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Background: Applied proof theory



What is applied proof theory?

There is a famous quote due to G. Kreisel (A Survey of Proof Theory II):

“What more do we know when we know that a theorem can be proved by limited
means than if we merely know that it is true?”

In other words, the proof of a theorem gives us much more information than the
mere truth of that theorem.

Applied proof theory is a branch of logic that uses proof theoretic techniques to
exploit this phenomenon.



People do applied proof theory without realising it...

PROBLEM. Give me an upper bound on the nth prime number p,.

1. Whatis p,? I know it exists because of Euclid...

2. Specifically, givenpi, . .., pn—1, Lknowthat N:=p; - ... - ps—1 + 1 contains a
new prime factor ¢, and sop, < ¢ < N.

3. In other words, the sequence {p, } satisfies
pn S pl teeet pn—l +1 S (pn—l)n_l

4. By induction, it follows that e.g. p, < 2%".

This is a simple example of applied proof theory in action! From the proof that there
are infinitely many primes, we have inferred a bound on the nth prime.



... but it’s not always that simple

Theorem (Littlewood 1914)
The functions of integers

@ ¥(x) — x, and

(b) m(x) — li(x)

change signs infinitely often, where 7w (x) is the number of prime < x, 1) (x) is the is logarithm
of the Lc.m. of numbers < xand li(x) = [(1/log(u))du.

The original proof is utterly nonconstructive, using among other things a case
distinction on the Riemann hypothesis. At the time, no numerical value of x for
which 7(x) > li(x) was known.

In 1952, Kreisel analysed this proof and extracted recursive bounds for sign changes
(On the interpretation of non-finitist proofs, Part II):
“Concerning the bound ... note that it is to be expected from our principle, since if the
conclusion ... holds when the Riemann hypothesis is true, it should also hold when
the Riemann hypothesis is nearly true: not all zeros need lieon o = 2, butonly those
whose imaginary part lies below a certain bound ... and they need not lie on the line
o = 3, butnearit”




A routine example from modern applied proof theory

Theorem (Kirk and Sims, Bulletin of the Polish Academy of Sciences 1999)

Suppose that C is a closed subset of a uniformly convex Banach spaceand T : C — Cis
asymptotically nonexpansive with int(fix(T)) # (. Then foreachx € C the sequence {T"x}
converges to a fixed point of T.

Theorem (P., Journal of Mathematical Analysis and Applications 2019)

LetT : C — C be a nonexpansive mapping in L, for2 < p < oo, and suppose that
B,[q] C fix(T) forsomeq € Ly andr > 0. Suppose thatx € Cand ||x — q|| < K, and
definex, := T"x. Then forany e > Owe have

Vi > f(e)(||Txn — 3| <€)
where

3L b2
er - 12

f© =2

One of over a hundred papers that were written by proof theorists, but published in
specialist journals in the area of application.



A one-slide overview of the field

® Origins in the work of Kreisel and the “unwinding” of proofs
[Kreisel, 1951, Kreisel, 1952]. Early case studies in number theory.

® Applications in mathematics were brought to maturity by Kohlenbach and his
collaborators from late 90s onwards (see the textbook [Kohlenbach, 2008] and
the recent survey papers [Kohlenbach, 2017, Kohlenbach, 2019] for an
overview):
® (Case studies in nonlinear analysis, ergodic theory, approximation theory, convex
optimization, more recently algebra, probability and number theory,

® Jogical metatheorems that explain individual applications as instances of general
logical phenomena.

This branch of research commonly referred to as “proof mining”.

® But the area is a lot bigger: It is related, more broadly, to constructive
mathematics, formal program extraction [Schwichtenberg and Wainer, 2011],
constructive/dynamical algebra [Lombardi and Quitté, 2015], higher-order
computability [Longley and Normann, 2015] and much more besides!

® Many of the basic techniques are studied in their own right e.g. Dialectica
interpretation, negative translations.



Remarks

¢ Applied proof theory is not defined by the use of any single technique: It’s about
thinking about and doing mathematics (or computer science) with a
proof-theoretic mentality.

® Finding new ways/areas to apply proof-theoretic thinking in a meaningful way
is very hard (but very rewarding when it works out).

® Research exists on a broad spectrum. Some papers involve sophisticated logical
techniques in an explicit way, other just look like maths papers.
® Itisarapidly growing field. There is huge potential in both

® Expanding to new areas of application (e.g. probability theory),
® Incorporating new techniques (e.g. theorem provers, automated reasoning).



Plan for rest of talk:

® Introduce, via a simple example, the main theme of the talk: Recursive
inequalities.

® Explain why these are interesting for both analysts and applied proof theorists.

® Motivate my quantitative classification project with Morenikeji Neri. Present
our main results so far.

