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Content of this talk

@ Asix slide introduction to applied proof theory!
® An overview of Tauberian theory.
© A Dialectica interpretation of Littlewood’s theorem.

© Some new remainder estimates.



Applied Proof Theory



What is applied proof theory?

There is a famous quote due to G. Kreisel (A Survey of Proof Theory II):

“What more do we know when we know that a theorem can be proved by limited
means than if we merely know that it is true?”

In other words, the proof of a theorem gives us much more information than the
mere truth of that theorem.

Applied proof theory is a branch of logic that uses proof theoretic techniques to
exploit this phenomenon.



Everyone does applied proof theory

PROBLEM. Give me an upper bound on the nth prime number p,.

1. Whatis p,? I know it exists because of Euclid...

2. Specifically, givenpi, . .., pn—1, Lknowthat N:=p; - ... - ps—1 + 1 contains a
new prime factor ¢, and sop, < ¢ < N.

3. In other words, the sequence {p, } satisfies
pn S pl teeet pn—l +1 S (pn—l)n_l

4. By induction, it follows that e.g. p, < 2%".

This is a simple example of applied proof theory in action! From the proof that there
are infinitely many primes, we have inferred a bound on the nth prime.



... but it’s not always that simple

Theorem (Littlewood 1914)
The functions of integers

@ ¥(x) — x, and

(b) m(x) — li(x)

change signs infinitely often, where 7w (x) is the number of prime < x, 1) (x) is the is logarithm
of the Lc.m. of numbers < xand li(x) = [(1/log(u))du.

The original proof is utterly nonconstructive, using among other things a case
distinction on the Riemann hypothesis. At the time, no numerical value of x for
which 7(x) > li(x) was known.

In 1952, Kreisel analysed this proof and extracted recursive bounds for sign changes
(On the interpretation of non-finitist proofs, Part II):
“Concerning the bound ... note that it is to be expected from our principle, since if the
conclusion ... holds when the Riemann hypothesis is true, it should also hold when
the Riemann hypothesis is nearly true: not all zeros need lieon o = 2, butonly those
whose imaginary part lies below a certain bound ... and they need not lie on the line
o = 3, butnearit”




What applied proof theory looks like today

Theorem (Kirk and Sims, Bulletin of the Polish Academy of Sciences 1999)

Suppose that C is a closed subset of a uniformly convex Banach spaceand T : C — Cis
asymptotically nonexpansive with int(fix(T)) # (. Then foreachx € C the sequence {T"x}
converges to a fixed point of T.

Theorem (P., Journal of Mathematical Analysis and Applications 2019)

LetT : C — C be a nonexpansive mapping in L, for2 < p < oo, and suppose that
B,[q] C fix(T) forsomeq € L, andr > 0. Suppose thatx € Cand ||x — q|| < K, and
definex, := T"x. Thenforany e > Owe have

v 2 f(e) (T — 2| < €)

where
p- Z3P+1 . KPJrZ"

er - 12

f© = |



How does proof theory come in to play?

We obtained a bound on the nth prime from Euclid’s proof without any special
techniques. However, serious applications usually involve some of the following,
either implicitly or explicitly:

® proof interpretations, particularly Godel’s Dialectica,
® computability and complexity in higher types,
® Jogical relations (particularly majorizability),

e formal systems and type theory.

Typically, one also needs to do some serious mathematics as well!



What makes an area of mathematics attractive for proof mining?

1. Proofs are non-trivial, and use subtle nonconstructive lemmas, but theorems are
‘nice’ from a proof theoretic perspective.

2. Numerical information is relevant in that area.

3. There are many variations of key proof tactics in different settings. Proof
theoretic insights can then lead to qualitative results, generalisations and
unification.



Tauberian theory



Abel’s theorem

Let {a, } be a sequence of reals, and suppose that the power series

> .
F(x) := Za,'xl
i—o

converges on |x| < 1. Then whenever

oo
E a; =S
i=0

it follows that
F(x) »s as x /1L

This is a classical result in elementary analysis called Abel’s theorem (N.b. it also
holds in the complex setting). You can use it to e.g. prove that

(=1’
i+1

o

= log(2).

1=0



Does the converse of Abel’s theorem hold?

NO.

