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�e potential of program extraction

We have already seen some examples of witness extraction from ∀∃ statements, our
running example being

�eorem

�ere exists a function X : N→ N such that for all n we have X(n) ≥ n and X(n) prime.

But you don’t need sophisticated proof theoretic techniques to be able to do this. So

are there examples where the formal analysis of a proof can yield genuinely new

numerical information from proofs?

�eanswer is an emphatic YES.�is is the so-called ‘proof mining’ program.

Central to the success of proof mining program are the following phenomena:

• One can typically extract a witnesses for ∀∃ statements even when the
underlying proofs are highly non-constructive;

• Certain mathematical principles, particularly forms of compactness, do not
contribute to the complexity of extracted bounds, leading to surprisingly

simple polynomial bounds from proofs which employ heavy machinery from

analysis.
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A brief history of proof mining

• Pioneered by Kreisel in the 1950s, who proposed ‘unwinding’ constructive
content from proofs using proof theoretic methods. Case studies in number

theory and abstract algebra.

• In the 1980s, both Girard and Luckhardt carry out case studies and obtain
bounds (van derWaerden’s theorem and Roth’s theorem respectively)

• From 1990s onwards, Kohlenbach finds numerous applications, in

approximation theory and fixed point theory in particular. Proof mining takes

off! Textbook published in 2008.

• In the 2010s proof mining expands to ergodic theory, nonlinear analysis,
commutative algebra, termination theory and other areas. A connection with

Tao’s metastability is discovered.

• Currently an active area of research with a small but dedicated community!

• 2022: Where to next?
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Example: Uniqueness of best approximation

�eorem

Let n ∈ N and f ∈ C[0, 1] be fixed. Let

dist(f , Pn) := inf
p∈Pn
‖f − p‖

where Pn is the space of all polynomials with degree≤ n. �en there exists a polynomial of best
approximation i.e. a polynomial p∗ such that

‖f − p∗‖ = dist(f , Pn),

andmoreover, this polynomial is unique i.e. for all p1, p2 ∈ Pn∧
i=1,2

(‖f − pi‖ = dist(f , Pn))→ p1 = p2.
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A proof theoretic analysis of uniqueness

Let’s look a bit more closely at uniqueness:

∀n ∈ N∀f ∈ C[0, 1]∀p1, p2 ∈ Pn

∧
i=1,2

(‖f − pi‖ = dist(f , Pn))→ p1 = p2

 .

Now, equality= over the real numbers is actually a ∀-statement and so written out
fully, uniqueness becomes{

∀n ∈ N∀f ∈ C[0, 1]∀p1, p2 ∈ Pn(
∀j
∧

i=1,2(‖f − pi‖ − dist(f , Pn) < 2
−j)→ ∀k ‖p1 − p2‖ < 2

−k
)
.

�e (partial) functional interpretation of this is the following:{
∀n, k ∈ N∀f ∈ C[0, 1]∀p1, p2 ∈ Pn∃j(∧

i=1,2(‖f − pi‖ − dist(f , Pn) < 2
−j)→ ‖p1 − p2‖ < 2

−k
)
.
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Amodulus of uniqueness

In the case of both the uniform norm and the L1 norm, it is possible to extract a term
Φ of SystemT such that{

∀n, k ∈ N∀f ∈ C[0, 1]∀p1, p2 ∈ Pn∃j(∧
i=1,2(‖f − pi‖ − dist(f , Pn) < 2

−Φ(f ,n,k))→ ‖p1 − p2‖ < 2
−k
)
.

whereΦ is independent of p1, p2.

Remark. Φ is known as the modulus of uniqueness.

Explicit moduli of uniqueness are given in the following papers:

• de La Vallée Poussin’s proof of uniqueness of best Chebychev approximation
[Kohlenbach, 1993a];

• Young’s proof of uniqueness of best Chebychev approximation
[Kohlenbach, 1993b];

• Cheney’s proof of uniqueness of best L1 approximation
[Kohlenbach and Oliva, 2003a].

In some cases these results even improved known results in the literature.
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More recent work

For a comprehensive account of proof mining see [Kohlenbach, 2008] (the standard

text on the subject).

For individual expository articles see e.g.

• Kohlenbach, U. and Oliva, P. (2003b). A systematic way of analyzing proofs in
mathematics.