® Give an extended outline of plans for future work involving
® Stochastic algorithms
® Computer formalised mathematics
® Automated reasoning



Recursive inequalities
(a basic example)



Monotone sequences

Let ¢ > O and {u, } be a sequence of nonnegative reals satisfying for alln € N:

Hn1 < Chn

Question. Does this sequence converge, and if so how fast?

Theorem

® Ifc < 1then u, — O, with rate of convergence i, < ¢” pio.

@ Ifc = 1then p, — pforsome p > 0, but this may not be computable even if { i } is a
computable sequence of rationals.

© Ifc > 1then {un } may not converge at all.

Item 2 is proven by adapting Specker’s famous construction [Specker, 1949].



An application: Banach’s fixed point theorem

Suppose that (X, d) is a metric space and T : X — X a contractive mapping with
constant¢ € [0,1)i.e.

A(T(x),T(y)) < c-d(x,)
forallx,y € X.

Ifx™ is a fixed point of T, and x, 11 := Tx, forsomexo € X, thenx, — x* with rate

Ao, x™) < " - d(x0,x")

Proof. Define p,, := d(x4,x™). Then
tngr = A(Ton, x™) = d(Taew, T™) < ¢ - d(2, ™) = cpn

so we can apply the abstract convergence theorem of the previous slide for ¢ < 1.



Can we do anything in the case of noncomputable convergence?

Theorem (Rephrasing of the case ¢ = 1)

Suppose that { i, } is a sequence of nonnegative reals with pn41 < p, foralln € N. Then
{pn } is Cauchy.

Proof. If this were not true, there would exists some € > 0O such that
VYNIm,n > N(|ttm — | > €)
Using (weak) choice, there exists g : N — N such that
VN3m,n € [N,N + g(N)](|ptm — pu| > €)
Define g(k) := k + g(k). Then we have
Ho > Hy(0) T € > Hi(G(0)) T2 > o 2 z0) (o) +ie > ...

[

which is a contradiction for



A computational convergence theorem

Theorem (Original theorem)

Suppose that { i, } is a sequence of nonnegative reals with pn41 < pn foralln € N. Then
{pn } is Cauchy.

Theorem (Computational (or metastable) version)

Suppose that { i, } is a sequence of nonnegative reals with pn41 < pn foralln € N. Then for
anye > Oandg : N — Nthere existssome N < @ (e, g) such that

Vm,n € [N, N+ g(N)](|pm — p] < €)

where
0(c,g) =3/ (0

® The extraction of rates of metastability is a standard result in applied proof
theory in cases where convergence rates are not possible.

® Metastable convergence was independently discovered by Tao [Tao, 2007], and
has a mathematical significance as a “finitary analogue” of Cauchy convergence.



What is going on logically?

== [{n} is Cauchy]
<= - [Ve > 03ANVm, n > N(|pm — pta| < €)]
<= —[3e > OVNIm,n > N(|pm — pta| > €)]
<= —[Je > 0,g: N = NVNIm,n € [N,N + g(N)|(|pm — pn| > €)]
<= [Ve > 0,g:N — NaNVm,n € [N, N+ g(N)](|tm — pn| < €)]

Statement: (1, < pint1 = {n} is Cauchy.

In general no direct computational interpretation (because of Specker).

Statement: 1, < piny1 = ——[{n} is Cauchy).

We can extract a direct realizer i.e. a computable rate of metastability i.e.
Ve > 0,g: N —= N3N < &(g,9)Vm,n € [N, N + g(N)](|tm — pn] < €)

for (e, g) := g“‘o/d (0).

’ Metastability ~ negative translation + Dialectica




Remember Littlewood and Kreisel...

Theorem (Littlewood 1914)
The functions of integers

@ ¥(x) — x, and

(b) m(x) — li(x)

change signs infinitely often, where 7w (x) is the number of prime < x, 1) (x) is the is logarithm
of the Lc.m. of numbers < xand li(x) = [(1/log(u))du.

The original proof is utterly nonconstructive, using among other things a case
distinction on the Riemann hypothesis. At the time, no numerical value of x for
which 7(x) > li(x) was known.

In 1952, Kreisel analysed this proof and extracted recursive bounds for sign changes
(On the interpretation of non-finitist proofs, Part II):
“Concerning the bound ... note that it is to be expected from our principle, since if the
conclusion ... holds when the Riemann hypothesis is true, it should also hold when
the Riemann hypothesis is nearly true: not all zeros need lieon o = 2, butonly those
whose imaginary part lies below a certain bound ... and they need not lie on the line
o = 3, butnearit”




This one also needed a route through metastable convergence

Theorem (Kirk and Sims, Bulletin of the Polish Academy of Sciences 1999)

Suppose that C is a closed subset of a uniformly convex Banach spaceand T : C — Cis
asymptotically nonexpansive with int(fix(T)) # (. Then foreachx € C the sequence {T"x}
converges to a fixed point of T.