For a counterexample, define F : (—1,1) — Rby

1 S i
) = = 0
Then

F(x) > - as x "1

but

[e]

Z(—l)i does not converge

i=0



Tauber’s theorem fixes this

Let {a, } be a sequence of reals, and suppose that the power series

0 .
F(x) := Zaixl
i=0
converges on |x| < 1. Then whenever

F(x) —s as x 1 AND |nay| — O

it follows that

oo
E a; =S
i=0

This is Tauber’s theorem, proven in 1897 by Austrian mathematician Alfred Tauber
(1866 - 1942).




Tauberian theorems

The basic structure of Tauber’s theorem is:
oo
Let F(x) = Z aix'
i—o

Then if we know
(A) Something about the behaviour of F(x) asx 1
(B) Something about the growth of {a,} asn — oo
Then we can conclude

(C) Something about the convergence of 3 °  a;.

This basic idea has been considerably generalised e.g. for

E(s) := /Oo a(t)t™ dt

and has grown into an area of research known as Tauberian Theory.



There is now a whole textbook (published 2004, 501 pages)




Tauber’s theorem was first extended by Littlewood (1911)

THE CONVERSE OF ABEL'S THEOREM ON POWER SERIES
By J. E. LirrLewoop,

[Received September 28th, 1910.—Read November 10th, 1910.—
Revised December, 1910.*]

Introduction.
Abel’s theorem states that if Za, is convergent, then limZXa,z"
0 0

exists as « — 1 by real values, and is equal to Za,. The converse theorem,
however, that the existence of lim Za,z" implies the eonvergence of Za,,
i

is very far from being true; for example, either the Cesaro or the Borel
summability of £a, suffices for the existence of Abel's limit. It is known,
however, that the existence of this limit, combined with certain conditions
satisfied by the @'s, does imply the convergence of Za,. Three such sets
of conditions, for example, are :

(@)t the a's are all positive ;

(b) the order of @, has a certain upper limit ;

()} the function Za,z" is regular at the point z = 1 and a,— 0.

In the present paper we are concerned with the problems arising out
of case (b), where the only additional restriction on the a's is an upper
limit to the order of @,. The theorem of this case is due to M. Tauber.§
The result is remarkable and apparently paradoxical in view of Abel’s
theorem, for it may be expressed roughly by saying that if Za, is not



Littlewood Tauberian theorem

Let {a } be a sequence of reals, and suppose that the power series

> .
F(x) := Zaixl
i—0

converges on |x| < 1. Then whenever
F(x) -s as x /1 AND |na,| <C

for some constant C, it follows that

One of Littlewood’s first major results. In A Mathematical Education he writes (of this
period)
“On looking back this time seems to me to mark my arrival at a reasonably assured
judgement and taste, the end of my "education’. I soon began my 35-year collabora-
tion with Hardy.”



One of first papers of this collaboration (1914):

TAUBERIAN THEOREMS CONCERNING POWER SERIES AND
DIRICHLET'S SERIES WHOSE COEFFICIENTS ARE
POSITIVE*

By G. H. Haroy and J. E. LirrLEwoo.

{Received October 8rd, 1918.—Read November 13th, 1913.]

1. The general nature of the theorems contained in this paper re-
sembles that of the ‘ Tauberian ” theorems which we have proved in a
series of recent papers.t They have, however, a character of their own,
in that they are concerned primarily with series of positive terms.

Let fl@) = Za.a™

be & power sevies convergent for z|< 1. Weshall consider only positive
valves of x less than 1.

Let S0 = @gtay+... +a,,
L () = (log )" (log log ) ...,
where the a’s are real, Then it is known that, if
8, ~ An*L(n),

where A 40, as n—> o, the indices a, ay, ay, ... being such that n°L(n)
fonde to a noortine hamat ar 0 2nfiantn Fhan



The Hardy-Littlewood Tauberian theorem

Let {a,} be a sequence of reals, and suppose that >_:° a;x' converges for |x| < 1.
Then whenever

(I—X)Za,vxi—m as x /*1 AND a, > —C
i=0
for some constant C, it follows that

n
1
- E ai—S§ as n— o0
n

i=0

They later used this result to give a new proof of the prime number theorem:

(%)

X
log(x)




Rates of convergence have been studied for over 70 years!