Proceedings of the Steklov Institute ofMathematics, 242:136–164

• Avigad, J. (2009).�emetamathematics of ergodic theory.

Annals of Pure and Applied Logic, 157:64–76

• Kohlenbach, U. (2018). Proof theoretic methods in nonlinear analysis.
In Proc. Int. Cong. ofMath. - ICM 2018
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How are proof theoretic tools applied to new areas?

Key steps:

1 Are there theorems in this area which have the right logical structure? What

kind of information could I hope to extract? Is it useful?

2 How do I formalize the proofs? How do I represent the underlying spaces?

3 Analyse some concrete proofs.

4 What is going onmore generally? Can these proofs be expressed in an abstract

logical framework?

5 Develop newmetatheorems which guarantee that, under certain conditions,
programs can be extracted.

Potential new areas:

• Number theory?
• Probability theory?
• Financial mathematics?
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�emonotone convergence theorem

Recall in the last lecture we discussed themonotone convergence principle:

�eorem

Let (xn) be a nondecreasing sequence of rational numbers in [0, 1]. �en

∀k∃n∀m(|xn+m − xn| ≤ 2
−k).

We learned that in general there is no computableN : N→ N satisfying

∀k, ∀m(|xN(k)+m − xN(k)| ≤ 2
−k),

due to the result of Specker.

But we now have a procedure for dealing with non-computable statements like this.

Let’s first take a look at a proof.
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Proving the monotone convergence theorem

Proof.

Suppose that the monotone convergence principle fails i.e. there exists some k such
that

∀n∃m(|xn+m − xn| > 2
−k).

�en there exists a function g : N→ N such that

∀n(|xn+g(n) − xn| > 2
−k).

Define the function g̃(n) = n+ g(n). �en we have a sequence

0 ≤ x0 < xg̃(0) < xg̃(2)(0) < . . . <

with xg̃(i+1)(0) − xg̃(i)(0) > 2
−k
, therefore

x
g̃(2k)

> 1

a contradiction.
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�e computational content of the proof

Our proof gave us some indirect computational information, namely

∀k, g∃n ≤ g̃(2
k)(0)(|xn+g(n) − xn| ≤ 2

−k),

or in other words

∀k, g∃n ≤ g̃(2
k)(0)∀i, j ∈ [n, n+ g(n)](|xi − xj| ≤ 2

−k)

Note that we can rephrase this statement entirely, so as only to refer to a finite part

of (xn). LetM = g̃(2
k+1)(0). We have the following:

�eorem (Finite convergence principle)

Let k ∈ N, g : N→ N, and suppose that 0 ≤ x0 ≤ x1 ≤ . . . ≤ xM ≤ 1, whereM is a
sufficiently large number which depends only on k and g. �en there exists some
0 ≤ n ≤ n+ g(n) ≤ Msuch that |xi − xj| ≤ 2

−k for all n ≤ i, j ≤ n+ g(n).
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Blog post by T. Tao, 2007

Soft analysis, hard analysis, and the finite
convergence principle
23 May, 2007 in expository, math.CA, math.CO, math.LO, opinion | Tags: finite convergence principle, hard analysis, pigeonhole principle,
proof theory, Ramsey theory, soft analysis

In the field of analysis, it is common to make a distinction between “hard”, “quantitative”, or “finitary” analysis
on one hand, and “soft”, “qualitative”, or “infinitary” analysis on the other. “Hard analysis” is mostly concerned
with finite quantities (e.g. the cardinality of finite sets, the measure of bounded sets, the value of convergent
integrals, the norm of finite-dimensional vectors, etc.) and their quantitative properties (in particular, upper and
lower bounds). “Soft analysis”, on the other hand, tends to deal with more infinitary objects (e.g. sequences,
measurable sets and functions, -algebras, Banach spaces, etc.) and their qualitative properties (convergence,
boundedness, integrability, completeness, compactness, etc.). To put it more symbolically, hard analysis is the
mathematics of , , , and [1]; soft analysis is the mathematics of 0, , , and .

