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Content of this talk

1 A six slide introduction to applied proof theory!

2 An overview of Tauberian theory.

3 A Dialectica interpretation of Littlewood’s theorem.

4 Some new remainder estimates.



Applied Proof�eory



What is applied proof theory?

�ere is a famous quote due to G. Kreisel (A Survey of Proof�eory II):

“What more do we know when we know that a theorem can be proved by limited
means than if wemerely know that it is true?”

In other words, the proof of a theorem gives us muchmore information than the

mere truth of that theorem.

Applied proof theory is a branch of logic that uses proof theoretic techniques to

exploit this phenomenon.



Everyone does applied proof theory

Problem. Give me an upper bound on the nth prime number pn.

1. What is pn? I know it exists because of Euclid...

2. Specifically, given p1, . . . , pn−1, I know thatN := p1 · . . . · pn−1 + 1 contains a

new prime factor q, and so pn ≤ q ≤ N.

3. In other words, the sequence {pn} satisfies

pn ≤ p1 · . . . · pn−1 + 1 ≤ (pn−1)n−1

4. By induction, it follows that e.g. pn < 2
2
n
.

�is is a simple example of applied proof theory in action! From the proof that there
are infinitely many primes, we have inferred a bound on the nth prime.



... but it’s not always that simple

�eorem (Littlewood 1914)

�e functions of integers
(a) ψ(x)− x, and
(b) π(x)− li(x)
change signs infinitely often, whereπ(x) is the number of prime≤ x,ψ(x) is the is logarithm
of the l.c.m. of numbers≤ x and li(x) =

∫ x
0

(1/ log(u))du.

�e original proof is utterly nonconstructive, using among other things a case
distinction on the Riemann hypothesis. At the time, no numerical value of x for
which π(x) > li(x)was known.

In 1952, Kreisel analysed this proof and extracted recursive bounds for sign changes

(On the interpretation of non-finitist proofs, Part II):
“Concerning the bound ... note that it is to be expected from our principle, since if the
conclusion ... holds when the Riemann hypothesis is true, it should also hold when
theRiemannhypothesis is nearly true: not all zeros need lie onσ = 1

2
, but only those

whose imaginary part lies below a certain bound ... and they need not lie on the line
σ = 1

2
, but near it”



What applied proof theory looks like today

�eorem (Kirk and Sims, Bulletin of the Polish Academy of Sciences 1999)

Suppose that C is a closed subset of a uniformly convex Banach space and T : C→ C is
asymptotically nonexpansive with int(fix(T)) 6= ∅. �en for each x ∈ C the sequence {Tnx}
converges to a fixed point of T.

�eorem (P., Journal ofMathematical Analysis and Applications 2019)

Let T : C→ C be a nonexpansive mapping in Lp for 2 ≤ p <∞, and suppose that
Br[q] ⊂ fix(T) for some q ∈ Lp and r > 0. Suppose that x ∈ C and ‖x − q‖ < K, and
define xn := Tnx. �en for any ε > 0we have

∀n ≥ f (ε)(‖Txn − xn‖ ≤ ε)

where

f (ε) :=

⌈
p · 23p+1 · Kp+2

εp · r2

⌉



How does proof theory come in to play?

We obtained a bound on the nth prime from Euclid’s proof without any special

techniques. However, serious applications usually involve some of the following,

either implicitly or explicitly:

• proof interpretations, particularly Gödel’s Dialectica,

• computability and complexity in higher types,

• logical relations (particularlymajorizability),

• formal systems and type theory.

Typically, one also needs to do some seriousmathematics as well!



What makes an area of mathematics attractive for proof mining?

1. Proofs are non-trivial, and use subtle nonconstructive lemmas, but theorems are
‘nice’ from a proof theoretic perspective.

2. Numerical information is relevant in that area.

3. �ere are many variations of key proof tactics in different settings. Proof

theoretic insights can then lead to qualitative results, generalisations and

unification.



Tauberian theory



Abel’s theorem

Let {an} be a sequence of reals, and suppose that the power series

F(x) :=

∞∑
i=0

aixi

converges on |x| < 1. �en whenever

∞∑
i=0

ai = s

it follows that

F(x)→ s as x↗ 1.

�is is a classical result in elementary analysis called Abel’s theorem (N.b. it also

holds in the complex setting). You can use it to e.g. prove that

∞∑
i=0

(−1)i

i+ 1

= log(2).



Does the converse of Abel’s theorem hold?

NO.

