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My first scientific note (never submitted):

A note on proof interpretations and Dialectica categories

Thomas Powell

written early 2010

Introduction

In most applications of functional interpretations, the interpretation is a means to an end, a syntactic
translation that extracts witnesses from proofs. As a consequence, on the whole proof theorists pay lit-
tle attention to the structural properties of functional interpretations, though the use of interpretations
is central to their work.

This is a short note in which we discuss and bring together several works which view functional
interpretations from a more abstract perspective. Our ultimate aim is to construct a general abstract
framework in which a range of interpretations can be compared and better understood.

A rich variety of functional interpretations have been developed since Gödel invented his prototype,
ranging from early examples used to prove foundational theorems to more exotic modern varieties
tailored specifically for the purpose of proof mining. It is natural, then, to ask whether we can isolate
the key features of functional interpretations and develop a unifying framework in which they can be
compared, either on a syntactic or a semantic level.

The question of unifying proof interpretations has been separately considered from each of these
perspectives, by Oliva and de Paiva respectively. de Paiva used the language of categorical logic to
gain a better semantic understanding of the Dialectica interpretation - constructing and studying the
Dialectica category [7]. This yielded some interesting results, notably that the Dialectica interpretation
itself behaves rather badly - and that the best that can be achieved in terms of a categorical semantics
is a model of linear logic. However, an interpretation of the linear modality ! via a comonad on the
category produced an elegant model of a variant of the Dialectica interpretation - the Diller-Nahm
interpretation.

Over a decade later, in his work on unifying functional interpretations [5], Oliva introduced, on a
syntactic level, a parametrised functional interpretation with a uniform soundness proof, from which
a large family of familiar interpretations could be retrieved.

This note attempts to combine these ideas in the construction of a uniform semantic framework for
functional interpretations, based on de Paiva’s Dialectica category. Studying interpretations in this
way yields insights into their structure that may appear hidden in a more syntactic presentation. The
idea is that many different interpretations can be modelled in an abstract way via comands on the
Dialectica category. While this has been observed before, by Biering in [1] for instance, we show that
these comonads arise in a uniform way from monads on the underlying type theory. In this respect our
approach differs from de Paiva’s original construction, in particular we emphasise the proof theoretic
meaning of our categorical constructions.

Variations on the Dialectica interpretation

A key feature of a functional interpretation is the way in which it interprets implication. Different
choices can result in interpretations with very different structural properties. Recall that the Dialectica
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How I first viewed proof interpretations:

P�pU � TXq consists of those formulas in PpU � TXq such that βpu,xq if and only if βpu, xxyq for
all x P x. The map P�pU � TXq Ñ PpU �Xq induced by re-indexing along U � ηX has right adjoint,
sending αpu, xq to @x P xαpu, xq.

The construction given in [7] is in many ways more elegant that the one given here, in that it has
a more abstract formulation. This is in part due to the fact that in de Paiva’s setting the free monad
extends to a fibred monad, and we get the following useful property, that
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// pU �Xq�

If we define the preorder P�pU � TXq to be those objects in PpU � TXq that for which
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then the following diagram commutes

β

))TTTTTTTTTTTTTTTTTT

���
�
�
�
�
�
�

pU � ηXq
�1
β

55kkkkkkkkkkkkkkkkk
//

���
�
�
�
�
�
�

ppU � ηXq
�1
βq�

���
�
�
�
�
�
�

U �X�

CU,X

))TTTTTTTTTTTTTTT

U �X

U�ηX

55kkkkkkkkkkkkkkk
ηU�X

// pU �Xq�

and comparing with diagram [?] reveals that pU � ηXq
�1
β ¤ α in PpU �Xq precisely when β ¤ α1 in

P�pU �X�q, so the required adjoint is given by

!U,Xα :� α1 � CU,X
�1pα�q
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But I was already skeptical...

in Dial , where the comonads ! correspond directly to Oliva’s generalised bounded quantifier x � t. In
this way we provide categorical models for a number of familiar interpretations, and a general semantic
framework in which they can be compared.

Our work highlights the fact that, despite the rather peculiar features of the Dialectica interpre-
tation, by enriching the interpreting system with some kind of bounded quantifier we obtain variants
that posses excellent structural properties: by interpreting the contraction axiom in a canonical man-
ner we gain a model of the Ñ, ^, K fragment of logic that identifies proofs that are equivalent under
normalisation, which is not the situation with the messy definition by case functionals required for the
Dialectica interpretation.

