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@ Personal reflections



My first scientific note (never submitted):

A note on proof interpretations and Dialectica categories

Thomas Powell

written early 2010

Introduction

In most applications of functional interpretations, the interpretation is a means to an end, a
translation that extracts witnesses from proofs. As a consequence, on the whole proof theori
tle attention to the structural properties of functional interpretations, though the use of interpretations
is central to their work.

This is a short note in which we discuss and bring together several works which view functional
interpretations from a more abstract perspective. Our ultimate aim is to construct a general abstract
framework in which a range of interpretations can be compared and better understood.

A rich variety of functional interpretations have been developed since Godel invented his prototype,
ranging from early examples used to prove foundational theorems to more exotic modern varieties
tailored specifically for the purpose of proof mining. It is natural, then, to ask whether we can isolate
the key features of functional interpretations and develop a unifying framework in which they can be
compared, either on a syntactic or a semantic level.

The question of unifying proof interpretations has been separately considered from each of these
perspectives, by Oliva and de Paiva respectively. de Paiva used the language of categorical logic to
gain a better semantic understanding of the Dialectica interpretation - constructing and studying the
Dialectica category [7]. This yielded some interesting results, notably that the Dialectica interpretation
itself behaves rather badly - and that the best that can be achieved in terms of a categorical semantics
is a model of linear logic. However, an interpretation of the linear modality ! via a comonad on the
category produced an elegant model of a variant of the Dialectica interpretation - the Diller-Nahm
interpretation.

Over a decade later, in his work on unifying functional interpretations [5], Oliva introduced, on a
syntactic level, a parametrised functional interpretation with a uniform soundness proof, from which
a large family of familiar interpretations could be retrieved.

This note attempts to combine these ideas in the construction of a uniform semantic framework for
functional interpretations, based on de Paiva’s Dialectica category. Studying interpretations in this
way yields insights into their structure that may appear hidden in a more syntactic presentation. The
idea is that many different interpretations can be modelled in an abstract way via comands on the
Dialectica category. While this has been observed before, by Biering in [1] for instance, we show that




How I first viewed proof interpretations:

P.(U x TX) consists of those formulas in P(U x TX) such that f(u, x) if and only if B(u, {z)) for
all z € x. The map P,(U x TX) — P(U x X) induced by re-indexing along U x nx has right adjoint,
sending a(u, ) to Yz € xa(u, ).

The construction given in [7] is in many ways more elegant that the one given here, in that it has

a more abstract formulation. This is in part due to the fact that in de Paiva’s setting the free monad
extends to a fibred monad, and we get the following useful property, that
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But I was already skeptical...

in Dial , where the comonads ! correspond directly to Oliva’s generalised bounded quantifier = — ¢. In
this way we provide categorical models for a number of familiar interpretations, and a general semantic
framework in which they can be compared.

Our work highlights the fact that, despite the rather peculiar features of the Dialectica interpre-
tation, by enriching the interpreting em with some kind of bounded quantifier we obtain variants
that posses excellent structural properties: by interpreting the contraction axiom in a canonical man-
ner we gain a model of the —, A, L fragment of logic that identifies proofs that are equivalent under
normalisation, which is not the situation with the messy definition by case functionals required for the
Dialectica interpretation.

A nice feature of the work begun by de Paiva is its natural link to linear logic and in particu-
lar the categorical semantics of linear logic, where the rather mysterious model of Seely is given a
concrete illustration by the Dialectica category. We have already referenced the work of Biering [1],
which demonstrates that there is certainly potential for the cateogorical semantics of the Dialectica
interpretation to be explored further.