MATHEMATICS

BEST L; APPROXIMATION AND THE REMAINDER IN
LITTLEWOOD’S THEOREM 1)
BY

JACOB KOREVAAR

(Communicated by Prof. H. D. KroosterMan at the meeting of March 28, 1953)

1. Introduction and re:

Its.  Let j(x) be continuous on @ < @ << b and
satisfy a Lipscurrz condition of order 1:

(1.1)  [f(ay) — f(w)| < AJay — | for all ay, @, on @ <z < b.

D. Jacksox [2] has shown that for such an f(x) there are a constant D
and a sequence of polynomials p,(x) of degree n, n — 1, 2, ..., such that

max |f(x) — p,(x)| < D/n.

In this paper we consider approximation to functions f(z) which are
continuous on « < b except for a finite number of jump discontinu-
sfy a Lipscurrz condition (1. 1) on each of the sub-
intervals of @ << w << b on which they are continuous (‘“‘functions of class
J(a, b)”). It follows from results by Nikorsky [7] that for any such
function f(x) there still are a constant Dy and a sequence of polynomials
pa(x) of degree n such that

ities, and which sat




Remainder estimate for Littlewood’s theorem

Let {a, } be a sequence of reals, and suppose that there is some b > 0 such that

iaixi :s—l—(’){(l—x)b}

asx 1. Then

i“’:”o(lo;(n)>

asn — OQ.

This is essentially a quantitative version of Littlewood’s theorem, relating a rate of
convergence for the premise to a rate of convergence for the conclusion.



What makes an area of mathematics attractive for proof mining?

1. Proofs are non-trivial, and use subtle nonconstructive lemmas, but theorems are
‘nice’ from a proof theoretic perspective.

2. Numerical information is relevant in that area.

3. There are many variations of key proof tactics in different settings. Proof
theoretic insights can then lead to qualitative results, generalisations and
unification.



What makes Tauberian theory attractive for proof mining?

1. Tauberian theorems have a simple logical structure, but are often extremely
deep and difficult to prove. Littlewood’s theorem uses results from
approximation theory.

2. There is an existing interest in quantitative versions of Tauberian theorems in
the form of remainder estimates.

3. There are lots of variations of Tauberian theorems, all following the general
structure

convergence + growth condition = convergence

and using similar lemmas in their proofs. Initial success could lead to a
promising area of research in proof mining.



A Dialectica interpretation of Littlewood’s
theorem



Some initial results on quantitative Tauberian theorems given in P. 2020:

A note on the finitization of Abelian and Tauberian theorems

Thomas Powell

Abstract

We present finitary formulations of two well known results concerning infinite series, namely Abel’s

theorem, which establi

s that if a series converges to some limit then its Abel sum converges to the

same limit, and Tauber’s theorem, which presents a simple condition under which the converse holds
Our approach is inspired by proof theory, and in particular Gédel’s 1 inter ion, which we
use to establish quantitative version of both of these results.

1 Introduction

In an essay of 2007 [17] (later published as part of [18]) T. Tao discussed the so
principle between ‘soft’ and ‘hard’ analysis, whereby many infinitary notions from analysis

led correspondence
an be given
an equivalent finitary formulation. An important instance of this phenomenon is provided by the simple
concept of Cauchy convergence of a sequence {c, }:

Ve > 03N Vm,n > N (Jem — ca| < ¢).
This corresponds to the finitary notion of {¢,} being metastable, which is given by the following formula:

Ve>0Vg:N—NINVm,ne|

+9(N)] (Jem — ol <), )

+ k}. Roughly speaking, a sequence {c,} is metastable if
nted by the

where (]
for any given error € > 0 it contains
function g : N — N.

The equivalence of Cauchy converge:
indeed, as was quickly observed, the cor
proof theory. More specifically, the finitary variant of an infinitary statement is typically closely related to

a finite regions of stability of any ‘size’, where s

astability is established via purely logical reasoning, and
ondence principle as presented in [17) has deep connections with

its classical Dialectica interpretation [1], which provides a general method for obtaining quantitative versions
of mathematical theorems.