A nice feature of the work begun by de Paiva is its natural link to linear logic and in particu-
lar the categorical semantics of linear logic, where the rather mysterious model of Seely is given a
concrete illustration by the Dialectica category. We have already referenced the work of Biering [1],
which demonstrates that there is certainly potential for the cateogorical semantics of the Dialectica
interpretation to be explored further.

However, while it is always important to be able to step back and see things from an abstract
perspective, the key significance of functional interpretations today lies in what they are capable of as
tools in logic. While the main features of functional interpretations can be expressed in the language
of category theory, many of their more interesting aspects lie outside of our framework.
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Themoment I got hooked on applied proof theory (Dini’s theorem)

LetΦn andΦ be closed terms of E-HA
ω
representing (uniformly) continuous

functions [0, 1] → R. Then

E-HA
ω + stuff ⊢ ∀k ∈ N∀x ∈ [0, 1] ∃n ∈ N ∀m ≥ n(|Φm(x)− Φ(x)| < 2

−k)

implies that

E-HA
ω + stuff ⊢ ∀k ∈ N ∃n ∈ N∀x ∈ [0, 1]∀m ≥ n(|Φm(x)− Φ(x)| < 2

−k)

Moreover, in the special case that pointwise convergence ismonotone (and thus
purely existential), we can extract moduli of uniform convergence even when the

proof of pointwise convergence is ineffective. Based on a combination of:

• Proof interpretations,

• Majorizability,

• Representation of compact spaces.

For full details see [Kohlenbach, 2008, pages 112–113].



What I value the most about applied proof theory

• It allows one to be a logician, a computer scientist, and amathematician, at the

same time.

• It encourages you to read widely.

• The field is now established and highly respected (with an excellent textbook),

but there is huge potential for the future.
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Set-valued accrective operators

Let X be a real Banach space and X∗
its dual. The normalized duality mapping

J : X → 2
X
is defined by

J(x) := {j ∈ X∗ : ⟨x, j⟩ = ∥x∥2 = ∥j∥2}

A set valued operator A : X → 2
X
is called accretive if for all u ∈ Ax and v ∈ Ay there

exists j ∈ J(x − y) such that
⟨u− v, j⟩ ≥ 0

This generalises the notion of A beingmonotone.

A stronger property: It is ϕ-uniformly accretive for a continuous function
ϕ : [0,∞) → [0,∞)with ϕ(0) = 0 and ϕ positive on (0,∞), if instead

⟨u− v, j⟩ ≥ ϕ(∥x − y∥)

Zeros of set-valued operators:The point q is a zero of A if 0 ∈ Aq.

Question. Can we compute zeroes of accretive operators?



Computing zeroes of (strong) accretive operators I

• Space: X Banach, J(x) := {j ∈ X∗ : ⟨x, j⟩ = ∥x∥2 = ∥j∥2}.

• Mapping: u ∈ Ax ∧ v ∈ Ay =⇒ ∃j ∈ J(x − y)(⟨u− v, j⟩ ≥ ϕ(∥x − y∥)).

• Target: q ∈ X such that 0 ∈ Aq.

• Algorithm: xn+1 := xn − αnun for un ∈ Axn+1, with αn ≥ 0 and

∑∞
i=0

αi = ∞.

Lemma (type A)

Suppose that ∥xn − q∥ ≤ K for some K > 0. Then

∥xn+1 − q∥ ≤ ∥xn − q∥ − αnϕ(∥xn+1 − q∥)/K

Proof.We calculate:

∥xn+1 − q∥2 = ⟨xn+1 − q, j⟩ for any j ∈ J(xn+1 − q)
= ⟨xn − q, j⟩ − αn⟨un, j⟩ since xn+1 = xn − αnun
≤ ⟨xn − q, j⟩ − αnϕ(∥xn+1 − q∥) by strong accretivity

≤ ∥xn − q∥ · ∥xn+1 − q∥ − αnϕ(∥xn+1 − q∥) since ∥j∥ = ∥xn+1 − q∥



Computing zeroes of (strong) accretive operators II

Lemma (type B)

Let {µn} be a sequence of nonnegative reals satisfying

µn+1 ≤ µn − αnψ(µn+1)

whereψ : [0,∞) → [0,∞) is a continuous function withψ(0) andψ positive on (0,∞),
and {αn} is a sequence of positive reals with

∑∞
i=0

αi = ∞. Thenµn → 0.