However, while it is always important to be able to step back and see things from an abstract
perspective, the key significance of functional interpretations today lies in what they are capable of as
tools in logic. While the main features of functional interpretations can be expressed in the language
of category theory, many of their more interesting aspects lie outside of our framework.
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The moment I got hooked on applied proof theory (Dini’s theorem)

Let &, and ® be closed terms of E-HA” representing (uniformly) continuous
functions [0, 1] — R. Then

E-HA® + stuff - Vk € NVx € [0,1]3n € NVm > n(|®n(x) — ®(x)| < 27)
implies that
E-HA“ + stuff - Vk € N3n € NVx € [0,1]Vm > n(|®n(x) — B(x)] < 275)

Moreover, in the special case that pointwise convergence is monotone (and thus
purely existential), we can extract moduli of uniform convergence even when the
proof of pointwise convergence is ineffective. Based on a combination of:

® Proof interpretations,
® Majorizability,

® Representation of compact spaces.

For full details see [Kohlenbach, 2008, pages 112-113].



What I value the most about applied proof theory

® Tt allows one to be a logician, a computer scientist, and a mathematician, at the
same time.

® [tencourages you to read widely.

® The field is now established and highly respected (with an excellent textbook),
but there is huge potential for the future.
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@ My paper with Ulrich: Set-valued accretive operators



Set-valued accrective operators

Let X be a real Banach space and X* its dual. The normalized duality mapping
J: X — 2% is defined by

J) = {j € X"+ (x,j) = IlxII* = [Iill"}

A setvalued operator A : X — 2% is called accretive if for allu € Axand v € Ay there
existsj € J(x — y) such that
(w—v,j) >0

This generalises the notion of A being monotone.

A stronger property: It is ¢-uniformly accretive for a continuous function
¢ : [0,00) — [0, 00) with ¢(0) = 0 and ¢ positive on (0, 00), if instead

(w—=v,j) = ¢(|lx = yll)
Zeros of set-valued operators: The point q is a zero of Aif 0 € Aq.

Question. Can we compute zeroes of accretive operators?



Computing zeroes of (strong) accretive operators I
* Space: X Banach, J(x) := {j € X* : (x,j) = || = [jlI*}.
® Mapping:u € Ax\v e dy = F€Jlx—y)((u—v,j) = ¢(|lx —yll)).
® Target: ¢ € X such that 0 € Aq.

e Algorithm: x4 := X, — Qulty fOr u, € Axyq1, withy, > Oand Y72 a; = oo.

Lemma (type A)
Suppose that ||x, — q|| < K forsomeK > 0. Then

[[2n-1 = qll < [l — qll = cnd(ll2n1 — qll)/K

Proof. We calculate:
[en1 = qll* = (onsr — q,j) foranyj € J(@nsr — )
= (%n — ¢,]) — @n{Un,j) since Xni1 = Xn — Qnltn
< (xn — q,J) — an®d(||*n+1 — q||) by strong accretivity
< oen =l - 1 = gll — cng([lxnr — ql) since [ljl| = [Jxn+1 — ]|



Computing zeroes of (strong) accretive operators II

Lemma (type B)
Let { jun } be a sequence of nonnegative reals satisfying
pintr < pn — ot (ping)

where 1) : [0, 00) — [0, 00) is a continuous function with 1(0) and 1 positive on (0, c0),
and { o } is a sequence of positive reals with Y > i = oo. Then p1, — O.

Theorem (type A + B)

Let X be a Banach space, A : X — 2% a set-valued o)-uniformly accretive operator, and q a zero
of A. Define
Xnp1 = Xn — Qnlly fOr Uy € AXypa

where { v, } is a sequence of positive reals with > oi = co. Thenx, — 4.

Proof. Setting p1, := ||x» — q||, we have pni1 < pin — @t (ping1) for () := ¢(t)/K
(by type Alemma). Therefore x, — ¢q by type B lemma.



Main results

Lemma (type B quantitative)

Let { un } be a sequence of nonnegative reals satisfying

41 < Mn — anw(,uszrl) + Yn

where) : [0,00) — [0, 00) is a nondecreasing function with 1)(0) = O and 1) positive on
(0, 00). Suppose in addition thaty > oy = oo with rate of divergencer, and y, /ce, — O
with rate of convergence o. Then i, — O with rate

oo ()-3)

where K > 0is any upper bound on {1, }.