Theorem (P., Journal of Mathematical Analysis and Applications 2019)

LetT : C — C be a nonexpansive mapping in L, for2 < p < oo, and suppose that
B,[q] C fix(T) forsomeq € Ly andr > 0. Suppose thatx € Cand ||x — q|| < K, and
definex, := T"x. Then forany e > Owe have

Vi > f(e)(||Txn — 3| <€)
where
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One of several hundred papers that were written by proof theorists, but published in
specialist journals in the area of application.



From Tao's blog (“Soft analysis, hard analysis, and the finite convergence
principle”, 2007)
One can of course keep doing this, achieving various sparsified versions of the
pigeonhole principle which each capture part of the infinite convergence
principle. To get the full infinite convergence principle, one cannot use any
single such sparsified version of the pigeonhole principle, but instead must

take all of them at once. This is the full strength of the finite convergence
principle:

Finite convergence prmclple Ifz >0and ' : 7, — 7, isa
functionand () < &y < o < .. < &y < lissuchthat |/ 1s
suiﬁcmnﬂy laIge depending on F and =, then there exists

1< N - + (N = M suchthat |, — 1, = for all
N <n,m _ N+ F(N)

This principle is easily proven by appealing to the first pigeonhole principle with
the sparsified sequence I, . 1, . .. where the indices are defined
recursively by i, := 1 and f'._ 1 .f', t [[i,). This gives an explicit bound on
Mas \[: _; _ . 1. Note that the first plgeonhole principle corresponds to the
case F(N) = I the second pigeonhole principle to the case F'[ V) = [k, and
the third to the case ['(N) = N. A particularly useful case for appllcatlons is
when F grows exponentially in N, in which case M grows tower-exponentially in



The main points

® Sequences of nonnegative reals satisfying recursive inequalities may or may
not converge, depending on the parameters of those inequalities.

® In cases that they do converge, they may or may not do so with computable
rates.

® The convergence properties of sequences of reals can be used to prove
convergence results for general metric spaces. Rates of convergence can be
applied directly (and this is useful).

® Where no computable rates of convergence do not exist in general, one can
often instead provide rates of metastability (and this is also useful!).



Recursive inequalities
(interesting examples)



There are plenty of examples!

Recursive inequalities can be found everywhere numerical analysis and
optimization. Their computational analysis is a widespread phenomenon in applied
proof theory.

® First clear example in [Kohlenbach and Lambov, 2004] (I think):

a1 < (14 bo)a, + 6 with %, b < coand Y% 6 < oo |

Rates of metastability for {a;} calculated and then used in the main result.

® One of several examples from last year is [Sipos, 2022]:

anp1 < (1 — )iy + anBp with Y ° oy = oo and limsup,,_, . B <0 ‘

where {3, } could be negative. A rate of metastability for {a, } is required.

I found explicit recursive inequalities in 25 papers in applied proof theory. There are
thousands of such papers in ordinary mathematics.

The following examples are from my own research...



An example due to [Alber and Guerre-Delabriere, 1997]

X is anormed space. Amapping T : X — X is ¢-weakly contractive on some closed,
convex C C X if

1T = Ty|| < [lx =yl = (llx = ¥I)

forx,y € C, where 4 : [0,00) — [0, 00) is a nondecreasing function with 1/(0) = 0
and ¢ (t) > ofort > 0.

® Any contraction mapping is ¢-weakly contractive for ¢(t) := (1 — ¢)t.

® For X = R, the sin function is 1)-weakly contractive on [0, 1] for 4 (t) := */8,
by considering its Taylor expansion:

T
[sin(x) — siny)] < Jr —y| ~ 22



Reduction to a recursive inequality

Suppose thatx* is a fixed point of T, and the algorithm {x,} is defined according to
the Krasnoselskii-Mann method:

Xn41 = (1 - an)xn + a,Txy,
forxo € Cand {a,} C [0,1] with 3°°, os = co. Then

lonss — 2" = [[(1 = ) + T, — x|
< (1 - )l — 5| + | B — T
< (1= )l — 5" + (s — x| = (lln —x°1))

= [latn — ™[ = cntp([lacn — x7])

i.e. un = [|xy — x™|| satisfies the recursive inequality

‘ M1 <y — Oénd}(lin)

which is a generalisation of i1 < Cptn.



Rates of convergence

Theorem (Essentially [Alber and Guerre-Delabriere, 1997])
Suppose that { i, } is a sequence of nonnegative reals satisfying

Mot <y — an"/’(ﬂn)

where {a,,} C [0,1] with > 2> oy = coand 1) : [0,00) — [0, 00) is a nondecreasing
function with1(0) = 0and ) (t) > Ofort > 0.