At first glance, the two types of analysis look very different; they deal with different types of objects, ask
different types of questions, and seem to use different techniques in their proofs. They even use[2] different
axioms of mathematics; the axiom of infinity, the axiom of choice, and the Dedekind completeness axiom for
the real numbers are often invoked in soft analysis, but rarely in hard analysis. (As a consequence, there are
occasionally some finitary results that can be proven easily by soft analysis but are in fact impossible to prove
via hard analysis methods; the Paris-Harrington theorem gives a famous example.) Because of all these
differences, it is common for analysts to specialise in only one of the two types of analysis. For instance, as a
general rule (and with notable exceptions), discrete mathematicians, computer scientists, real-variable harmonic
analysts, and analytic number theorists tend to rely on “hard analysis” tools, whereas functional analysts,
operator algebraists, abstract harmonic analysts, and ergodic theorists tend to rely on “soft analysis” tools. (PDE
is an interesting intermediate case in which both types of analysis are popular and useful, though many
practitioners of PDE still prefer to primarily use just one of the two types. Another interesting transition occurs
on the interface between point-set topology, which largely uses soft analysis, and metric geometry, which
largely uses hard analysis. Also, the ineffective bounds which crop up from time to time in analytic number
theory are a sort of hybrid of hard and soft analysis. Finally, there are examples of evolution of a field from soft
analysis to hard (e.g. Banach space geometry) or vice versa (e.g. recent developments in extremal
combinatorics, particularly in relation to the regularity lemma).)

It is fairly well known that the results obtained by hard and soft analysis respectively can be connected to each
other by various “correspondence principles” or “compactness principles”. It is however my belief that the
relationship between the two types of analysis is in fact much closer[3] than just this; in many cases, qualitative
analysis can be viewed as a convenient abstraction of quantitative analysis, in which the precise dependencies
between various finite quantities has been efficiently concealed from view by use of infinitary notation.
Conversely, quantitative analysis can often be viewed as a more precise and detailed refinement of qualitative
analysis. Furthermore, a method from hard analysis often has some analogue in soft analysis and vice versa,
though the language and notation of the analogue may look completely different from that of the original. I
therefore feel that it is often profitable for a practitioner of one type of analysis to learn about the other, as they
both offer their own strengths, weaknesses, and intuition, and knowledge of one gives more insight[4] into the
workings of the other. I wish to illustrate this point here using a simple but not terribly well known result, which
I shall call the “finite convergence principle” (thanks to Ben Green for suggesting this name; Jennifer Chayes
has also suggested the “metastability principle”). It is the finitary analogue of an utterly trivial infinitary result –
namely, that every bounded monotone sequence converges – but sometimes, a careful analysis of a trivial result
can be surprisingly revealing, as I hope to demonstrate here.
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�e correspondence principle

(emphasis mine)

“It is fairly well known that the results obtained by hard and soft analysis respec-
tively can be connected to each other by various “correspondence principles” or
“compactness principles”. It is however my belief that the relationship between the
two types of analysis is in fact much closer than just this ... ”

“I wish to illustrate this point here using a simple but not terribly well known result,
which I shall call the “finite convergence principle” ... It is the finitary analogue of
an utterly trivial infinitary result - namely, that every bounded monotone sequence
converges - but sometimes, a careful analysis of a trivial result can be surpris-
ingly revealing, as I hope to demonstrate here.”
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�e correspondence principle

�is is the so-called finite convergence principle, made explicit by T. Tao’s in

Tao, T. (2008a). Soft analysis, hard analysis, and the finite convergence principle.

Essay, published as Ch. 1.3 of [Tao, 2008b], original version available online at

http://terrytao.wordpress.com/2007/05/23/
soft-analysis-hard-analysis-and-the-finite-convergence-principle/
• �e finite convergence principle is not just an esoteric logical reformulation of

a well-known concept. It is actually used in mathematics in e.g. the proof of

the Szemerédi regularity lemma.

• In his essay, Tao draws attention to the fact that many infinitary (‘soft’,
qualitative’) statements have finitary (‘hard’, ‘quantitative’) analogous, which

have useful applications.

• It was later observed that this correspondence between soft and hard
statements is just the classical functional interpretation!

Idea. Proof interpretations domuchmore that just extracting numerical
information. �ey help us understand and formalize the connection between

infinitary and finintary statements in mathematics.
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Finitizing statements

Convergence principles are widely studied in proof mining. Here, the functional

which witnesses the corresponding finitary principle is knows as a rate of

metastability.

Too see the functional interpretation applied to obtain finitary versions of other

infinitary principles see e.g.