From this result we can derive, in a uniform way, a number of quantitative “type A +
B” results, by analysing different type A lemmas. These include:

® Animplicit scheme x,41 = X — Quity fOr Uy € AnXyt1, and {4, } a sequence of
operators that converge to A w.r.t. Hausdorff distance (here we introduced a
new abstract predicate H* [P, Q, a] for dealing with Hausdorff distance);

® Ishikawa type schemes for uniformly continuous operators and in uniformly
smooth spaces.



Example: Quantitative version of a result in [Alber et al., 2002]

Theorem ([Kohlenbach and Powell, 2020] — type A + B quantitative)

LetA : D — 2X with O € Aq be uniformly accretive at zero with modulus ©, and

A, : D — 2% be a sequence of operators which uniformly approximates A with rate 1. Let
{cu} be a sequence of nonnegative reals such that Y > o = oo with modulus of divergence
v, and suppose that {x, } and {u, } are sequences satisfying x, € D and

Xn41 = Xp — QlplUpn, Up S Anxn-H

foralln € N. Finally, suppose K, K’ € (0, 00) satisfy ||x» — q|| < Kforalln € Nand
lgll < K. Then ||x» — q|| — O with rate of convergence

Oxle K*
S0 (@) =1 (1ear (S5 ) 3y ) +1




Summary: Structure of Kohlenbach/P. 2020

A, — Aw.rt.
Hausdorff distance

type A

[type B: ptint1 < pin — cn(pintr) + 'y,,}—( A uniformly continuous

type &

[ X uniformly smooth
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© Contractive mappings (jww Franziskus Wiesnet)



1p-contractive mappings

Let X be a real Banach space. A mapping T : X — X is called contractive if for all
x,y € X we have
x#y = [Tx =Dl <[lx -y

A stronger property: It is 1)-weakly contractive for a continuous function
1 : [0,00) — [0, 00) with ¢»(0) = 0 and ¢ positive on (0, co) if instead

1T = Tyl| < [lx = yll = % (llx = ylD)
Examples:
® Contraction mappings are 1)-weakly contractive for ¢ (t) := k € (0, 1]
® sin is 1-weakly contractive for 1 (t) = £*/8.
Fixpoints. The point ¢ is a fixpoint of T if Tg = q.

Question. Can we compute fixpoints of 1)-weakly contractive operators?



Computing fixpoints of ¢)-weakly contractive mappings I
® Space: X Banach.
® Mapping: ||Tx — Ty|| < [lx — yl| — ¢ ([lx = y|)-
® Target: q € X such that Ty = q.

e Algorithm: x,; := (1 — )%, + cTx, with o, > Oand 3 2 o = o0.

Lemma (type A)

We have
lloen+1 = qll < lloen — qll — cntp(lloen — qll)

Proof. We calculate:
st — qll = I1(1 — @ )ats + T, — || def of {2}
< (1= o) [l — qll + an [[Txn — gl
— (1— aw) % — qll + | Tx, — Tq]|qfixpoint
< (1= aw) lln — qll + on(lloen — qll = ¥ (|l — qll)) property of T
= lln = qll — cntp([l2n — qll)



Computing fixpoints of 1)-weakly contractive mappings II

Lemma (type B)
Let { jun } be a sequence of nonnegative real satisfying

Pt <t — 0 (fin)

where 1) : [0, 00) — [0, 00) is a continuous function with 1(0) and 1 positive on (0, c0),
and {ow } is a sequence of positive reals with Y > i = oo. Then p1, — O.

Theorem (type A + B)

Let X be a Banach space, T : X — X a -weakly contractive mapping, and q a fixpoint of T.
Define
X1 = (1 — )X + Ty

where { v, } is a sequence of positive reals with > 2> oi = co. Thenx, — 4.

Proof. Setting 1, := ||, — q||, we have pnt1 < pin — @ntp(pn) (by type A lemma).
Therefore x, — q by type B lemma.