Then 1, — O with rate
=1l
e (wo) - z)
i=0

= X odt
U(x) := m

Rates of convergence exist, but are not so simple any more...



It gets trickier

If we instead consider mappings T : X — X that are asymptotically y»-weakly
contractive in some sense e.g.

1T = T < llx = 31| = 0l = yl)) + 1o

forl, — 0asn — oo, the corresponding recursive inequality becomes

‘ M1 S MHn — anw(,un) + anln

This is done in [Alber et al., 2006], but explicit rates of convergence not given.



This can be tackled using ideas from proof theory

Theorem (Adapted from [P. and Wiesnet, 2021])

Suppose that E C X is convex, {A, } is quasi asymptotically 1p-weakly contractive w.r.t g and
with modulus o. Moreover, from any starting point xo define the sequence {x, } by

Xn4+1 = (l - an)xn + anAnxn

where {a,} € [0, o] is some sequence of nonnegative reals with > > | o, = c0. Suppose
that ||x, — q|| is bounded by ¢ > 0. Thenx, — q, with rate of convergence

n—2
b =gl < 7 (19609 - S
i=0
where F : (0, 00) — Risany strictly increasing and continuous function satisfying

r 228 (5) o (Lmn{9(5) .9

and U is given by
S odt
YO=] v



A final example (simple gradient descent)

Letf : R” — R be a convex, differentiable function, and x* be a point where f
attains its minimum. Define

Xnt1 := Xn — 0 VI (%)

for some initial xo, where > 7° o = coand Y72, o < co. Assuming that L > O1is
such that || Vf(x,)|| < Lforalln € N, we have

Mn+1 < Mn — Oénﬂn + %Lza% and Bn - Bn+l < Lzan

for pn == {jx, — x*[|* and B, := f(3n) — f(x*).

This is an instance of a recursive inequality where it is known that 8, — 0, but no
general rates have been given.



The main points

We know all about convergence and computability for in+1 < cfin.

® More interesting mappings, algorithms or spaces give rise to more complex
recursive inequalities.

In these cases, rates of convergence are often either not given or not known.

Ideas from logic can:
@ Produce rates when they do exist.
@ Prove that in some cases, computable rates don't exist.

© In the second case, produce computable rates of metastability instead.



The systematic study of a class of recursive
inequalities



Main idea

Let’s take a general class of recursive inequalities and ask the following questions:

® Under precisely which conditions do we get convergence results? Can we
strengthen standard results? (Analysis)

® Where we suspect that general rates of convergence might not exist, can we
prove this properly? (Computability)

® Can we analyse the proofs to produce computable rates of convergence or
metastability (Proof theory, constructive maths)?

® Can we use this to prove new theorems in “proper” mathematics? (Applied
proof theory)



Our starting point

A general recursive inequality

{un}, {an}, {Bn} and {4} are sequences of nonnegative reals satisfying

‘ M1 < Mn — anﬂn + Y

where > ° o = coandy, — Oasn — co.

All of our examples were of this kind:

® Banach fixed point theorem: put1 < ptn — (1 — ¢)pn (i.e. iy = Land y, = 0)
® Asymptotically ¢-weakly contractive mappings: fint1 < fin — @ (ftn) + tnln
* Gradient descent: piny1 < pin — o (f () — f(x*)) + 3L 0x;

Question: What can we say about convergence of {x, } and {5, }?

We looked into two main categories based on:
Q> <00
@ Vu/an — Oasn — oo.



One subclass (“gradient-descent type”) was the following

Theorem ([Alber and Iusem, 2001

{un}, {an}, {Bn} and {4} are sequences of nonnegative reals satisfying

‘ M1 < Mn — anﬂn +

where Y2 o = coand y o) i < 0o. Then whenever there exists 6 > 0 such that
By — But1 < Oay, alln € N

then p, — pforsome p > Oand B, — O.

We can use this to prove that f (x,) — f(x*) for the simple gradient descent
algorithm x4 := x, — @, Vf (x,) discussed earlier.

Actually, it can be used to prove a lot more e.g. convergence of

u
Xnt1 = Pc (xn — - HT"”> Un € O, f (on)
n

where d.f (x) is the e-subderivative of f, x € H and C a closed, convex subset of
some Hilbert space H etc .. [Alber et al., 1998]



Noncomputability of “gradient-descent type” convergence

In [Alber et al., 1998], one of the many places where variants of this recursive
inequality is used, the authors write, about their proof of f (x;,) — f(x™):

This result does not give any information on the asymptotic behavior of {f (x») } out-
side the subsequence {x;, } [...]