• Gaspar, J. and Kohlenbach, U. (2010). On Tao’s “finitary” infinite pigeonhole
principle.

Journal of Symbolic Logic, 75(1):355–371

• Safarik, P. and Kohlenbach, U. (2010). On the interpretation of the
Bolzano-Weierstrass principle.

Mathematical Logic Quarterly, 56(5):508–532

• P. (2020). Well quasi-orders and the functional interpretation.
Schuster, P., Seisenberger, M. andWeiermann, A. editors,Well Quasi-Orders in
Computation, Logic, Language and Reasoning, Trends in Logic, Springer
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Starting point: Banach fixed point theorem

Let (X, d) be a complete metric space and C ⊆ X a closed subset of X. A mapping
T : C→ C is a contraction if there exists some 0 ≤ q < 1 such that

d(Tx, Ty) ≤ q · d(x, y).

for all x, y ∈ C. �e following is a classic result in metric fixed point theory.

�eorem (Banach, 1922)

If T is a contraction, then its Picard iterates (Tnx)n∈N converge to a fixpoint of T.

�is theorem no longer holds if we weaken the premise by allowing T to be
nonexpansive i.e.

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C. E.g. For X = R, C = [0, 1] and Tx = 1− x we have

(Tn0)n∈N = (0, 1, 0, 1, 0, 1, . . .)
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Picard iterates of nonexpansive maps

A natural question is the following: Under what additional conditions can we ensure

that the Picard iterates (Tnx)n∈N converges for nonexpansive T. For Hilbert spaces, a
nonempty interior condition sufficies.

�eorem (Moreau)

Let X be aHilbert space, C ⊆ X closed and T : C→ C nonexpansive. If the fixed point set
Fix(T) has nonempty interior, then the Picard iterates converge to a point of Fix(T).

�is result holds more generally in uniformly convex Banach spaces.
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Uniform convexity

A Banach space is uniformly convex if for any 0 < ε ≤ 2 there is some δ > 0 such

that for any ‖x‖ = ‖y‖ = 1,

1

2
‖x + y‖ ≥ 1− δ ⇒ ‖x − y‖ ≤ ε

Intuitively: the center of a line segment inside the unit ball must lie deep inside the

unit ball unless the segment is short.

Examples of uniformly convex spaces include

• all Hilbert spaces
• Lp spaces for 1 < p <∞
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A result of Kirk and Sims

I carried out a quantitative analysis of a proof by Kirk and Sims of the following

result.

�eorem ([Kirk and Sims, 1999])

Suppose that C is a closed subset of a uniformly convex Banach space and T : C→ C is a
nonexpansive mapping with Int(Fix(T)) 6= ∅ for all q ∈ Fix(T). �en for each x ∈ C, the
Picard iterates (Tnx)n∈N converge to a fixed point of T.
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Structure of the theorem

We are given T : C→ C for C ⊆ X, and some x ∈ C.

Our assumptions are

• X uniformly convex
• Int(Fix(T)) 6= ∅
• T is nonexpansive

Our conclusion is

• (Tnx)n∈N converges.

We will now examine each of these in turn from a quantitative point of view.
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Conclusion: Cauchy convergence of (Tnx)n∈N

Our aim is to produce a quantitative version of the Cauchy convergence of the Picard

iterates:

∀ε > 0∃n∀i, j ≥ n(‖Tix − Tjx‖ ≤ ε)

Our first question: Can we hope to extract a direct rate of convergence i.e. a function
ϕ(ε) such that

∀ε > 0∃n ≤ ϕ(ε)∀i, j ≥ n(‖Tix − Tjx‖ ≤ ε)

�eorem ([Neumann, 2015, Kohlenbach, 2019])

Already for X = R there exists a nonexpansive mapping T : [0, 1]→ [0, 1] (which can easily
be extended to one with Int(Fix(T)) 6= ∅) such that (Tn0)n∈N has no computable rate of
convergence.
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Ametastable formulation of convergence

�e combination of negative translation and functional interpretation, when

applied to the statement that (Tnx)n∈N is Cauchy convergent, yields:

∀ε > 0, g : N→ N∃n∀i, j ∈ [n, n+ g(n)](‖Tix − Tjx‖ ≤ ε).

