
Proof theory and computational algebra

�omas Powell
University of Bath

Dagstuhl Seminar 22702

New Perspectives in Symbolic Computation and Satisfiability Checking

15 February 2022

�ese slides will be available at

https://t-powell.github.io/talks

https://t-powell.github.io/talks


My research area in diagram:

interpretationproof program

More precisely: Use of techniques from proof theory to extract programs that are

interesting because they are either:

• New.

• Formally verified.



Some History



Where it all started

K. Goedel invented one of the first functional programming languages: System T.

interpretationPA ` 0 = 1 System T ` 0 = 1

Consistency(System T) =⇒ Consistency(PA)



�e birth of applied proof theory

G. Kreisel (A Survey of Proof�eory II, 1971):

“What more do we know when we know that a theorem can be proved by limited
means than if wemerely know that it is true?”

In other words, the proof of a theorem gives us muchmore information than the

mere truth of that theorem.

Applied proof theory is a branch of logic that uses proof theoretic techniques to

exploit this phenomenon.

interpretationcomplex math-

ematical proof

interesting/useful

program



Everyone does applied proof theory

Problem. Give me an upper bound on the nth prime number pn.

1. What is pn? I know it exists because of Euclid...

2. Specifically, given p1, . . . , pn−1, I know thatN := p1 · . . . · pn−1 + 1 contains a

new prime factor q, and so pn ≤ q ≤ N.

3. In other words, the sequence {pn} satisfies

pn ≤ p1 · . . . · pn−1 + 1 ≤ (pn−1)n−1

4. By induction, it follows that e.g. pn < 2
2
n
.

�is is a simple example of applied proof theory in action! From the proof that there
are infinitely many primes, we have inferred a bound on the nth prime.



... but it’s not always that simple

�eorem (Littlewood 1914)

�e functions of integers
(a) ψ(x)− x, and
(b) π(x)− li(x)
change signs infinitely often, whereπ(x) is the number of prime≤ x,ψ(x) is the is logarithm
of the l.c.m. of numbers≤ x and li(x) =

∫ x
0

(1/ log(u))du.

�e original proof is utterly nonconstructive, using among other things a case
distinction on the Riemann hypothesis. At the time, no numerical value of x for
which π(x) > li(x)was known.

In 1952, Kreisel analysed this proof and extracted recursive bounds for sign changes

(On the interpretation of non-finitist proofs, Part II):
“Concerning the bound ... note that it is to be expected from our principle, since if the
conclusion ... holds when the Riemann hypothesis is true, it should also hold when
theRiemannhypothesis is nearly true: not all zeros need lie onσ = 1

2
, but only those

whose imaginary part lies below a certain bound ... and they need not lie on the line
σ = 1

2
, but near it”



Where we are today



Modern applied proof theory

A field in the intersection of formal logic, mathematics and computer science. Took

off in the 1990s/early 2000s, and now an established area of research, roughly split

into two branches:

1 Using proof theoretic methods to derive new theorems in mathematics (often

known as “proof mining”)

2 Using formal version of these techniques to synthesise correct-by-construction

programs.



1. “Proof mining”

Input. A proof of an existence theorem from a research paper.

Output. A strengthening of this theoremwith additional information “hidden” in

the proof, such as:

• An algorithm or computable bound for finding an object.

• A qualitative strengthening of the theorem e.g. abstract generalisation.