Theorem ([Neri and P., 2023

For any sequence of positive reals { o, } bounded above by oc > Owith > 2 aii = o0,
together with @ > 0, there exist sequences of positive reals { (1, } and { B, }, computable in
{awn} and 0 and satisfying

/-Ln+1 S ﬂn - anﬂn (an ﬂn - ﬂn+1 S 0an

such that o, — pand B, — O, but neither with a computable rate of convergence.

Our result offers a formal explanation of why no such information can be extracted.



Strengthening convergence results

That 3, — 0 holds for “gradient-descent type” recursive inequalities can be reduced
to the following result:

Theorem (cf. Proposition 2 of [Alber et al., 1998])

Suppose that { v, } and {3, } are sequences of nonnegative real numbers with 3> oy = 0o
and >0 i} < co. Then whenever there exists 6 > O such that the following condition
holds:

Bn — Bot1 < Oaw, forall m € N

then 3, — O.

We characterised exactly what kind of additional condition was required to establish
convergence:

Theorem ([Neri and P., 2023

Suppose that { v, } and {3, } are sequences of nonnegative real numbers with Y > os = 00
and > 2, aiffi < oo. Then B, — Oifand only ifthere exists 0 > O such that

m—1
limsup{ﬁnﬁMGZai|N§n<m} <o
N— oo

i=n



Constructivising convergence

Theorem ([Neri and P., 2023

Suppose that { v, } and {3, } are sequences of nonnegative real numbers and v is a rate of
divergence for > > oy = oo. Lete > 0and g : N — Nbearbitrary. Thenif Ni, N, € N
and 0 > O are such that, setting N := max{Ni, N, }, we have

r(N+g(N),e/46) 2
Z aiffi < @
i=N;

and
m—1

g g
5,,—@,,SHZai—kZﬁ)rallNz§n<m§r(N+g(N),E)

i=n

then we can conclude that 8, < € foralln € [N, N + g(N)].



Generalised gradient descent methods

Theorem ([Neri and P., 2023

Let X be a real inner product space with Y C X, and suppose thatf : X — Ris a function. Let
{ o} be a sequence of nonnegative reals with > > i = oo, and {b,}, {c,} and {d, }
sequences of nonnegative reals with oo, cib; < 00, > oop ¢ < coand Yoo di < co.
Finally, suppose thatx™ € Y, {x, } and {u, } are sequences of vectors withx, € Y forall

n € N,and a, p,0 > O are constants, which satisfy the following properties foralln € N:

@ f(x™) < f(oxn) (o™ acts as a minimizer)
O f(xn) —f@) < (un,%n —y) + by forally € Y (uy acts as a gradient)

O ||xn+1 — %u|| < cu (xy acts as a gradient descent method, property I)

O (ann, Xn — x°) < Ay — Xnt1, %0 — X°) + dy (%4 acts as a gradient descent method,
property I1)

O ||us|| < p (gradients are bounded)

0 pc, + bn < Oy

Thenf (xs) — f(x*).



Generalised gradient descent methods continued...

Theorem (continued...)

Moreover, ifr is a rate of divergence for Y > i = oo and b, ¢, d, K > 0 are such that

(e @) oo [e @)
> abi<b, Y ad<c Y d&<d and |xo—x"|P <K
i=0 i=0 i=0

Then foralle > Oand g : N — Nwe have
In < (e, g) Vk € [n,n+g(m)] (F0) <f(x7) +¢)

where ~ X
B(e, g) := b1/ (0)

h(n) : r(n +g(n),%) +1

= “(CIK) +b+d
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ARTICLE INFO ABSTRACT
Keywords: Convergent sequences of real numbers play a fundamental role in many different problems in system theory,
Convergence e.g., in Lyapunov stability analysis, as well as in optimization theory and computational game theory. In this

survey, we provide an ovel

iew of the literature on convergence theorems and their connection with Féjer

‘monotonicity in the deterministic and stochastic settings, and we show how to exploit these results.

1. Introduction

Why Are Convergence Theorems Necessary?
The answer to this “naive” question is not simple.
cit. Boris T. Polyak, 1987 (Polyak, 1987, Section 1.6.2).

While the answer may have become clearer through the years,
since many problems in applied mathematics rely on convergence
theorems, it is still not simple. Besides the theoretical investigation,
in fact, one fundamental aspect is how convergence theorems can be
of practical use, i.e., if the assumptions are plausible for a variety of
applications, for instance, in systems theory. Moreover, convergence
theorems may also give qualitative information, e.g., if convergence is
guaranteed for any initial point and in what sense (strongly, weakly,
almost surely, in probability), which affects the range of application.

control in traffic networks (Duvocelle, Meier, Staudigl, & Vuong, 2019)
and in modeling the prosumer behavior in smart power grids (Franci
& Grammatico, 2020a; Franci et al., 2020; Kannan, Shanbhag, & Kim,
2013; Yi & Pavel, 2019).