For a counterexample, define F : (−1, 1)→ R by

F(x) =
1

1+ x
=
∞∑
i=0

(−1)ixi

�en

F(x)→ 1

2

as x↗ 1

but
∞∑
i=0

(−1)i does not converge



Tauber’s theorem fixes this

Let {an} be a sequence of reals, and suppose that the power series

F(x) :=

∞∑
i=0

aixi

converges on |x| < 1. �en whenever

F(x)→ s as x↗ 1 AND |nan| → 0

it follows that
∞∑
i=0

ai = s

�is is Tauber’s theorem, proven in 1897 by Austrian mathematician Alfred Tauber
(1866 - 1942).



Tauberian theorems

�e basic structure of Tauber’s theorem is:

Let F(x) =
∞∑
i=0

aixi

�en if we know

(A) Something about the behaviour of F(x) as x↗ 1

(B) Something about the growth of {an} as n→∞

�enwe can conclude

(C) Something about the convergence of

∑∞
i=0

ai.

�is basic idea has been considerably generalised e.g. for

F(s) :=

∫ ∞
1

a(t)t−s dt

and has grown into an area of research known as Tauberian�eory.



�ere is now a whole textbook (published 2004, 501 pages)



Tauber’s theoremwas first extended by Littlewood (1911)



Littlewood Tauberian theorem

Let {an} be a sequence of reals, and suppose that the power series

F(x) :=

∞∑
i=0

aixi

converges on |x| < 1. �en whenever

F(x)→ s as x↗ 1 AND |nan| ≤ C

for some constant C, it follows that
∞∑
i=0

ai = s

One of Littlewood’s first major results. In AMathematical Education he writes (of this
period)

“ On looking back this time seems to me to mark my arrival at a reasonably assured
judgement and taste, the end of my "education". I soon began my 35-year collabora-
tion withHardy.”



One of first papers of this collaboration (1914):



�eHardy-Littlewood Tauberian theorem

Let {an} be a sequence of reals, and suppose that
∑∞

i=0
aixi converges for |x| < 1.

�en whenever

(1− x)
∞∑
i=0

aixi → s as x↗ 1 AND an ≥ −C

for some constant C, it follows that

1

n

n∑
i=0

ai → s as n→∞

�ey later used this result to give a new proof of the prime number theorem:

π(x) ∼ x
log(x)



Rates of convergence have been studied for over 70 years!



Remainder estimate for Littlewood’s theorem

Let {an} be a sequence of reals, and suppose that there is some b > 0 such that

∞∑
i=0

aixi = s+O
{

(1− x)b
}

as x↗ 1. �en

∞∑
i=0

ai = s+O
(

1

log(n)

)
as n→∞.

�is is essentially a quantitative version of Littlewood’s theorem, relating a rate of

convergence for the premise to a rate of convergence for the conclusion.



What makes an area of mathematics attractive for proof mining?

1. Proofs are non-trivial, and use subtle nonconstructive lemmas, but theorems are
‘nice’ from a proof theoretic perspective.

2. Numerical information is relevant in that area.

3. �ere are many variations of key proof tactics in different settings. Proof

theoretic insights can then lead to qualitative results, generalisations and

unification.



What makes Tauberian theory attractive for proof mining?

1. Tauberian theorems have a simple logical structure, but are often extremely

deep and difficult to prove. Littlewood’s theorem uses results from

approximation theory.

2. �ere is an existing interest in quantitative versions of Tauberian theorems in

the form of remainder estimates.

3. �ere are lots of variations of Tauberian theorems, all following the general

structure

convergence+ growth condition =⇒ convergence

and using similar lemmas in their proofs. Initial success could lead to a

promising area of research in proof mining.



A Dialectica interpretation of Littlewood’s

theorem



Some initial results on quantitative Tauberian theorems given in P. 2020:



A “Cauchy” reformulation of Littlewood’s theorem

For the rest of this talk, {an} is a sequence of reals and {sn}, F : [0, 1)→ R are
defined by

sn :=

n∑
i=0

ai F(x) :=

∞∑
i=0

aixi

�eorem (Littlewood’s theorem – Cauchy variant, P. 2022)

Suppose that there exists some C > 0 such that n|an| ≤ C for all n ∈ N, and that

∀δ > 0∃M∀x, y ∈ [e−1/M, 1)(|F(x)− F(y)| ≤ δ)

�enwe have
∀ε > 0∃N∀m, n ≥ N(|sn − F(e−1/m)| ≤ ε)



Proof strategy (Karamata’s method)

1 All functions f : [0, 1]→ Rwhich are continuous aside from a finite number of

jump discontinuities, and Lipschitz on all continuous subintervals, can be

approximated to arbitrary precision by a polynomial.