Success primarily in mathematical analysis, including:

• convex optimization
• approximation theory
• fixpoint theory
• ergodic theory



What proof mining looks like

�eorem (P. andWiesnet, Numer. Func. Anal. Opt. 2021)

Suppose that {An} is quasi asymptoticallyψ-weakly contractive w.r.t. q andσ, and that the
sequence {xn} satisfies

xn+1 = (1− αn)xn + αnAnxn

for {αn} a sequence of nonnegative reals such that
∑∞

n=0
αn =∞. �enwhenever ‖xn − q‖

is bounded above by some c > 0, we have ‖xn − q‖ → 0, with rate of convergence

‖xn − q‖ ≤ F−1
(
2Ψ(c)−

n−2∑
i=0

αi

)

where F : (0,∞)→ R is any strictly increasing and continuous function satisfying

F(ε) ≥ 2Ψ
(ε
2

)
− α · σ

(
1

2

min
{
ψ
(ε
2

)
,
ε

α

}
, c
)

andΨ is given by

Ψ(s) :=

∫ s dt
ψ(t)



Resources

• A textbook for the field was published in 2008 (Kohlenbach, Springer):

• For a survey of more recent results: Kohlenbach, Proof-theoreticMethods in
Nonlinear Analysis Proc. ICM 2018, World Scientific 2019.



2. Program synthesis

Input. Formalised proof of ∃x ∈ X∀y ∈ Y A(x, y)where A(x, y) is a specification
relating input and output.

Output. An program f : X → Y satisfying ∀x A(x, fx)which is

• Correct by construction.
• Often comes with a bound on its complexity.

Major case studies carried out in:

• real number computation
• well-quasi order theory
• list sorting
• boolean satisfiability

In terms of proof assistants:

• A specialised proof systemMinlog has been developed for extracting programs

from proofs.

• Proof interpretations have also been implemented in Coq and Adga.



A relevant example: Berger at al, LMCS 2015

Logical Methods in Computer Science
Vol. 11(1:6)2015, pp. 1–18
www.lmcs-online.org

Submitted Nov. 11, 2013
Published Mar. 10, 2015

EXTRACTING VERIFIED DECISION PROCEDURES:

DPLL AND RESOLUTION

ULRICH BERGER a, ANDREW LAWRENCE b, FREDRIK NORDVALL FORSBERG c,
AND MONIKA SEISENBERGER d

a,b,d Swansea University, UK
e-mail address: {u.berger,csal,m.seisenberger}@swansea.ac.uk

c University of Strathclyde, UK
e-mail address: fredrik.nordvall-forsberg@strath.ac.uk

Abstract. This article is concerned with the application of the program extraction tech-
nique to a new class of problems: the synthesis of decision procedures for the classical satis-
fiability problem that are correct by construction. To this end, we formalize a completeness
proof for the DPLL proof system and extract a SAT solver from it. When applied to a
propositional formula in conjunctive normal form the program produces either a satisfying
assignment or a DPLL derivation showing its unsatisfiability. We use non-computational
quantifiers to remove redundant computational content from the extracted program and
translate it into Haskell to improve performance. We also prove the equivalence between
the resolution proof system and the DPLL proof system with a bound on the size of the
resulting resolution proof. This demonstrates that it is possible to capture quantitative
information about the extracted program on the proof level. The formalization is carried
out in the interactive proof assistant Minlog.

1. Introduction

In order for verification tools to be used in an industrial context they have to be trusted to
a high degree and in many cases are required to be certified. We present a new application
of program extraction to develop a formally verified decision procedure for the satisfiability
problem for propositional formulae in conjunctive normal form. The procedure is based on
the DPLL proof system [17, 16] which is also the basis of most contemporary SAT solvers
that are used in an industrial context.

The need for verified SAT solvers is obvious; they are part of safety critical software,
and also used for the verification and certification thereof. SAT solvers are nowadays highly
optimized for speed, which makes the introduction of errors (in the process of optimiza-
tion) more likely, and their verification more difficult. Besides the correctness also totality
(or universality) of SAT solvers is an issue. For example, in the 2012 SAT competition

2012 ACM CCS: [Theory of computation]: Logic—Proof theory /Logic and verification.
Key words and phrases: DPLL, Program Extraction, Interactive Theorem Proving, SAT.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(1:6)2015

c© U. Berger, A. Lawrence, F. Nordvall Forsberg, and Seisenberger
CC© Creative Commons



Resources

• �emuch of the core theory is written up in a 2012 textbook (Schwichtenberg

andWainer, CUP):

• For recent results, see the Minlog homepage: https:
//www.mathematik.uni-muenchen.de/~logik/minlog/index.php

https://www.mathematik.uni-muenchen.de/~logik/minlog/index.php
https://www.mathematik.uni-muenchen.de/~logik/minlog/index.php


Proof�eory in Computational Algebra?