1.1. Lyapunov decrease and Féjer monotonicity

In the literature, many results hold for
sequences of numbers while in system and control theory, the state
and decision variables are usually vectors of real numbers. It is therefore
important to understand the deep connection between the two theories.
The bridging idea is to associate a real number to the state vector,
i.e., via a function, and then prove convergence exploiting the prop-
erties of such a function. The most common example of this approach
is that of Lyapunov theory where a suitable Lyapunov function is
shown to be decreasing along the evolution of the state variable, thus




B. Franci and . Grammatico

Table 1

Contains a huge survey of deterministic and stochastic recursive
inequalities...

Annual Reviews in Control 53 (2022) 161-186

Convergence results for Féjer monotone sequences, deterministic sequences of real numbers and with variable metric (separated by the horizontal lines, respectively). For the
applications, MI stands for Monotone Inclusion, V1 for variational inequalities, NE for Nash Equilibrium problems, LYAP for Lyapunov analysis and NC for nonconvex optimization.
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Malitsky (2015, Theorem 3.2)
Polyak (1987, Theorem 1.4.1)

NE - Theorem 6.7 Kannan and Shanbhag (2012, Theorem 2.4)

NE - Theorem 6.6

Duvocelle et al. (2019, Theorem 3.1)

MI - Theorem 6.3 Dadashi and Postolache (2019, Theorem 3.1)

MI - Theorem 6.2 Malitsky and Tam (2020, Theorem 2.9)

Proposition 5.1
Theorem 5.2
Corollary

Combettes and Vi (2013, Proposition 3.2)
Combettes and Vit (2013, Theorem 3.3)
Combettes and Vi (2013, Proposition 4.1)

MI - Theorem 8.1
MI - Theorem 8.1

Vi (2013, Theorem 3.1)
Vit (2013, Theorem 3.1)

constructed sequence from such set can be analyzed anyways. On the
contrary, in Lyapunov stability analysis, the target set is usually known
a priori.

By exploiting the relation between the iterations and a suitable
distance-like function, we show in this paper that convergence theo-
rems represent a key ingredient for a wide variety of system-theoretic

1.2. What this survey is about

In this survey, we present a number of convergence theorems for
sequences of real (random) numbers. We show how they can be used
in combination with (quasi) Féjer monotone sequences or Lyapunov
funcnons o obtain convergence of an iterative algorithm, essentially

problems in fixed-point theory, game theory and
(Bauschke, Combettes, et al., 2011; Combettes, 2001b; Eremin & Popov,
2009; Facchinei & Pang, 2007; Polyak, 1987). In many cases, the study
of iterative algorithms allows for a systematic analysis that follows
from the concept of Féjer monotone sequence. The basic idea behind
Féjer monotonicity is that at each step, each iterate is closer to the
target set than the previous one. In a sense, the distance used for Féjer

a ical system, to a desired solution. Moreover,
‘we present some applications to show how they can be adopted in a
variety of settings. Specifically, we present convergence results for both
deterministic and stochastic sequences of real numbers and we also
include some results on Féjer monotone sequences and with variable
metric. We show that these results help proving not only convergence
of an iterative algorithm but also the Law of Large Numbers, with
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Table 3

Convergence results for deterministic sequences of real numbers divided by their form.
In the first line, the most general inequality is presented. NN stands for a sequence of
nonnegative real numbers, while v/(X) indicates if the inequality in the corresponding
lemma contains (or not) a term of that column type. C* is a general “coefficient’,
whose specific form can be retrieved from the column.

SeqCk+ 1) Coeff.  Seq(k) Negative Noise
e < o (A ot s
Lemma 3.4 NN v v v
Lemma 3.6 N (1464 v v
Corollary 37 NN 1 v x
Corollary 38 NN (1454 x v
Lemma 3.9 Real 7 X v
Lemma 3.10 NN (-5 v v
Lemma 3.1 NN (-5 x ot
Lemma 3.12 N (-3 x Bt
Corollary 3,13 NN (-5 x S+
Corollary 3.14 NN (-5 x v
Corollary 3.15 NN ) x e
Proposition 3.16 NN 1 x ap
Lemma 3.17 N ) x S
1 v v
Lemma 3.18 Real (1454 sy
Lemma 3.19 NN 1y My By

3.2, Convergent sequences of real numbers

We now introduce a number of results on sequences of real numbers.
We note that even if the following results are for general sequences of
real numbers, their importance for system theory lies on the fact that
they can be paired with (quasi) Féjer monotonicity (see Remark 3.5).
In Table 3, we summarize the results presented in this section, with
emphasis on the auxiliary sequences that may affect convergence.