Our aim will be to produce a rate of metastability for the Picard iterates i.e. a

functionalΩ(ε, g) such that

∀ε > 0, g : N→ N∃n ≤ Ω(ε, g)∀i, j ∈ [n, n+ g(n)](‖Tix − Tjx‖ ≤ ε).

In addition to ε and g,Ωwill also dependent on quantitative data from each of our

assumptions.
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Assumption I: X is uniformly convex

Recall the definition of uniform convexity:

∀ε ∈ (0, 2]∃δ > 0∀x, y ∈ B1[0]( 1
2
‖x + y‖ ≥ 1− δ → ‖x − y‖ ≤ ε).

�is can be given a quantitative form by considering amodulus of uniform convexity:
�is is a functionΦ : (0, 2]→ (0, 1] satisfying

∀ε ∈ (0, 2] ∀x, y ∈ B1[0]
(
1

2
‖x + y‖ ≥ 1− Φ(ε)→ ‖x − y‖ ≤ ε

)
. (1)

Moduli of uniform convexity arewidely used in proof mining, see
[Kohlenbach, 2008, Chapter 17] for a more detailed discussion.

Example

For X = Lp with 2 ≤ p <∞, a modulus of uniform convexity is given by

Φ(ε) :=
εp

p2p
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Assumption 2: Int(Fix(T)) 6= ∅

Int(Fix(T)) 6= ∅ if there exists some p ∈ Fix(T) and r > 0 such that Bor [p] ⊆ Fix(T)
i.e.

∀x ∈ X(‖x − p‖ <R r︸ ︷︷ ︸
Σ0

1

→ ‖Tx − x‖ =R 0︸ ︷︷ ︸
Π0

1

)

�e above is a universal statement, and thus has no computational content.

To summarise, we just need p ∈ Fix(T) and r > 0 with Bor [p] ⊆ Fix(T).
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Assumption 3: T is nonexpansive

�is is also a universal statement and has no computational content. However,

nonexpansivity i.e.

‖Tx − Ty‖ ≤ ‖x − y‖

is only ever used for y = q for q ∈ Fix(T). So we can replace it with the weaker
assumption that

‖Tx − q‖ ≤ ‖x − q‖

for all q ∈ Fix(()T).

Note.�e result can actually be generalised with a more complex condition, namely:

lim
n→∞

‖Tnx − q‖ = inf
n∈N
‖Tnx − q‖ for all q ∈ Fix(T)

but we don’t discuss that here!
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Main result

�eorem ([P., 2019])

Let X be a Banach space with C ⊆ X, T : C→ C amapping and x ∈ C. Suppose that
• ‖Tx − q‖ ≤ ‖x − q‖ for all q ∈ Fix(T)

• Br[p] ⊆ Fix(T) for p ∈ X with ‖x − p‖ ≤ K and r > 0;
• Φ is a modulus of uniform convexity for X;

�en

∀ε > 0, g : N→ N∃n ≤ Ω(Φ,Γ,K, r, ε, g)∀i, j ∈ [n, n+ g(n)](‖Tix − Tjx‖ ≤ ε)

forΩ defined as follows:
• Ω(Φ,K, r, ε, g) := f (dK/ηe)(0);
• f (j) := j+ g∗(j);
• η := r

4
·min{1,Ψ(min{ 1

4
, rK},

ε
2K )};

• Ψ(h, ε′) := min{ ε
′

2
, 2hΦ( ε

′

2
)}.
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Asymptotic regularity of the Picard iterates

If the Picard iterates converge, then in particular, they must be asymptotically

regular:

∀ε > 0∃n∀i ≥ n(‖Ti+1x − Tix‖ ≤ ε).

In the case that T is nonexpansive, asymptotic regularity is equivalent to the

following ∀∃ statement:

∀ε > 0∃n
(
‖Tn+1x − Tnx‖ ≤ ε

)
.