Main results

Lemma (type B quantitative)

Let { un } be a sequence of nonnegative reals satisfying

41 < Mn — anw(ﬂn) + Yn
where) : [0,00) — [0, 00) is a nondecreasing function with 1»(0) = O and 1) positive on

(0, 00). Suppose in addition that > > oy = oo with rate of divergencer, o € (0, o], and
Yu/ Ctn — O with rate of convergence o. Then i, — O with rate

o0 =1 (s Gunfu (). £1) 2 [ 65)
and cis an upper bound for { i, }.

Quantitative “type A + B” results include:
® Mann schemes for asymptotic versions of weakly contractive mappings;
® d-weakly contractive mappings in uniformly smooth spaces;

® perturbed Mann schemes.



Example: Quantitative generalisation of several results in the literature

Theorem ([Powell and Wiesnet, 2021] — type A + B quantitative + rate
conversion
Suppose that {A, } is quasi asymptotically 1)-weakly contractive w.r.t. q and o, and that the
sequence {x, } satisfies

Xn4+1 = (1 - Oén)xn + anAnxn

for {awn } a sequence of nonnegative reals such that > >° | owy = oo. Then whenever ||x, — q||
is bounded above by some ¢ > 0, we have ||x, — q|| — O, with rate of convergence

n—2
llen — qll < F <2‘I’(C) - ZO@')
i=0
where F : (0,00) — Risany strictly increasing and continuous function satisfying

0228 (5) -0 (w0 (). 2).9

and U is given by
S odt
=] 5w



Summary: Structure of P./Wiesnet 2021

T asymptotically -
weakly contractive

type A

[ type B: int1 < pn — aﬂ/’(ﬂn) + Y }—(

T d-weakly contractive

type A

{x.} generated by
perturbed scheme
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@ Quantitative recursive inequalities (jww Morenikeji Neri)



Starting point

Kohlenbach/P. 2020 is based on the recursive inequality:
pintr < pon = ot (fnt1) +
P./Wiesnet 2021 is based on the recursive inequality:
fintr < o — nth(pan) + Y

There are many other papers in applied proof theory based on similar inequalities.

Both of the above are instances of the following more general scheme:

g1 < fon — 0B+ Yn

What can we say in general about sequences of real numbers that satisfy this
recursive inequality?



More concrete challenge:

Suppose that {n}, {an}, {B:} and {7, } are sequences of nonnegative reals
satisfying
Pnt1 <y — anﬂn + T

where, in addition:

® 3> i = oo (intuition: {cw } represent step sizes)

® 5, — Oasn — oo (intuition: {7, } represent error terms)
We aimed to tackle the following questions:

® Under which additional conditions can we prove that {u,} and {8,} converge?
Are these conditions also necessary for convergence? (real analysis)

® Under what circumstances can we extract rates of convergence? When not,
what about rates of metastability? (computability theory, proof theory)

© Are there new areas of application? (applied proof theory)

® Can we implement some of this in a proof assistant? (formalization)



Overview of results

@ Underwhich additional conditions can we prove that { i, } and { 3, } converge? Are these
also necessary for convergence? (real analysis)

® > 2,7 < co. Then {un} converges to some limit (existing result, rates of
metastability already given in e.g. [Kohlenbach and Lambov, 2004]) and

m—1
Bp — 0 <= limsup mfﬁmeZai\Ngngm <o
N—oo i=n
® ~,/an — 0. Then
pn =0 <= Ve>0,n3 >0 <6 = pn<¢)

@ Canwe always extract rates of convergence? When not, what about rates of metastability?
(computability theory, proof theory)

Specker phenomena shown to exist unless we have strong quantitative version
of our premises e.g. rate of conversion for > 7>  7; < oo rather than justa
bound. These explain lack of rates of convergence in certain papers.