Let us note that, in the first line of Table 3, C* is a coefficient which,
depending on the form, represents the level of expansion or contraction,
£* can be seen as an additive noise and 0* is a “negative term", because
of the minus sign, which decreases the value of the sequence v*. For a
graphical interpretation of the effects of those sequences, we also refer
to Fig. 4 later on, which is specifically related to Lemma 3.6.

‘The first lemma that we report is widely used and it has a number of
consequences that are widely used as well. We do not include the proof
since it is very similar to the proof of the forthcoming Lemma 3.10.

Contains a huge survey of deterministic and stochastic recursive
inequalities...
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where 7 € (0, 1), (1%)e is a decreasing positive sequence such that
Toot")? < o, and let 0 < of < 0 < oo for all k € N. Then,
FE vk < o,

With the same arguments as for Lemma 3.4, the following corollary
can be proven. Interestingly, this result concerns the finite sum of the
sequence.

Corollary 3.5 (Lemma 9, Scutari & Sun, 2019). Let (") be a real
sequence and let (0*),¢y and (e*)cy be nonnegative sequences such that
¥y < oo and such that

N-1 A N1 N-t
DI AT D Y W ar )
=0 =0

=0

for N & N. Then, either Y-
finite value and ¥° 0 < co.

M —co, or TN 0K converges to a

= $N=Lken gk — $N=1 glen ko
Proof. It suffices to set v = ¥ 700", 6 = ¥,7; 0" and €] =

YN ek and then apply Lemma 3.4. [0

The next lemma is a consequence and a generalization of
Lemma 3.4. It has its stochastic counterpart in the well know Robbins—
Siegmund Lemma ( Lemma 4.1) (Robbins & Siegmund, 1971). It is
taken from Bauschke et al. (2011) yet here we provide a different proof.
For a graphical interpretation, we refer to Fig. 4.

Lemma 3.6 (Lemma 5.31, Bauschke et L, 2011). Let (F)ers (0 )yens
(é¥)en and (8*)ey; be nonnegative sequences such that ¥, e < co and
= 8% < oo and

< (14 65k — 0% + €5, for all k e N. (3.2)

Then, ¥, 0% < oo and (%), is bounded and converges to a nonnegative
variable.

Proof. Define p* = []* (1 + ) and note that f* converges to some j
since (%), is summable. Moreover, it holds that

I

=

146*
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iterative proces

find inequality

A < Ok gk

analysis

Fig. 7. Schematic representation of how the convergence lemmas for sequences can
be used. Given the iterative process, a suitable nonnegative function (Lyapunov or
distance-like) should be designed. Then, exploiting the properties of the application at
hand, an inequality involving the iterates at times k+1 and k can be retrieved. Hence,
one should check if the inequality corresponds to a known result (Table 3 for sequences
of real numbers) and use the corresponding result to prove convergence. The whole
process may take repeated steps to find a suitable function and/or inequality. The same
reasoning applies to the stochastic case, in which one should have an expected valued
inequality (with E[¢**1]) and refer to Table 4 for a convergence result on stochastic
sequences. See also Fig. § for an example.

Proof. Let x* € (A + B)'(0). It is possible to show, by using
monotonicity and some norm properties, that the following inequality
holds:

[Ix5HT — ¥ |1% + 2 (B = Bk, x* = XKy

1
(L) e e

. along with general heuristics for using them:
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of strong monotonicity of the operator 4, they also prove convergence
with linear rate, using Lemma 3.19.

Theorem 6.2 (Theorem 2.9, Malitsky & Tam, 2020). Let A : H = H
be maximally monotone and y-strongly monotone and B : H — H be
monotone and ¢-Lipschitz continuous. Suppose « € (n;) Then, the
sequence (x*),.cyy generated by (6.8) converges R-linearly to the unique point
X € X such that 0 € (A + B)().

Proof. Similarly to the proof of Theorem 6.1 but using strong mono-

tonicity, one obtains the inequality

(14 2p) X+ = x*||? + 2a( B(x**!) - B(xF),
+ (1 —at) | - XK

<[lx* = x| + 2a(B(x*) = B(x*"1), x*

k)

(6.10)

Lk 2
+ Sk =X
51 I

Setting 7 = (1 +240) > 1, v, = vk = x*|I? and f := LlIxF - x7|° +
2a(B(x*)= B (x*"1) , x* =x*)+ 3 |lx* —x~1|1, one can apply Lemma 3.19
to conclude that the sequence (x*),¢;; converges to the unique solution
 and with a linear rate. []

Application of Corollary 3.15. As an application of Corollary 3.15, let us

consider the inertial forward-backward algorithm proposed in Dadashi

and Postolache (2019) for approximating a zero of an inclusion problem
x € (A+B)yO)

x k "

W= T (5F =y BxK)

6.11

{La i o

where J,, , is the resolvent of A (Definition A.1) and ¢t is an error

vector. By using Corollary 3.15 the authors prove the following result.