2 Let χ : [0,∞)→ R be the characteristic function of [0, 1] and for ε > 0 show

that there exists a polynomial Pε with Pε(0) = 0 and Pε(1) = 1 such that∫ ∞
0

|χ(t)− Pε(t)|
t

dt < ε

3 Let a : [0,∞)→ R be defined by a(t) = an for t ∈ [n, n+ 1), and let

IPε(n) :=

∫ ∞
0

a(t)Pε(e−t)dt

4 Now carry out two calculations:

(i) Using an =
∫∞
0

a(t)χ(t/n)dt and |an| ≤ C/n show that

|sn − IPε (n)| ≤ ε/2

(ii) Using that Pε is a polynomial and |sn − F(e−1/m)| → 0 show that for sufficiently

largem, nwe have
|IPε (n)− F(e−1/m)| ≤ ε/2



Logical structure of Littlewood’s theorem

Given {an} and C > 0, define A(p), B(δ,M, l) andD(ε,N, k) by

A(p) := ∀n ≤ p(n|an| ≤ C)

B(δ,M, l) := ∀x, y ∈ [e−1/M, e−1/(M+l)](|F(x)− F(y)| ≤ δ)

D(ε,N, k) := ∀m, n ∈ [N,N + k](|sm − F(e−1/m)| ≤ ε)

It turns out that we can actually prove the following:

∀ε[∀p A(p) ∧ ∃M∀l B(δε,M, l) =⇒ ∃N∀k D(ε,N, k)]

where δε is definable from ε > 0 and some information from Pε.

Now take the Dialectica interpretation of this:

∀ε,M∃N∀k∃p, l[A(p) ∧ B(δε,M, l) =⇒ D(ε,N, k)]

We should be able to extract witnesses forN, p and l from the proof of Littlewood’s

theorem.



A result from approximation theory

Definition

We callΩ : (0,∞)→ (0,∞)× (0,∞) a modulus of polynomial approximation to
χ if for any ε > 0 there exists a polynomial Pε(x) =

∑d
i=1
cixi satisfying Pε(0) = 0,

Pε(1) = 1 and ∫ ∞
0

|χ(t)− Pε(t)|
t

dt < ε

such that

d ≤ Ω0(ε) and

d∑
i=1

|ci| ≤ Ω1(ε)

Lemma

�ere are constants A,B > 0 such that

Ω(ε) = (Ω0(ε),Ω1(ε)) =

(
A
ε
, B1/ε

)
is a modulus of polynomial approximation.



Dialectica interpretation of Littlewood’s theorem

�eorem (P. 2022)

Let C > 0 and suppose that a > 0 is a bound on {|an|}. Fix ε > 0 and let

(b, v) := Ω
( ε

8C

)
and δ :=

ε

4v

Given someM ∈ N define N ∈ N by

N := b ·max

{⌈L
δ

⌉
,M
}

for L :=
a

1− e−1/M
+ δ

Finally, given k ∈ N define p, l ∈ N by

l := N + k−M and p := (N + k) ·max

{⌈
log

(
a(N + k)

δ

)⌉
, 1

}
�en from

n|an| ≤ C for all n ≤ p

and
|F(x)− F(y)| ≤ δ for all x, y ∈ [e−1/M, e−1/(M+l)]

it follows that
|sn − F(e−1/m)| ≤ ε for all m, n ∈ [N,N + k]



A game semantics for Littlewood’s theorem

∃loise sets out to foil ∀belard’s attempt to disprove Littlewood’s theorem by showing

that an = O(1/n), F(x)→ s and sn 6→ s all hold together:

1 ∀belard starts by picking some ε > 0, assuming that n|an| ≤ C for all n ∈ N,
and proposing someM ∈ N such that |F(x)− F(y)| ≤ δ for all x, y ∈ [e−1/M, 1).
His aim is to show that it is now not the case that |sn − F(e−1/m)| ≤ ε for
sufficiently largem, n.

2 ∃loise responds by putting forward anN ∈ N such that |sn − F(e−1/m)| ≤ ε for
allm, n ≥ N.

3 ∀belard rejects this by attempting to find a counterexample to the last move,
playing k ∈ N and claiming that ε < |sn− F(e−1/m)| for some n,m ∈ [N,N+ k].