Theorem (type A + B)

Let X be a Banach space, A : X → 2
X a set-valuedψ-uniformly accretive operator, and q a zero

of A. Define
xn+1 = xn − αnun for un ∈ Axn+1

where {αn} is a sequence of positive reals with
∑∞

i=0
αi = ∞. Then xn → q.

Proof. Setting µn := ∥xn − q∥, we have µn+1 ≤ µn − αnψ(µn+1) forψ(t) := ϕ(t)/K
(by type A lemma). Therefore xn → q by type B lemma.



Main results

Lemma (type B quantitative)

Let {µn} be a sequence of nonnegative reals satisfying

µn+1 ≤ µn − αnψ(µn+1) + γn

whereψ : [0,∞) → [0,∞) is a nondecreasing function withψ(0) = 0 andψ positive on
(0,∞). Suppose in addition that

∑∞
i=0

αi = ∞with rate of divergence r, and γn/αn → 0

with rate of convergenceσ. Thenµn → 0with rate

Φ(ε) := r
(
σ

(
ψ(ε)

2

)
,
2K
ψ(ε)

)
+ 1

where K > 0 is any upper bound on {µn}.

From this result we can derive, in a uniformway, a number of quantitative “type A +

B” results, by analysing different type A lemmas. These include:

• An implicit scheme xn+1 = xn − αnun for un ∈ Anxn+1, and {An} a sequence of
operators that converge to Aw.r.t. Hausdorff distance (here we introduced a
new abstract predicateH∗[P,Q, a] for dealing with Hausdorff distance);

• Ishikawa type schemes for uniformly continuous operators and in uniformly

smooth spaces.



Example: Quantitative version of a result in [Alber et al., 2002]

Theorem ([Kohlenbach and Powell, 2020] – type A + B quantitative)

Let A : D → 2
X with 0 ∈ Aq be uniformly accretive at zero withmodulusΘ, and

An : D → 2
X be a sequence of operators which uniformly approximates A with rateµ. Let

{αi} be a sequence of nonnegative reals such that
∑∞

i=0
αi = ∞withmodulus of divergence

r, and suppose that {xn} and {un} are sequences satisfying xn ∈ Dand

xn+1 = xn − αnun, un ∈ Anxn+1

for all n ∈ N. Finally, suppose K,K′ ∈ (0,∞) satisfy ∥xn − q∥ < K for all n ∈ N and
∥q∥ < K′. Then ∥xn − q∥ → 0with rate of convergence

ΦΘ,µ,r,K,K′(ε) := r
(
µK+K′

(
ΘK(ε)

2K

)
,

K2

ΘK(ε)

)
+ 1.



Summary: Structure of Kohlenbach/P. 2020

type B: µn+1 ≤ µn − αnψ(µn+1) + γn

An → A w.r.t.
Hausdorff distance

A uniformly continuous

X uniformly smooth

type A

type A
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ψ-contractive mappings

Let X be a real Banach space. A mapping T : X → X is called contractive if for all
x, y ∈ X we have

x ̸= y =⇒ ∥Tx − Ty∥ < ∥x − y∥

A stronger property: It isψ-weakly contractive for a continuous function
ψ : [0,∞) → [0,∞)withψ(0) = 0 andψ positive on (0,∞) if instead

∥Tx − Ty∥ ≤ ∥x − y∥ − ψ(∥x − y∥)

Examples:

• Contraction mappings areψ-weakly contractive forψ(t) := k ∈ (0, 1]

• sin isψ-weakly contractive forψ(t) = t3/8.

Fixpoints.The point q is a fixpoint of T if Tq = q.

Question. Can we compute fixpoints ofψ-weakly contractive operators?



Computing fixpoints of ψ-weakly contractive mappings I

• Space: X Banach.

• Mapping: ∥Tx − Ty∥ ≤ ∥x − y∥ − ψ(∥x − y∥).

• Target: q ∈ X such that Tq = q.

• Algorithm: xn+1 := (1− αn)xn + αnTxn with αn ≥ 0 and

∑∞
i=0

αi = ∞.