© Arethere new areas of application? (applied proof theory)
Yes: Generalised gradient descent methods (in case Y -, i < 00).
© Canwe implement some of our lemmas in a proof assistant? (formalization)

We're developing a Lean library:
https://github.com/mneri123/Proof-mining-


https://github.com/mneri123/Proof-mining-

There is now a preprint (https://arxiv.org/abs/2207.14559):

A computational study of a class of recursive
inequalities

Morenikeji Neri and Thomas Powell

July 29, 2022

Abstract

‘We examine the convergence properties of sequences of nonnegative
real numbers that satisfy a particular class of recursive inequalities, from
the perspective of proof theory and computability theory. We first es-
tablish a number of results concerning rates of convergence, setting out
conditions under which computable rates are possible, and when not, pro-
viding corresponding rates of metastability. We then demonstrate how
the aforementioned quantitative results can be applied to extract compu-
tational information from a range of proofs in nonlinear analysis. Here we
provide both a new tudy on subgradient algorithms, and survey a
number of recent results which each involve an instance of our main recur-
sive inequality. All of the relevant concepts from both proof theory and
mathematical analysis are defined and motivated within the paper itself,
and as such, we hope that this work also forms an accessible overview of
aspects of current research in applied proof theory.

1 Introduction

Recursive i lities on st s of ive real numbers play an im-
portant role in functional analysis. They can be used to establish convergence
properties of algorithms in a very general setting, and often yield explicit rates
of convergence in addition. A simple example of this phenomenon is represented
by the inequality

Int1 < Clin (1)
for ¢ € [0,1). Here, any sequence {u,} of nonnegative reals that satisfies (1)
converges to zero, and moreover an effective rate of convergence for p,, — 0
is given by s, < ¢"up. The inequality (1) is associated most famously with
the Banach fixed point theorem: Suppose that (X,d) is a metric space and
T XY -5 Y a contractive mannine uwith cometant ~ 1 o


https://arxiv.org/abs/2207.14559

Summary: Structure of Neri/P. 2022

G
)
oo )

[ Mn1 < Mn — an,Bn + Y j




While we were writing the paper:

Annual Reviews in Control xxx (xxxx) Xxx

journal homepage: www.elsevier.com/locate/arcontrol

Contents lists available at ScienceDirect

Annual Reviews in Control

Review article

Convergence of sequences: A survey”

Barbara Franci®", Sergio Grammatico”

* Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
uds

® Delft Center for Systems and Gontrol, Delft University of Technology, Delft, The Netherlan

ARTICLE INFO ABSTRACT
Keywords: Convergent sequences of real numbers play a fundamental role in many different problems in system theory,
Convergence e.g., in Lyapunov stability analysis, as well as in optimization theory and computational game theory. In this

survey, we provide an ovel

iew of the literature on convergence theorems and their connection with Féjer

‘monotonicity in the deterministic and stochastic settings, and we show how to exploit these results.

1. Introduction

Why Are Convergence Theorems Necessary?
The answer to this “naive” question is not simple.
cit. Boris T. Polyak, 1987 (Polyak, 1987, Section 1.6.2).

While the answer may have become clearer through the years,
since many problems in applied mathematics rely on convergence
theorems, it is still not simple. Besides the theoretical investigation,
in fact, one fundamental aspect is how convergence theorems can be
of practical use, i.e., if the assumptions are plausible for a variety of
applications, for instance, in systems theory. Moreover, convergence
theorems may also give qualitative information, e.g., if convergence is
guaranteed for any initial point and in what sense (strongly, weakly,
almost surely, in probability), which affects the range of application.

control in traffic networks (Duvocelle, Meier, Staudigl, & Vuong, 2019)
and in modeling the prosumer behavior in smart power grids (Franci
& Grammatico, 2020a; Franci et al., 2020; Kannan, Shanbhag, & Kim,
2013; Yi & Pavel, 2019).

1.1. Lyapunov decrease and Féjer monotonicity

In the literature, many results hold for
sequences of numbers while in system and control theory, the state
and decision variables are usually vectors of real numbers. It is therefore
important to understand the deep connection between the two theories.
The bridging idea is to associate a real number to the state vector,
i.e., via a function, and then prove convergence exploiting the prop-
erties of such a function. The most common example of this approach
is that of Lyapunov theory where a suitable Lyapunov function is
shown to be decreasing along the evolution of the state variable, thus




While we were writing the paper:

B. Franci and . Grammatico

Table 1

Annual Reviews in Control xo0x (x00xx) 00¢

Convergence results for Féjer monotone sequences, deterministic sequences of real numbers and with variable metric (separated by the horizontal lines, respectively). For the
applications, MI stands for Monotone Inclusion, V1 for variational inequalities, NE for Nash Equilibrium problems, LYAP for Lyapunov analysis and NC for nonconvex optimization.