4 If ∀belard’s attempt worked, then ∃loise responds by producing a pair l, p ∈ N
which demonstrate that one of ∀belard’s original assumptions was false:
• either C < n|an| for some n ≤ p, or
• δ < |F(x)− F(y)| for some x, y ∈ [e−1/M, e−1/(M+l)].

We have just provided a winning strategy for ∃loise in presenting bounds for
winning moves for ∃loise in terms of any play from ∀belard .



Remainder theorems



Remainder theorem 1

�eorem

Suppose that there exists some C > 0 such that n|an| ≤ C for all n ∈ N, and let L > 0 be a
bound on |F(x)| for x ∈ [0, 1). Suppose that

∀δ > 0∃M ≤ φ(δ)∀x, y ∈ [e−1/M, 1)(|F(x)− F(y)| ≤ δ)

then we have
∀ε > 0∃N ≤ ψ(ε)∀m, n ≥ N(|sn − F(e−1/m)| ≤ ε)

whereψ is defined by

ψ(ε) := Ω0 (ε/8C) ·max

{⌈ L
α(ε)

⌉
, φ(α(ε))

}
for α(ε) :=

ε

4Ω1(ε/8C)

Corollary (Exponential rates)

In the special case that
φ(δ) ≤ aδ−b for some a, b > 0

substituting in the definition ofΩ and rearranging gives

ψ(ε) ≤ K1/ε for a suitable constant K > 0



Recall: Remainder estimate for Littlewood’s theorem

Let {an} be a sequence of reals, and suppose that there is some b > 0 such that

∞∑
i=0

aixi = s+O
{

(1− x)b
}

as x↗ 1. �en

∞∑
i=0

ai = s+O
(

1

log(n)

)
as n→∞.



Rederiving the traditional remainder estimate

If

∑∞
i=0

aixi = s+O
{

(1− x)b
}
then

|F(x)− s| ≤ a(1− x)b for some a > 0

which implies that for x, y ∈ [e−1/M, 1):

|F(x)− F(y)| ≤ 2a(1− e−1/M)b ≤ 2a/Mb

Equivalently, φ(δ) := (2a/δ)−b is a rate of convergence for |F(x)− F(y)| → 0. �us:

∀m, n ≥ K2/ε(|sn − F(e−1/m)| ≤ ε/2)

for suitable K, and therefore applying our Corollary:

∀n ≥ K2/ε(|sn − s| ≤ ε)

Rearranging gives us

|sn − s| ≤ 2 log(K)/ log(n)

and therefore

sn = s+O
(

1

log(n)

)



Remainder theorem 2

We can adapt the standard Specker sequence construction to show that there exist

sequences {an} such that |F(x)− F(y)| → 0 but with no computable rate.

�eorem

Suppose that there exists some C > 0 such that n|an| ≤ C for all n ∈ N, and let L > 0 be a
bound on |F(x)| for x ∈ [0, 1). Suppose that

∀δ > 0, h : N→ N∃M ≤ Φ(δ, h)∀x, y ∈ [e−1/M, e−1/(M+hM))(|F(x)− F(y)| ≤ δ)

then we have

∀ε > 0, g : N→ N∃N ≤ Ψ(ε, g)∀m, n ∈ [N,N + gN](|sn − F(e−1/m)| ≤ ε)

whereΨ(ε, g) := β(ε,Φ(α(ε), hε,g)) for

hε,g(k) := γ(α(ε), k, g(β(ε, k))

α(ε) :=
ε

4Ω1(ε/8C)

β(ε,M) := Ω0 (ε/8C) ·max

{⌈ L
α(ε)

⌉
,M
}

γ(ε,M, k) := β(ε,M) + k−M



Conclusions



For further details, see:

• P. 2020: Anote on the finitization of Abelian and Tauberian theorems.
Mathematical Logic Quarterly, 66(3): 300–310.

• P. 2022: Afinitization of Littlewood’s Tauberian version and an application in
Tauberian remainder theory. Submitted.

• J. Korevaar 2004: Tauberian�eory: A Century of Developments. Springer.



Open questions

1 Can we extend these ideas to more complex Tauberian theorems e.g.

• �eHardy-Littlewood theorem,

• Integral analogues of Tauberian theorems using Karamata’s method,

• Deeper results involving e.g. Fourier transformations?

2 Are there Tauberian theorems with no known remainder estimates, for which

the application of proof-theoretic methods could produce not just

generalisations of existing remainder estimates as in this case, but the first

ever remainder theorems?

�ank you!