Lemma (type A)

We have
∥xn+1 − q∥ ≤ ∥xn − q∥ − αnψ(∥xn − q∥)

Proof.We calculate:

∥xn+1 − q∥ = ∥(1− αn)xn + αnTxn − q∥ def. of {xn}
≤ (1− αn) ∥xn − q∥+ αn ∥Txn − q∥
= (1− αn) ∥xn − q∥+ αn ∥Txn − Tq∥ q fixpoint
≤ (1− αn) ∥xn − q∥+ αn(∥xn − q∥ − ψ(∥xn − q∥)) property of T
= ∥xn − q∥ − αnψ(∥xn − q∥)



Computing fixpoints of ψ-weakly contractive mappings II

Lemma (type B)

Let {µn} be a sequence of nonnegative real satisfying

µn+1 ≤ µn − αnψ(µn)

whereψ : [0,∞) → [0,∞) is a continuous function withψ(0) andψ positive on (0,∞),
and {αn} is a sequence of positive reals with

∑∞
i=0

αi = ∞. Thenµn → 0.

Theorem (type A + B)

Let X be a Banach space, T : X → X aψ-weakly contractive mapping, and q a fixpoint of T.
Define

xn+1 := (1− αn)xn + αnTxn

where {αn} is a sequence of positive reals with
∑∞

i=0
αi = ∞. Then xn → q.

Proof. Setting µn := ∥xn − q∥, we have µn+1 ≤ µn − αnψ(µn) (by type A lemma).
Therefore xn → q by type B lemma.



Main results

Lemma (type B quantitative)

Let {µn} be a sequence of nonnegative reals satisfying

µn+1 ≤ µn − αnψ(µn) + γn

whereψ : [0,∞) → [0,∞) is a nondecreasing function withψ(0) = 0 andψ positive on
(0,∞). Suppose in addition that

∑∞
i=0

αi = ∞with rate of divergence r,α ∈ (0, α], and
γn/αn → 0with rate of convergenceσ. Thenµn → 0with rate

Φ(ε) := r

(
σ
(
1

2

min
{
ψ
(ε
2

)
,
ε

α

})
, 2

∫ c

ε/2

dt
ψ(t)

)

and c is an upper bound for {µn}.

Quantitative “type A + B” results include:

• Mann schemes for asymptotic versions of weakly contractive mappings;

• d-weakly contractive mappings in uniformly smooth spaces;

• perturbedMann schemes.



Example: Quantitative generalisation of several results in the literature

Theorem ([Powell andWiesnet, 2021] – type A + B quantitative + rate

conversion)

Suppose that {An} is quasi asymptoticallyψ-weakly contractive w.r.t. q andσ, and that the
sequence {xn} satisfies

xn+1 = (1− αn)xn + αnAnxn

for {αn} a sequence of nonnegative reals such that
∑∞

n=0
αn = ∞. Thenwhenever ∥xn − q∥

is bounded above by some c > 0, we have ∥xn − q∥ → 0, with rate of convergence

∥xn − q∥ ≤ F−1

(
2Ψ(c)−

n−2∑
i=0

αi

)

where F : (0,∞) → R is any strictly increasing and continuous function satisfying

F(ε) ≥ 2Ψ
(ε
2

)
− α · σ

(
1

2

min
{
ψ
(ε
2

)
,
ε

α

}
, c
)

andΨ is given by

Ψ(s) :=
∫ s dt

ψ(t)



Summary: Structure of P./Wiesnet 2021

type B: µn+1 ≤ µn − αnψ(µn) + γn

T asymptotically ψ-
weakly contractive

T d-weakly contractive

{xn} generated by
perturbed scheme

type A

type A
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Starting point

Kohlenbach/P. 2020 is based on the recursive inequality:

µn+1 ≤ µn − αnψ(µn+1) + γn

P./Wiesnet 2021 is based on the recursive inequality:

µn+1 ≤ µn − αnψ(µn) + γn

There are many other papers in applied proof theory based on similar inequalities.

Both of the above are instances of the followingmore general scheme:

µn+1 ≤ µn − αnβn + γn

What can we say in general about sequences of real numbers that satisfy this

recursive inequality?