P., Schuster andWiesnet, Inf. Comput. 2021

A universal algorithm for Krull’s theorem

Thomas Powell1, Peter Schuster2, and Franziskus Wiesnet2,3,4

1Department of Computer Science, University of Bath
2Department of Computer Science, University of Verona

3Department of Mathematics, Università degli Studi di Trento
4Department of Mathematics, Ludwig-Maximilians Universität

April 23, 2021

Abstract

We give a computational interpretation to an abstract formulation of Krull’s theorem,
by analysing its classical proof based on Zorn’s lemma. Our approach is inspired by proof
theory, and uses a form of update recursion to replace the existence of maximal ideals. Our
main result allows us to derive, in a uniform way, algorithms which compute witnesses
for existential theorems in countable abstract algebra. We give a number of concrete
examples of this phenomenon, including the prime ideal theorem and Krull’s theorem on
valuation rings.

Keywords: Krull’s theorem, maximal ideals, program extraction, constructive algebra

1 Introduction

Krull’s theorem for prime ideals is a fundamental result from abstract algebra. It can be
formulated as follows: Let F ⊆ R be an arbitrary subset of some commutative ring R. Then
whenever r ∈ R lies in the intersection of all prime ideals containing F , the element r also
lies in the radical ideal

√
(F ) generated by F , or in other words:

⋂
{P : F ⊆ P and P a prime ideal} ⊆

√
(F ).

The standard proof of this fact appeals to Zorn’s lemma. More specifically, we assume for
contradiction that r /∈

√
(F ) and consider an ideal which is maximal among all ideals I such

that F ⊆ I but r /∈ I. We conclude by demonstrating that this maximal ideal must be prime.
The second author, together with Rinaldi, has shown that the basic idea behind Krull’s

theorem can be presented in a generalised way, as a universal Krull–Lindenbaum theorem [39],
so that it subsumes a large collection of important results in abstract algebra and beyond,
including Krull’s theorem for valuation rings, the Artin–Schreier theorem, and Lindenbaum’s
lemma for complete theories. This is achieved by abstracting prime ideals from commutative
rings to the context of finitary coverings and binary operations, a move in the vein of formal
topology [44] which cannot be thought of without the time-honoured point-free presentation
of the Zariski spectrum as a distributive lattice [14]; for details we refer to [46].

In this article, we give a computational interpretation to this universal form of Krull’s
theorem by analysing its proof. This is challenging, because the proof is non-constructive,

1



A simple example

�eorem

Let R be a commutative ring and f =
∑d

i=0
aiXi and invertible element of R[X]. �en the

coefficients ai for i > 0 are all nilpotent.

Proof.

An application of Zorn’s lemma.

In P., Schuster, Wiesnet 21 we extract from this proof a concrete program for

computing an e > 0 such that

aei = 0R

Part of a general framework, a range of muchmore complex algorithms extracted,

generally for reasoning about polynomials.

Algorithms based on building computable approximations to maximal ideals via

trial-and-error.



�ings I’d love to talk about

• Are there interesting proof systems suited to reasoning about proofs and
programs in computer algebra, satisfiability checking? We need new proof

systems for applied proof theory in abstract algebra. Is there some overlap?

• Can proof theoretic techniques be used as part of a verification strategy for
algorithms in computer algebra, RAG, etc.? What is the state-of-the-art for

formalising proofs in these areas?

• Are there interesting examples of nonconstructive proofs where proof
interpretations can yield e.g.

• numerical bounds

• convergence rates

• new algorithms?