Finitary formulations of infinitary properties play a central role in the proof mining program developed
by U. Kohlenbach from the early 90s [7]. Here, it is often the case that a given mathematical theorem has,
in general, no computable realizer (for Cauchy convergence this is demonstrated by the existence of so-called
Specker sequences [16], which will be discussed further in Section 3). On the other hand, the corresponding
finitary formulation can typically not only be realized, but a realizer can be directly extracted from a proof

ahle Fgimnd Of = ) o N (1) o e mallard smde

Shat +he araimal mramorto helde



A “Cauchy” reformulation of Littlewood’s theorem

For the rest of this talk, {a,} is a sequence of reals and {s, }, F : [0,1) — R are

defined by
Sp = Zai F(x) := Zaixi
i=0 i=0

Theorem (Littlewood’s theorem — Cauchy variant, P. 2022)

Suppose that there exists some C > O such thatn|a,| < Cforalln € N, and that
V6 > 0aMvx,y € [e”/™, 1)(|F(x) — F(y)| < 6)

Then we have
Ve > 03NVm,n > N(|s, — F(e™/™)| < ¢)



Proof strategy (Karamata’'s method)

@ All functionsf : [0,1] — R which are continuous aside from a finite number of
jump discontinuities, and Lipschitz on all continuous subintervals, can be
approximated to arbitrary precision by a polynomial.

® Let x : [0,00) — R be the characteristic function of [0, 1] and for € > 0 show
that there exists a polynomial P, with P.(0) = 0 and P.(1) = 1such that

[T he=rl,
o t

© Leta: [0,00) — Rbedefinedbya(t) = a,fort € [n,n+1),andlet

Ip_(n) := /0oo a(t)Pe (e ")dt

® Now carry out two calculations
(i) Usingay, = [;° a(t)x(t/n)dt and |a,| < C/n show that

sn — Ip. (n)] < g/2

(ii) Using that P, is a polynomial and |s, — F(e~'/™)| — 0 show that for sufficiently
large m, n we have

[Ip. () = F(e7/™)| < /2



Logical structure of Littlewood’s theorem

Given {a,} and C > 0, define A(p), B(d, M, 1) and D(g, N, k) by
A(p) = Vn < p(nlas| < C)
B(5,M,1) :=Vx,y € [e=/™, e /O (|F(x) — F(y)| < 9)
D(e, N, k) := ¥m,n € [N, N + k|(|s» — F(e /™) < ¢)

It turns out that we can actually prove the following:

Ve[VpA(p) A IMVIB(d.,M,l) = 3INVkD(e, N, k)]
where J. is definable from € > 0 and some information from P..

Now take the Dialectica interpretation of this:

Ve, M3NVk3p, l[A(p) A B(6:,M,]I) = D(e, N, k)]

We should be able to extract witnesses for N, p and | from the proof of Littlewood’s
theorem.



A result from approximation theory

Definition

We callQ : (0,00) — (0,00) X (0, 00) a modulus of polynomial approximation to
x if for any e > O there exists a polynomial P, (x) = Z‘le cix’ satisfying P (0) = O,
P.(1) =1and
[P0l
o t
such that

d
d < Qo(e) and Z lci] < u(e)

i=1

Lemma
There are constants A, B > O such that

2(e) = (). 2(e) = 2,5

is a modulus of polynomial approximation.



Dialectica interpretation of Littlewood’s theorem

Theorem (P. 2022)
Let C > O and suppose thata > 0is a bound on {|a,|}. Fixe > 0 and let

(b,v) :==Q (%) and 0 := %

Givensome M € Ndefine N € N by

L
N=bmax{[g—‘,M} ﬁ)V L:HL—I/M—F5

Finally, given k € Ndefinep,1 € Nby

l:=N+k—M and p .= (N+k)-max{[log(“(N”))],l}

1)
Then from
nla,| < C foralln <p
and
IF(x) — E)| < 8 forallx,y € [e™/M, ¢~/ 014D
it follows that

s, — F(e™/™)| < & forallm,n € [N,N + K]



A game semantics for Littlewood’s theorem

Tloise sets out to foil Vbelard’s attempt to disprove Littlewood’s theorem by showing
thata, = O(1/n), F(x) — sands, # sallhold together:

©® Vbelard starts by picking some ¢ > 0, assuming that nja,| < Cforalln € N,
and proposing some M € N such that |F(x) — F(y)| < d forallx,y € [e=/™,1).
His aim is to show that it is now not the case that |s, — F(e7/™)| < & for

sufficiently large m, n.