More concrete challenge:

Suppose that {µn}, {αn}, {βn} and {γn} are sequences of nonnegative reals
satisfying

µn+1 ≤ µn − αnβn + γn

where, in addition:

• ∑∞
i=0

αi = ∞ (intuition: {αn} represent step sizes)
• γn → 0 as n → ∞ (intuition: {γn} represent error terms)

We aimed to tackle the following questions:

1 Under which additional conditions can we prove that {µn} and {βn} converge?
Are these conditions also necessary for convergence? (real analysis)

2 Under what circumstances can we extract rates of convergence? When not,

what about rates of metastability? (computability theory, proof theory)

3 Are there new areas of application? (applied proof theory)

4 Can we implement some of this in a proof assistant? (formalization)



Overview of results

1 Under which additional conditions can we prove that {µn} and {βn} converge? Are these
also necessary for convergence? (real analysis)

• ∑∞
i=0

γi < ∞. Then {µn} converges to some limit (existing result, rates of
metastability already given in e.g. [Kohlenbach and Lambov, 2004]) and

βn → 0 ⇐⇒ lim sup
N→∞

{
βn − βm − θ

m−1∑
i=n

αi |N ≤ n ≤ m

}
≤ 0

• γn/αn → 0. Then

µn → 0 ⇐⇒ ∀ε > 0, n ∃δ > 0(βn ≤ δ =⇒ µn ≤ ε)

2 Canwe always extract rates of convergence? When not, what about rates of metastability?
(computability theory, proof theory)

Specker phenomena shown to exist unless we have strong quantitative version

of our premises e.g. rate of conversion for

∑∞
i=0

γi <∞ rather than just a

bound. These explain lack of rates of convergence in certain papers.

3 Are there new areas of application? (applied proof theory)

Yes: Generalised gradient descent methods (in case

∑∞
i=0

γi <∞).

4 Canwe implement some of our lemmas in a proof assistant? (formalization)

We’re developing a Lean library:

https://github.com/mneri123/Proof-mining-

https://github.com/mneri123/Proof-mining-


There is now a preprint (https://arxiv.org/abs/2207.14559):

A computational study of a class of recursive

inequalities

Morenikeji Neri and Thomas Powell

July 29, 2022

Abstract

We examine the convergence properties of sequences of nonnegative
real numbers that satisfy a particular class of recursive inequalities, from
the perspective of proof theory and computability theory. We first es-
tablish a number of results concerning rates of convergence, setting out
conditions under which computable rates are possible, and when not, pro-
viding corresponding rates of metastability. We then demonstrate how
the aforementioned quantitative results can be applied to extract compu-
tational information from a range of proofs in nonlinear analysis. Here we
provide both a new case study on subgradient algorithms, and survey a
number of recent results which each involve an instance of our main recur-
sive inequality. All of the relevant concepts from both proof theory and
mathematical analysis are defined and motivated within the paper itself,
and as such, we hope that this work also forms an accessible overview of
aspects of current research in applied proof theory.

1 Introduction

Recursive inequalities on sequences of nonnegative real numbers play an im-
portant role in functional analysis. They can be used to establish convergence
properties of algorithms in a very general setting, and often yield explicit rates
of convergence in addition. A simple example of this phenomenon is represented
by the inequality

µn+1 ≤ cµn (1)

for c ∈ [0, 1). Here, any sequence {µn} of nonnegative reals that satisfies (1)
converges to zero, and moreover an effective rate of convergence for µn → 0
is given by µn ≤ cnµ0. The inequality (1) is associated most famously with
the Banach fixed point theorem: Suppose that (X, d) is a metric space and
T : X → X a contractive mapping with constant c i.e.

d(T (x), T (y)) ≤ cd(x, y)

for all x, y ∈ X. If x∗ is a fixpoint of T , and {xn} the algorithm defined by
xn+1 := Txn for some starting value x0 ∈ X, it is easy to see that µn :=

1

https://arxiv.org/abs/2207.14559


Summary: Structure of Neri/P. 2022

µn+1 ≤ µn − αnβn + γn

γn/αn → 0

∑∞
i=0

γi < ∞

...

...

...

...

...

...
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Review article

Convergence of sequences: A survey✩

Barbara Franci a,∗, Sergio Grammatico b

a Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
b Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Convergence

A B S T R A C T

Convergent sequences of real numbers play a fundamental role in many different problems in system theory,
e.g., in Lyapunov stability analysis, as well as in optimization theory and computational game theory. In this
survey, we provide an overview of the literature on convergence theorems and their connection with Féjer
monotonicity in the deterministic and stochastic settings, and we show how to exploit these results.

