
PROOFMINING

Lecture 2 -�e functional interpretation of intuitionistic
arithmetic

�omas Powell
University of Bath

Nordic Logic Summer School 2022

University of Bergen

14 June 2022

�ese slides are available at https://t-powell.github.io/.

1 / 42

https://t-powell.github.io/


Outline

1 Introduction

2 Prime numbers and programs

3 An extremely quick overview of intuitionistic arithmetic

4 Gödel’s functional interpretation (Part I)

5 Gödel’s functional interpretation (Part II)

6 �e soundness theorem

7 Case study: Reversing a list

8 References

2 / 42



Recap

In Lecture 1 we described, informally, what a proof interpretation was:

P 7→ N

Proof interpretations were

• Originally developed, in response to Hilbert’s program, to establish relative
consistency proofs i.e.

Con(N )⇒ Con(P);
• Later used as a technique for extracting computational content from proofs, as

captured by Kreisel’s famous quote

“What more do we know if we have proved a theorem by restricted means than if we
merely know that it is true?”

In this lecture, we describe in more detail a particular proof interpretation, namely

Gödel’s functional interpretation:

HA
ω 7→ T

Where HA is the theory of intuitionistic (or ‘Heyting’) arithmetic in all finite types,

andT is SystemT, introduced in Lecture 2.

3 / 42



Plan of the lecture

1 What does it means to extract a program from a proof?

2 A brief account of intuitionistic arithmetic.

3 A description of how the functional interpretation acts on formulas of HA.

4 Gödel’s soundness theorem and sketch of the proof.

5 A worked example: Reversing a list.

�is is the most technical lecture! �ree things to bear in mind:

• �emessy details are not important: We just want to convey the main idea.

• �ere will be lots of examples!

• Wewill see the payoff in lectures 3 and 4.

4 / 42



Key references

• Avigad, J. and Feferman, S. (1998). Gödel’s functional (“Dialectica”) interpretation.

In Buss, S. R., editor,Handbook of Proof�eory, volume 137, pages 337–405. Elsevier

• Kohlenbach, U. (2008). Applied Proof�eory - Proof Interpretations and their Use in
Mathematics.
Springer Monographs in Mathematics. Springer

Also recommended:

• Gödel, K. (1958). Über eine bisher noch nicht benützte Erweiterung des finiten

Standpunktes.

Dialectica, 12:280–287

5 / 42



Outline

1 Introduction

2 Prime numbers and programs

3 An extremely quick overview of intuitionistic arithmetic

4 Gödel’s functional interpretation (Part I)

5 Gödel’s functional interpretation (Part II)

6 �e soundness theorem

7 Case study: Reversing a list

8 References

6 / 42



Back to prime numbers

Note. For a more detailed account of the content of this section, see
[Kohlenbach, 2008, Chapter 2].

�eorem

�ere are infinitely many prime numbers.

�eorem (Formal version)

For anym ∈ N there exists some p > m such that p is prime.

Can I produce a computable function (i.e. a program) f : N→ Nwhich produces a
prime number of arbitrary size i.e. f (m) > m and f (m) prime?

Define

f (m) := pwhere p is the least prime number greater thanm

i.e. a blind search for the next prime number.

�is function is certainly computable, but it doesn’t tell us anything more. In

particular, I have no idea how long it takes to find the next prime.

But maybe there is computational content in the proof...

7 / 42



Euclid’s elementary proof

Let’s first consider the ancient Greek proof, which wementioned in Lecture 1.

Proof 1 (Euclid).

Fixm ∈ N and consider the number

N := 1+ p1 · · · pk

where p1, . . . , pk are all the prime numbers≤ m. �enN cannot be divisible by any
prime number≤ m. ButN contains at least one prime factor p, which must
therefore be greater thanm.

We now have something better than blind search! We have a bound on how far we
need to look. Define

f (m) := least p ≤ 1+ p1 · · · pk such that p prime.

We can even use this to bound the size of themth prime number pm. We have

pm ≤ 1+ p1 . . . pm−1

and therefore (by induction)

pm < 2
2
m

8 / 42



A numerical result

�eorem (Original)

For anym there exists some p > m such that p is prime.

�eorem (Stronger)

For anym there exists somem < p ≤ 1+ p1 · · · pk such that p is prime, where p1, . . . , pk are
the prime numbers≤ m.

We didn’t have to do anything new to product this stronger theorem: �e numerical

information was already ‘hidden’ in the proof of the original theorem.

“What more do we know if we have proved a theorem by restricted means than if we
merely know that it is true?”

So what happens if we look at a different proof of the same result?

9 / 42



Euler’s analytic proof I

Proof 2 (Euler).