Theorem 6.3 (Theorem 3.1, Dadashi & Postolache, 2019). Let B be a-
cocoercive and let A be maximally monotone. Let vy, f..yy € (0, 1) be such
that v, + i, +7, = 1 and

limg oo 7 =0, and T, 7, = oo,

limy o, e* =0,

0<asy <b<land0<c<p<d<l,
0<c<a <2aandlim_ (@ - ay,) =0.

AW

Then, the sequence (x*),cy generated by (6.11) converges to the point

e At el .




Thoughts for the future



The analysis of further recursive inequalities

A comprehensive survey paper on recursive inequalities for applied proof theory
would certainly be valuable! But there are also plenty of new directions to look at.

Particularly interesting would be stochastic algorithms. These rely heavily on things
like the Robbins-Siegmund lemma (which in turn relies on Martingale theory):

Lemma (Robbins-Siegmund 1971)

Let {tn}, {On}, {€n} and {0, } be sequences of nonnegative reals such thaty o~ i < 00,
Zio:o i < o0

Elping1 | Fu] < (14 0n)tn + €0 — 0y as.
for some filtration { F, }. Then > > 0; < oo and { i, } converges a.s.

® Can we give results of this kind a computational interpretation?

® Are there applications in stochastic optimization?



Formalizing applied proof theory (and nonlinear analysis!)

There are lots of big efforts on formalising program extraction (in Minlog, Coq,
Isabelle, Nuprl, ...).

However, I'm aware of only three people developing libraries of formal proofs
specifically for the “proof mining” branch of applied proof theory:

® H. Cheval:https://github.com/hcheval
® A. Koutsoukou-Argyraki: [Koutsoukou-Argyraki, 2021]
® M. Neri:https://github.com/mneri123/Proof-mining-

Building a comprehensive library on convergence results for sequences of reals
(along with rates of convergence/metastability) would be extremely useful:

® Many results in both areas reduce to lemmas on recursive inequalities.
Formalizing these provide a solid base for more extensive formalization work.

® This would not need to rely on advanced libraries: It’s enough to have the basic
theory of real numbers, infinite series etc.

® Some convergence proofs could be given to good undergraduate students for

projects.


https://github.com/hcheval
https://github.com/mneri123/Proof-mining-

Some initial progress:

lemma abstract_lemmal (8 : nnseq J(a : nnseq)(K: {x: B /f x> 83) (r: M+ {0 B // x> B} = W)
(N: el yf/x>83) sh ) (b ey x>0 ) > R /x>0 13)
(hl : ¥(n:M), (6.1 n) < K) (h2: RoD r a)
(h3: ¥ g @ {xtR// x>0673, ¥ nzN(E), (:R) ¢6.1 (n+1) +6.1(n+1)=86.1n- (a.1ln)*dp(=)):
ReC (A g : {0 B // x> 8, (r (Ngz) (K =), div_pos K.2 (b £).2 +1)) 8 :=
begin
have
H1 : ¥ g: puR s/ x>@ 3,¥nzNE), 8.1nse +6.1(n+1)=eg,
by_contradiction pl,
push_neg at pl,
cases pl with = p2,
cases p2 with n p3,
hawve p5 @ & < =,
calc .1 € 8.1 (n+l): (p3.2).2
.2 8.1 n - (a.l n)*p(e): h3 & n p3.1 (p3.2).2
. £ 8.1 n : sub_le_self (8.1 n) (mul_nonneg (a.2 n) (le_of 1t ($ =).2 ))
.2 & (p3.2).1,
exact (lt_self iff _false =).mp p5,
have HZ : ¥ & : {x :K // x > 8}, 3 n € finset.Ico (M &) ((r (N &) (1K / t(d =), _J)+1), 6.1 {(n + 1) <
by_contradiction,

push_neg at h,



Automating the reduction to (quantitative) lemmas

The reduction of e.g. {||x» — ¢||} to some recursive inequality often uses little more
than routine calculations and properties of the mapping, algorithm and underlying
space.

® Can we develop algorithms for automating this procedure?
® Are there new logics for reasoning about abstract spaces that would be helpful?

® This could also then automate bound extraction?



Conclusion

Three possible directions for future research that each reinforce the other:

@ The proof theoretic analysis of new recursive inequalities, particularly in the
stochastic setting.

® A formallibrary of lemmas on convergent sequences of real numbers.

© Automating the reduction of concrete algorithms to recursive inequalities.

THANK YOU!
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