1. Introduction

Why Are Convergence Theorems Necessary?
The answer to this ‘‘naive’’ question is not simple.

cit. Boris T. Polyak, 1987 (Polyak, 1987, Section 1.6.2).

While the answer may have become clearer through the years,
since many problems in applied mathematics rely on convergence
theorems, it is still not simple. Besides the theoretical investigation,
in fact, one fundamental aspect is how convergence theorems can be
of practical use, i.e., if the assumptions are plausible for a variety of
applications, for instance, in systems theory. Moreover, convergence
theorems may also give qualitative information, e.g., if convergence is
guaranteed for any initial point and in what sense (strongly, weakly,
almost surely, in probability), which affects the range of application.
The aim of this paper is to collect these results toward a complete
overview, thus to be able to find the one that most suits the application
at hand. In fact, many convergence results find their use in theoretical
applications, such as Lyapunov stability analysis (Benaim, 1996; Be-
naïm, 1999; Khalil & Grizzle, 2002; Polyak, 1987), variational analysis
(Iusem, Jofré, Oliveira, & Thompson, 2017, 2019; Malitsky, 2015,
2020; Yousefian, Nedić, & Shanbhag, 2014, 2017) and game equilib-
rium seeking (Facchinei & Pang, 2007; Franci & Grammatico, 2020a;
Franci, Staudigl, & Grammatico, 2020; Koshal, Nedic, & Shanbhag,
2013), in automatic control, such as model predictive control (Lee
& Nedić, 2015) and network control problems (Shi, Johansson, &
Johansson, 2013), as well as in other engineering areas, e.g., train-
ing and learning in generative adversarial networks (Bot, Sedlmayer
and Vuong, 2020; Franci & Grammatico, 2020b, 2021b), vehicle flow

✩ This work was partially supported by NWO under research projects OMEGA (613.001.702) and P2P-TALES (647.003.003), and by the ERC under research
project COSMOS (802348).
∗ Corresponding author.

E-mail addresses: b.franci@maastrichtuniversity.nl (B. Franci), s.grammatico@tudelft.nl (S. Grammatico).

control in traffic networks (Duvocelle, Meier, Staudigl, & Vuong, 2019)
and in modeling the prosumer behavior in smart power grids (Franci
& Grammatico, 2020a; Franci et al., 2020; Kannan, Shanbhag, & Kim,
2013; Yi & Pavel, 2019).

1.1. Lyapunov decrease and Féjer monotonicity

In the mathematical literature, many convergence results hold for
sequences of numbers while in system and control theory, the state
and decision variables are usually vectors of real numbers. It is therefore
important to understand the deep connection between the two theories.
The bridging idea is to associate a real number to the state vector,
i.e., via a function, and then prove convergence exploiting the prop-
erties of such a function. The most common example of this approach
is that of Lyapunov theory where a suitable Lyapunov function is
shown to be decreasing along the evolution of the state variable, thus
obtaining convergence of the state vector to a target set (Benaim, 1996;
Khalil & Grizzle, 2002; Polyak, 1987). An alternative approach is to
consider the distance from a target set and show that such a distance
vanishes eventually via a suitable technical result on the convergence
of the distance-valued sequence of real numbers.

In this work, we focus mostly on the latter methodology. To explain
our choice, let us note that solving an optimization problem consist
of designing a sequence of vectors that converge to the solution, the
minimum of a given cost function. Similarly, in algorithmic game
theory, one usually aims at constructing a sequence that converge to
an equilibrium, e.g., a Nash equilibrium, the optimum for each player
given the actions of the other players. The key point here is that, in
general, the target set is not known a priori, yet the distance of the
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Table 1
Convergence results for Féjer monotone sequences, deterministic sequences of real numbers and with variable metric (separated by the horizontal lines, respectively). For the
applications, MI stands for Monotone Inclusion, VI for variational inequalities, NE for Nash Equilibrium problems, LYAP for Lyapunov analysis and NC for nonconvex optimization.

