, y ∈ E:

∥Tnx − Tny∥ ≤ ∥x − y∥ − ψ(∥x − y∥) + knϕ(∥x − y∥) + ln

for kn, ln → 0. In the case that kn = ln := 0 then T isψ-weakly contractive.

Theorem (Adapted from Alber, Chidume and Zegeye 2006)

Suppose that E ⊆ X is convex, T is asymptoticallyψ-weakly contractive and q is a fixpoint of
T. Moreover, from any starting point x0 define the sequence {xn} by

xn+1 = (1− αn)xn + αnTnxn

where {αn} is some sequence of nonnegative reals with
∑∞

n=0
αn = ∞. Suppose that

∥xn − q∥ is bounded. Then xn → q.

A clear closed form expression for a rate of convergence is not given.

space X + mapping T + algorithm {xn} =⇒ convergence to fixpoint



The general strategy for proving convergence to fixpoints of ψ-weakly
contractive mappings

Step 1: Show that, under suitable conditions, the sequence µn := ∥xn − q∥ satisfies

(∗) µn+1 ≤ µn − αnψ(µn) + γn

where {αn} are typically step-sizes that define the algorithm {xn}, and {γn} are
error terms.

Step 2: Appeal to properties of abstract recurrence inequalities:

Lemma

Suppose that {µn} is a sequence of nonnegative reals satisfying (∗) for some nondecreasing
functionψ : [0,∞) → [0,∞)which is positive on (0,∞), and sequences {αn} and {γn} of
nonnegative reals satisfying

• ∑∞
i=0

αi = ∞
• γn/αn → 0 as n → ∞

Thenµn → 0 as n → ∞

Proof.

Typically a nonconstructive argument involving liminfs and convergent

subsequences.



Lemma (Quantitative convergence for recurrence inequality)

Let {µn} be a sequence of nonnegative reals such that for any δ > 0we have

µn+1 ≤ µn − αnψ(µn) + αnδ

for all n ≥ σ(δ), where:
• ψ : [0,∞) → [0,∞) is a nondecreasing function withψ(t) > 0 for t > 0;
• {αn} ⊂ [0, α] is a sequence of nonnegative real numbers such that

∑∞
n=0

αn = ∞
with rate of divergence r : (0,∞)× (0,∞) → N i.e.

∀N ∈ N, x > 0

r(N,x)∑
n=N

αn > x


Thenµn → 0, andmoreover, for any ε > 0we have

∀n ≥ Φ(ε)(µn ≤ ε)

whereΦ is defined by

Φ(ε) := r

(
σ
(
1

2

min
{
ψ
(ε
2

)
,
ε

α

})
, 2

∫ c

ε/2

dt
ψ(t)

)

and c is an upper bound for {µn}.



Theorem (Adapted from P. andWiesnet 2021)

Suppose that E ⊆ X is convex, {An} is quasi asymptoticallyψ-weakly contractive w.r.t q and
withmodulusσ, in the sense that for all δ, c > 0 and x, y ∈ E:

∥x − q∥ ≤ c =⇒ ∀n ≥ σ(δ, c)(∥Anx − q∥ ≤ ∥x − q∥ − ψ(∥x − q∥) + δ)

Moreover, from any starting point x0 define the sequence {xn} by

xn+1 = (1− αn)xn + αnAnxn

where {αn} ∈ [0, α] is some sequence of nonnegative reals with
∑∞

n=0
αn = ∞. Suppose

that ∥xn − q∥ is bounded by c > 0. Then xn → q, with rate of convergence

∥xn − q∥ ≤ F−1

(
2Ψ(c)−

n−2∑
i=0

αi

)

where F : (0,∞) → R is any strictly increasing and continuous function satisfying

F(ε) ≥ 2Ψ
(ε
2

)
− α · σ

(
1

2

min
{
ψ
(ε
2

)
,
ε

α

}
, c
)

andΨ is given by

Ψ(s) :=
∫ s dt

ψ(t)



Plans for the future



Probabilistic convergence

Almost all research in applied proof theory has focused on ordinary convergence, but

there has been some fascinating work in measure theory/probability theory, where

notions of convergence are more subtle.

A finitized version (along the lines of Tao) of ordinary Cauchy convergence of a

sequence {xn} is:

For all ε > 0 and f : N → N there exists m such that

(∀n, n′) (m ≤ n, n′ ≤ f (m) =⇒ |xn − xn′ | < ε)

The following is a finitized version (i.e. Dialectica interpretation) of almost uniform

convergence for a sequence of random variables {Xn} due to Avigad et al. 2012.:

For allλ, ε > 0 and f : N → N there existsM such that

P{ω : (∀m ≤ M) (∃n, n′) (m ≤ n, n′ ≤ f (m) and |Xn(ω)−Xn′(ω)| ≥ ε)} < λ



Proof theory in stochastic optimization

Can we extend proof theoretic work in ordinary optimization to stochastic
algorithms? These rely heavily on things like the Robbins-Siegmund lemma (which in
turn relies onMartingale theory):

Lemma (Robbins-Siegmund 1971)

Let {µn}, {δn}, {εn} and {θn} be sequences of nonnegative reals such that
∑∞

i=0
εi <∞,∑∞

i=0
δi <∞

E[µn+1 | Fn] ≤ (1+ δn)µn + εn − θn a.s.

for some filtration {Fn}. Then
∑∞

i=0
θi <∞ and {µn} converges a.s.

• Can we give results of this kind a computational interpretation?

• Are there applications in stochastic optimization?



Computer-formalizing applied proof theory (and the areas of application!) in

theorem provers

This is particularly pertinent for applied proof theory:

• We are already focused on understanding the abstract, logical structure of

proofs.

• Results in many areas of application have been explained as instances of

general metatheorems, formalised within specialised type theories.

• Lots of standard techniques (e.g. ‘finitization’ of theorems via proof

interpretations) could be automated using tactics.

I’m aware of two projects on developing libraries for applied proof theory (both in

Lean):

• H. Cheval: https://github.com/hcheval

• M. Neri: https://github.com/mneri123/Proof-mining-

Keji is building a library on convergence results for sequences of reals, along with

rates of convergence/metastability.

https://github.com/hcheval
https://github.com/mneri123/Proof-mining-


This is what it looks like



Automated reasoning

In applied proof theory we often organise proofs into

• Critical components (with computational content)

• Routine components (with little or no computational content)

Can we develop specialist automated reasoning algorithms to:

1 Help us generate proofs,

2 Automatically produce quantitative information?



Thank you!