Result Reference

Application Reference

Proposition 3.1

Bauschke et al. (2011, Proposition 5.4)
Theorem 3.2 38)

Combettes (2001b, Theorem 3.

Lemma 3.3 Opial et al. (1967) (Opial) MI - Theorem 6.1 Malitsky and Tam (2020, Theorem 2.5)
VI - Theorem 6.4 Malitsky (2020, Theorem 1)

Lemma 3.4 Combettes (2001b, Lemma 3.1) NC - Theorem 6.9 Di Lorenzo and Scutari (2016, Theorem 3)

Corollary 3.5 Scutari and Sun (2019, Lemma 9)

Lemma 3.6 Bauschke et al. (2011, Lemma 5.31) VI - Theorem 6.4 Malitsky (2020, Theorem 1)

Corollary 3.7 Malitsky (2015, Lemma 2.8)

Corollary 3.8 Polyak (1987, Lemma 2.2.2)
Polyak (1987, Lemma 2.2.3)

Xu (2003, Lemma 2.1)

Extension of Xu (2002, Lemma 2.5)

Lei, Shanbhag and Chen (2020, Proposition 3)
Qin, Shang, and Su (2008, Lemma 1.1)

Xu (1998, Lemma 3)

Alber, Tusem, and Solodov (1998, Proposition 2)
He and Yang (2013, Lemma 7)

Maingé (2008, Lemma 2.2)

Malitsky and Tam (2018, Lemma 2.7)

Proposition 3.16
Lemma 3.17
Lemma 3.18
Lemma 3.19

VI - Theorem 6.5
LYAP - Theorem 6.8

Malitsky (2015, Theorem 3.2)
Polyak (1987, Theorem 1.4.1)

NE - Theorem 6.7 Kannan and Shanbhag (2012, Theorem 2.4)

NE - Theorem 6.6

Duvocelle et al. (2019, Theorem 3.1)

MI - Theorem 6.3 Dadashi and Postolache (2019, Theorem 3.1)

MI - Theorem 6.2 Malitsky and Tam (2020, Theorem 2.9)

Proposition 5.1
Theorem 5.2
Corollary 5.3

Combettes and Vi (2013, Proposition 3.2)
Combettes and Vit (2013, Theorem 3.3)
Combettes and Vii (2013, Proposition 4.1)

MI - Theorem 8.1
MI - Theorem 8.1

Vi (2013, Theorem 3.1)
Vit (2013, Theorem 3.1)

constructed sequence from such set can be analyzed anyways. On the
contrary, in Lyapunov stability analysis, the target set is usually known
a priori.

By exploiting the relation between the iterations and a suitable
distance-like function, we show in this paper that convergence theo-
rems represent a key ingredient for a wide variety of system-theoretic

1.2. What this survey is about

In this survey, we present a number of convergence theorems for
sequences of real (random) numbers. We show how they can be used
in combination with (quasi) Féjer monotone sequences or Lyapunov
functions to obtain convergence of an terative algorithm, essentially

problems in fixed-point theory, game theory and
(Bauschke, Combettes, et al., 2011; Combettes, 2001b; Eremin & Popov,
2009; Facchinei & Pang, 2007; Polyak, 1987). In many cases, the study
of iterative algorithms allows for a systematic analysis that follows
from the concept of Féjer monotone sequence. The basic idea behind
Féjer monotonicity is that at each step, each iterate is closer to the
target set than the previous one. In a sense, the distance used for Féjer
sequences can be seen as a specific class of Lyapunov function and
Féjer icity shows that it is along the iterates. The

a ical system, to a desired solution. Moreover,
we present some applications to show how they can be adopted in a
variety of settings. Specifically, we present convergence results for both
deterministic and stochastic sequences of real numbers and we also
include some results on Féjer monotone sequences and with variable
metric. We show that these results help proving not only convergence
of an iterative algorithm but also the Law of Large Numbers, with
applications in model predictive control (Lee & Nedié, 2015) and
opinion dynamics (Shi et al., 2013) among others.