Result Reference Application Reference

Proposition 3.1 Bauschke et al. (2011, Proposition 5.4)
Theorem 3.2 Combettes (2001b, Theorem 3.8)
Lemma 3.3 Opial et al. (1967) (Opial) MI - Theorem 6.1 Malitsky and Tam (2020, Theorem 2.5)

VI - Theorem 6.4 Malitsky (2020, Theorem 1)

Lemma 3.4 Combettes (2001b, Lemma 3.1) NC - Theorem 6.9 Di Lorenzo and Scutari (2016, Theorem 3)
Corollary 3.5 Scutari and Sun (2019, Lemma 9)
Lemma 3.6 Bauschke et al. (2011, Lemma 5.31) VI - Theorem 6.4 Malitsky (2020, Theorem 1)
Corollary 3.7 Malitsky (2015, Lemma 2.8) VI - Theorem 6.5 Malitsky (2015, Theorem 3.2)

LYAP - Theorem 6.8 Polyak (1987, Theorem 1.4.1)
Corollary 3.8 Polyak (1987, Lemma 2.2.2)
Lemma 3.9 Polyak (1987, Lemma 2.2.3) NE - Theorem 6.7 Kannan and Shanbhag (2012, Theorem 2.4)
Lemma 3.10
Lemma 3.11 Xu (2003, Lemma 2.1)
Lemma 3.12 Extension of Xu (2002, Lemma 2.5) NE - Theorem 6.6 Duvocelle et al. (2019, Theorem 3.1)
Corollary 3.13 Lei, Shanbhag and Chen (2020, Proposition 3)
Corollary 3.14 Qin, Shang, and Su (2008, Lemma 1.1)
Corollary 3.15 Xu (1998, Lemma 3) MI - Theorem 6.3 Dadashi and Postolache (2019, Theorem 3.1)
Proposition 3.16 Alber, Iusem, and Solodov (1998, Proposition 2)
Lemma 3.17 He and Yang (2013, Lemma 7)
Lemma 3.18 Maingé (2008, Lemma 2.2)
Lemma 3.19 Malitsky and Tam (2018, Lemma 2.7) MI - Theorem 6.2 Malitsky and Tam (2020, Theorem 2.9)

Proposition 5.1 Combettes and Vũ (2013, Proposition 3.2) MI - Theorem 8.1 Vũ (2013, Theorem 3.1)
Theorem 5.2 Combettes and Vũ (2013, Theorem 3.3) MI - Theorem 8.1 Vũ (2013, Theorem 3.1)
Corollary 5.3 Combettes and Vũ (2013, Proposition 4.1)

constructed sequence from such set can be analyzed anyways. On the
contrary, in Lyapunov stability analysis, the target set is usually known
a priori.

By exploiting the relation between the iterations and a suitable
distance-like function, we show in this paper that convergence theo-
rems represent a key ingredient for a wide variety of system-theoretic
problems in fixed-point theory, game theory and optimization
(Bauschke, Combettes, et al., 2011; Combettes, 2001b; Eremin & Popov,
2009; Facchinei & Pang, 2007; Polyak, 1987). In many cases, the study
of iterative algorithms allows for a systematic analysis that follows
from the concept of Féjer monotone sequence. The basic idea behind
Féjer monotonicity is that at each step, each iterate is closer to the
target set than the previous one. In a sense, the distance used for Féjer
sequences can be seen as a specific class of Lyapunov function and
Féjer monotonicity shows that it is decreasing along the iterates. The
concept was first introduced in 1922 (Fejér, 1922), but the term Féjer
monotone sequence was first used thirty years later in 1954 (Motzkin &
Schoenberg, 1954) and a huge part of the studies on its properties was
made in the 60s (Eremin, 1968a, 1968b, 1969; Eremin & Popov, 2009)
and still continues (Combettes, 2001a, 2001b; Combettes & Pesquet,
2015; Combettes & Vũ, 2013; Kohlenbach, Leuştean, & Nicolae, 2018).

Unfortunately, Féjer monotonicity is hard to obtain, therefore the
concept is typically relaxed to a quasi-Féjer property, where a vanishing
error must be considered. Such an error term in the distance inequality
is common in many equilibrium problems (Bauschke et al., 2011; Duflo,
2013; Duvocelle et al., 2019; Franci & Grammatico, 2020a; Iusem
et al., 2017; Kannan et al., 2013; Malitsky & Tam, 2020; Polyak,
1987; Van Nguyen, 2017), especially in the stochastic case where
the concept of quasi-Féjer monotone sequence was first introduced
(Ermol’Ev, 1969; Ermoliev & Wets, 1988). However, these properties
are not necessarily enough to ensure convergence, hence, (quasi) Féjer
monotonicity is often used in combination with convergence results
on sequences of real numbers. These technical results have been used
in many theoretical and computational applications that range from
stochastic Nash equilibrium seeking (Franci & Grammatico, 2020a;
Franci et al., 2020; Koshal et al., 2013) to machine learning (Bot,
Sedlmayer et al., 2020; Duvocelle et al., 2019; Franci & Grammatico,
2020b).