@ loise responds by putting forward an N € N such that |s, — F(e™/™)| < ¢ for
allm,n > N.

© Vbelard rejects this by attempting to find a counterexample to the last move,
playing k € Nand claiming thate < s, — F(e~/™)| for some n,m € [N, N +k].

® 1fVbelard’s attempt worked, then Jloise responds by producing a pairl,p € N
which demonstrate that one of Vbelard’s original assumptions was false:

® cither C < n|a,| for somen < p, or
® § < |F(x) — F(y)| for somex,y € [e71/M ¢=1/(M+D)],

We have just provided a winning strategy for Jloise in presenting bounds for
winning moves for Jloise in terms of any play from Vbelard .



Remainder theorems



Remainder theorem 1

Suppose that there exists some C > O such thatn|a,| < Cforalln € N, andletL > Obea
bound on |F(x)| forx € [0,1). Suppose that

V8 > 03M < ¢(6)vx,y € [, 1)(|F(x) — F(y)| < 9)

then we have
Ve > 03N < ¢(e)Vm,n > N(|s, — Fe™/™)| < &)
where 1) is defined by
¥(e) == Qo (¢/8C) - max { [ﬁ],qxa(s))} for a(e) = m

Corollary (Exponential rates)

In the special case that
$(6) < ad™" forsomea,b >0

substituting in the definition of Q and rearranging gives

U(e) < K¢ forasuitable constant K > O



Recall: Remainder estimate for Littlewood’s theorem

Let {a, } be a sequence of reals, and suppose that there is some b > 0 such that

iaixi :s—I—O{(l—x)b}

asx ' 1. Then

i“i”w(logl(n))

asn — oQ.



Rederiving the traditional remainder estimate
IfY 2 aix' =s+ O {(1—x)"} then
|F(x) —s| < a(1—x)" forsomea > 0
which implies that forx,y € [e~"/",1):
|F(x) — F()| < 2a(1 — e ™" < 2a/M"
Equivalently, ¢(6) := (2a/8) " is a rate of convergence for |[F(x) — F(y)| — 0. Thus:
Vm,n > K¢(|s, — F(e™/™)| < e/2)
for suitable K, and therefore applying our Corollary:
¥ > K4 (|sy — s| <€)

Rearranging gives us
ls — s| < 2log(K)/ log(n)

sn=S+(’)<®>

and therefore



Remainder theorem 2

We can adapt the standard Specker sequence construction to show that there exist
sequences {a, } such that |[F(x) — F(y)| — O but with no computable rate.

Theorem

Suppose that there exists some C > O such thatn|a,| < Cforalln € N, andletL > Obea
bound on |F(x)| forx € [0, 1). Suppose that

V6 > 0,h: N — NIM < ®(8, h)Vx,y € [ /™, e/ MY (|F(x) — F(y)| < 6)
then we have
Ve > 0,g: N — N3N < U(e,g)Vm,n € [N,N + gN]([s» — F(e /™) < &)
where U (e, g) := B(e, D(a(e), he,g)) for
he (k) := y((e), k, g(B(e; k))

&

o) = 10,0 /80)

B(e, M) = Q0 (¢/5C) - max { [QL}M}
~v(g, M, k) := B(e,M) +k— M



Conclusions



For further details, see:

® P, 2020: A note on the finitization of Abelian and Tauberian theorems.
Mathematical Logic Quarterly, 66(3): 300-310.

® P.2022: A finitization of Littlewood’s Tauberian version and an application in
Tauberian remainder theory. Submitted.

® ]. Korevaar 2004: Tauberian Theory: A Century of Developments. Springer.



Open questions

® Can we extend these ideas to more complex Tauberian theorems e.g.

® The Hardy-Littlewood theorem,
® Integral analogues of Tauberian theorems using Karamata’s method,
® Deeper results involving e.g. Fourier transformations?

® Are there Tauberian theorems with no known remainder estimates, for which
the application of proof-theoretic methods could produce not just
generalisations of existing remainder estimates as in this case, but the first
ever remainder theorems?

Thank you!