�is would suggest it is possible to extract a direct rate of asymptotic regularity in our

setting i.e. a function f (ε) such that

∀ε > 0, i ≥ f (ε)(‖Ti+1x − Tix‖ ≤ ε).
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A rate of asymptotic regularity

�eorem ([P., 2019])

Let X be a Banach space with C ⊆ X, T : C→ C amapping and x ∈ C. Suppose that
• ‖Tx − q‖ ≤ ‖x − q‖ for all q ∈ Fix(T)

• Br[p] ⊆ Fix(T) for p ∈ X with ‖x − p‖ ≤ K and r > 0;
• Φ is a modulus of uniform convexity for X;

�en
∀ε > 0, i ≥ f (ε)(‖Ti+1x − Tix‖ ≤ ε)

where
• f (ε) := dK/ηe;
• η := r

4
·min{1,Ψ(min{ 1

4
, rK},

ε
2K )};

• Ψ(h, ε′) := min{ ε
′

2
, 2hΦ( ε

′

2
)}.
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A concrete result for Lp spaces

�eorem ([P., 2019])

Let T : C→ C be a nonexpansive mapping for C ⊆ Lp and x ∈ C. Suppose that
Br[p′] ⊆ Fix(T) for p′ ∈ X with ‖x − p′‖ ≤ K and r > 0. �en

∀ε > 0, i ≥ f (ε)(‖Ti+1x − Tix‖ ≤ ε)

where

f (ε) :=
⌈p · 23p+1 · Kp+2

εp · r2
⌉

Note that this is a purely mathematical result. �ere is no mention of proof

interpretations, higher-order functionals, metastability etc.
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In Lecture 2 we ‘extracted’ a list reversing program. Our input was a proof that

∀a∃bRev(a, b)

and the result was a term t of System T (i.e. a program) satisfying

∀aRev(a, t(a)).

Can we automate proof interpretations i.e. write a piece of software which

transforms a formal proof to a program:

Formal proof 7→ Program

Again, the answer is YES!�ere is even a proof assistant - Minlog - dedicated to

program extraction via functional interpretations:

http://www.mathematik.uni-muenchen.de/~logik/minlog/
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What do we get out of formal extraction?

A program is written to satisfy a given specification:

∀x∃yS(x, y)

where S(x, y) specifies how the input should be related to the output.

What a programmermight do.

• Write a program satisfying the specification.

• Debug until they are convinced that it works as it should.

What a proof theoristmight do.

• Write a formal proof that for any input, an output satisfying the specification
exists.

• Push a button and extract a program.
• No debugging required!
• Wemay even get additional information, such as a bound on its complexity.
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It’s not quite as easy as that...

Sounds great!Why aren’t programmers using proof interpretations?

• “Is your list sorting program as good as one a humanwould write?”

• “We use C++. What good to us is a programwritten in System T?”

• “Your extracted program takes up ten pages of text. How does it even work?”

• “Group X can already do formal verification and have developed an extremely successful
tool.”

• “Could your technique for synthesising programs be easily used by someone working at
the Guardian newspaper?”

�ese are all valid points...
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Obstacles to overcome

... which highlight the following problems:

Efficiency: It’s easy to extract a brute force algorithm, but muchmore difficult to
produce something intelligent, comparable to what a human would write.

Language: Formally extracted programs are typically presented in an abstract
language like System T. Real programming languages tend to follow a completely

different paradigm, with concepts such as global state, concurrency, and so on...

Scale: Formal verification is a huge business and lots of sophisticated tools have
already been developed. On top of this, most big proof assistants (Coq, NUPRL, etc)

can extract programs from proofs. A small community in proof theory, dedicated to

a particular style of program extraction, cannot possibly compete with this directly.

Accessibility: Ultimately, methods for synthesising verified programs are only
useful if they can be used by a non-specialist.
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Some first steps

�e synthesis of verified programs using proof interpretations like the functional

interpretation is a young area with lots of challenges to overcome, but there are

already some steps in this direction.

• Berger, U., Miyamoto, K., Schwichtenberg, H., and Seisenberger, M. (2011).

Minlog - A tool for program extraction supporting algebras and coalgebras.

In Proceedings of CALCO 2011, volume 6859 of LNCS, pages 393–399

• Berger, U., Seisenberger, M., andWoods, G. (2014). Extracting imperative
programs from proofs: In-place quicksort.

In Proceedings of TYPES 2013, volume 26 of LIPIcs, pages 84–106

• Berger, U., Miyamoto, K., Schwichtenberg, H., and Tsuiki, H. (2016). Logic for
Gray-code computation.

In Concepts of Proof inMathematics, Philosophy, and Computer Science, pages 69–110.
De Gruyter

• P. (2018). A functional interpretation with state.
In Proceedings of Logic in Computer Science (LICS 2018)
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