1.2. What this survey is about

In this survey, we present a number of convergence theorems for
sequences of real (random) numbers. We show how they can be used
in combination with (quasi) Féjer monotone sequences or Lyapunov
functions to obtain convergence of an iterative algorithm, essentially
a discrete-time dynamical system, to a desired solution. Moreover,
we present some applications to show how they can be adopted in a
variety of settings. Specifically, we present convergence results for both
deterministic and stochastic sequences of real numbers and we also
include some results on Féjer monotone sequences and with variable
metric. We show that these results help proving not only convergence
of an iterative algorithm but also the Law of Large Numbers, with
applications in model predictive control (Lee & Nedić, 2015) and
opinion dynamics (Shi et al., 2013) among others.

We report in Tables 1 and 2 the results for deterministic and
stochastic sequences respectively, with the corresponding bibliographic
source and application.

The paper is organized as follows. In the next section, we recall
some preliminary notions on the concept of ‘‘convergence’’ and of
random variables. Section 3 is devoted to deterministic convergence
results while the stochastic case is discussed in Section 4. An extension
with variable metric is considered in Section 5. Sections 6–8 propose
applications of the convergence lemmas for deterministic, stochastic,
and variable metric sequences, respectively.

1.3. What this survey is not about

This is not a survey on solution algorithms for optimization prob-
lems and variational inequalities. Some relevant references on iterative
methods include Bauschke et al. (2011), Combettes and Pesquet (2021),
Doob (1953), Facchinei and Pang (2007), Polyak (1987), Rockafellar
(1970) and the references therein.

We also remark that, despite the notion of Féjer sequence is used
throughout the paper, this is not a survey on the properties of Féjer
monotone sequences. The interested reader may refer to Bauschke et al.
(2011), Berg, Engel, Pazderski, and Stolle (1995), Combettes (2001a,
2001b), Combettes and Pesquet (2015), Combettes and Vũ (2013) and
Kohlenbach et al. (2018).
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The analysis of further recursive inequalities

A comprehensive survey paper on recursive inequalities for applied proof theory

would certainly be valuable! But there are also plenty of new directions to look at.

Particularly interesting would be stochastic algorithms. These rely heavily on things

like the Robbins-Siegmund lemma (which in turn relies onMartingale theory):

Lemma (Robbins-Siegmund 1971)

Let {µn}, {δn}, {εn} and {θn} be sequences of nonnegative reals such that
∑∞

i=0
εi <∞,∑∞

i=0
δi <∞

E[µn+1 | Fn] ≤ (1+ δn)µn + εn − θn a.s.

for some filtration {Fn}. Then
∑∞

i=0
θi <∞ and {µn} converges a.s.

• Can we give results of this kind a computational interpretation?

• Are there applications in stochastic optimization?



Formalizing applied proof theory (and nonlinear analysis!)

I’m aware of two projects on developing libraries for “proof mining”:

• H. Cheval: https://github.com/hcheval

• M. Neri: https://github.com/mneri123/Proof-mining-

Building a library on convergence results for sequences of reals (along with rates of

convergence/metastability) would be extremely useful:

• Many results in both areas reduce to lemmas on recursive inequalities.

Formalizing these provide a solid base for more extensive formalization work.

• This would not need to rely on advanced libraries: It’s enough to have the basic

theory of real numbers, infinite series etc.

• Could be given to good students for projects.

https://github.com/hcheval
https://github.com/mneri123/Proof-mining-


Some initial progress:



Automating the reduction to (quantitative) lemmas

• The reduction of e.g. {∥xn − q∥} to some recursive inequality (i.e. type A
lemmas) often use little more than routine calculations and properties of

mapping and space.

• Can we develop algorithms for automating this procedure?

• Are there new logics for reasoning about abstract spaces that would be helpful?

• This could also then automate bound extraction.



Conclusion

Three possible directions for future research that each reinforce the other:

1 The proof theoretic analysis of new recursive inequalities, particularly in the

stochastic setting.

2 A formal library of lemmas on convergent sequences of real numbers.

3 Automating the reduction of concrete algorithms to recursive inequalities.

Thank you!
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