We remmrt in Tahlee 1 and 9 the recilitc far determinictio and
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@ Thoughts for the future



The analysis of further recursive inequalities

A comprehensive survey paper on recursive inequalities for applied proof theory
would certainly be valuable! But there are also plenty of new directions to look at.

Particularly interesting would be stochastic algorithms. These rely heavily on things
like the Robbins-Siegmund lemma (which in turn relies on Martingale theory):

Lemma (Robbins-Siegmund 1971)

Let {1n}, {On}, {€n} and {0, } be sequences of nonnegative reals such thaty o~ i < 00,
Zio:o 6 < oo

Elpingr | Fu] < (04 0n)in + €0 — Oy as.
for some filtration { F, }. Then > > 0; < oo and { i, } converges a.s.

® Can we give results of this kind a computational interpretation?

® Are there applications in stochastic optimization?



Formalizing applied proof theory (and nonlinear analysis!)

I'm aware of two projects on developing libraries for “proof mining”:

® H. Cheval: https://github.com/hcheval
® M. Neri:https://github.com/mneril23/Proof-mining-

Building a library on convergence results for sequences of reals (along with rates of
convergence/metastability) would be extremely useful:

® Many results in both areas reduce to lemmas on recursive inequalities.
Formalizing these provide a solid base for more extensive formalization work.

® This would not need to rely on advanced libraries: It’s enough to have the basic
theory of real numbers, infinite series etc.

® Could be given to good students for projects.


https://github.com/hcheval
https://github.com/mneri123/Proof-mining-

Some initial progress:

lemma abstract_lemmal (8 : nnseq J(a : nnseq)(K: {x: B /f x> 83) (r: M+ {0 B // x> B} = W)
(N: el yf/x>83) sh ) (b ey x>0 ) > R /x>0 13)
(hl : ¥(n:M), (6.1 n) < K) (h2: RoD r a)
(h3: ¥ g @ {xtR// x>0673, ¥ nzN(E), (:R) ¢6.1 (n+1) +6.1(n+1)=86.1n- (a.1ln)*dp(=)):
ReC (A g : {0 B // x> 8, (r (Ngz) (K =), div_pos K.2 (b £).2 +1)) 8 :=
begin
have
H1 : ¥ g: puR s/ x>@ 3,¥nzNE), 8.1nse +6.1(n+1)=eg,
by_contradiction pl,
push_neg at pl,
cases pl with = p2,
cases p2 with n p3,
hawve p5 @ & < =,
calc .1 € 8.1 (n+l): (p3.2).2
.2 8.1 n - (a.l n)*p(e): h3 & n p3.1 (p3.2).2
. £ 8.1 n : sub_le_self (8.1 n) (mul_nonneg (a.2 n) (le_of 1t ($ =).2 ))
.2 & (p3.2).1,
exact (lt_self iff _false =).mp p5,
have HZ : ¥ & : {x :K // x > 8}, 3 n € finset.Ico (M &) ((r (N &) (1K / t(d =), _J)+1), 6.1 {(n + 1) <
by_contradiction,

push_neg at h,



Automating the reduction to (quantitative) lemmas

® The reduction of e.g. {||x» — ¢||} to some recursive inequality (i.e. type A
lemmas) often use little more than routine calculations and properties of
mapping and space.

® Can we develop algorithms for automating this procedure?
® Are there new logics for reasoning about abstract spaces that would be helpful?

® This could also then automate bound extraction.



Conclusion

Three possible directions for future research that each reinforce the other:

@ The proof theoretic analysis of new recursive inequalities, particularly in the
stochastic setting.

® A formallibrary of lemmas on convergent sequences of real numbers.

© Automating the reduction of concrete algorithms to recursive inequalities.

THANK YOU!
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