Suppose there are only finitely many prime numbers p1, . . . , pm. We have (by simple
combinatorics)

∑
0≤k1,...,km≤n

1

pk1
1
· · · pkmm

=

(
n∑
i=0

1

pi
1

)
· · ·

(
n∑
i=0

1

pim

)

But using

n∑
i=0

1

pi
<

∞∑
i=0

1

pi
=

p
p− 1

we have ∑
0≤k1,...,km≤n

1

pk1
1
· · · pkmm

<
p1

p1 − 1
· · · . . . · pm

pm − 1

≤ 2

1

· 3
2

· . . . · pm
pm − 1

= pm

10 / 42



Euler’s analytic proof II

Proof cont...

We have shown that ∑
0≤k1,...,km≤n

1

pk1
1
· · · pkmm

< pm

for any n. Now using the prime factorisation theorem, it follows that

n∑
i=1

1

i
≤ pm

for all n, contradicting the fact that

∞∑
i=1

1

i
=∞

�erefore there are infinitely many primes!

11 / 42



An even stronger numerical result

An analysis of the proof, using the fact that for allm ∈ Nwe have
nm∑
i=1

1

i
> m

for nm := dem−γe, where γ ≈ 0.5772 is the so-called Euler-Mascheroni constant
yields the following:

�eorem (Stronger)

For anym there exists somem < p ≤ dem−γe such that p is prime.

Again, the numerical information was already hidden in the proof. However, this

time we had to provide computational information for the assumptions that were

used: We assumed that

∑∞
i=1

1

i diverged, and so we needed to know how fast.

More generally, our proof gives us the following procedure:

Rate of divergence of

∞∑
i=1

1

i 7→ Bound on themth prime

12 / 42



A general pattern

Can we apply this idea to arbitrary proofs? I.e. devise a formal map

Proof of A 7→ programwhich gives a computational interpretation to A

�ere are already several ambiguities here.

1 How do I treat a proof as a formal object?

2 What do I mean by a ‘computational interpretation’ of A? If A is of the form

∀n ∈ N∃m ∈ NP(n,m)

it is reasonable to ask for a function f : N→ N satisfying

∀nP(n, f (n)).

But what about formulas of arbitrary logical complexity?

3 How do I guarantee that I can extract a program from any proof?

We deal with each of these in turn.

13 / 42



Outline

1 Introduction

2 Prime numbers and programs

3 An extremely quick overview of intuitionistic arithmetic

4 Gödel’s functional interpretation (Part I)

5 Gödel’s functional interpretation (Part II)

6 �e soundness theorem

7 Case study: Reversing a list

8 References

14 / 42



Formal theories of arithmetic

We have already mentioned Peano arithmetic PA many

times. �is is an axiomatic system for reasoning about the

natural numbers, basedonacollectionof axiomspostulated

by Giuseppe Peano.

It contains theusual axiomsof classical predicate logic, plus

some special non-logical axioms like induction.

Intuitionistic, orHeyting arithmeticHA (named after Arend
Heyting, who was important to the development of intu-

itionistic logic), is just Peano arithmetic, but based on intu-

itionistic predicate logic: Simply put, predicate logic with-

out the law of excluded-middle

P ∨ ¬P

We actually work in the more general setting of Heyting

arithmetic in all finite types, which we label HA
ω
.

15 / 42



Heyting arithmetic (the language)

Simply put,

Heyting arithmetic HA
ω = SystemT + Intuitionistic predicate logic

Terms of HA
ω
include all of the terms ofT, i.e. are built up from

• variables xρ, yρ, zρ for each type ρ;
• constants 0, s, λx.t and Rρ.

Formulas of HA
ω
are build up as follows.

• s = t is a formula, where s, t are terms of typeN.
• If A,B are formulas, so are A ∧ B, A ∨ B, A→ B.
• If A(xρ) is a formula, so is ∃xρA(x) and ∀xρA(x).

16 / 42



Heyting arithmetic HA
ω
(the axioms and rules)

�e axioms (and rules) of Heyting arithmetic are essentially

Axioms of higher order predicate logic+ SystemT axioms

+Equality axioms+ Induction on arbitrary formulas

Axioms and rules of predicate logic include e.g.

• structural rules: A→ A ∧ A;
• quantifier axioms: for example A(t)→ ∃xA(x);
• modus ponens: From A and A→ B infer B.

�emost important non-logical rule of HA
ω
is induction, which is given by

• From A(0) and ∀n(A(n)→ A(n+ 1)) infer ∀nA(n).

Note. For full details, see [Avigad and Feferman, 1998] or [Kohlenbach, 2008,
Chapter 3].

17 / 42



Formal proofs in Heyting arithmetic

A formal proof in HA
ω
is a derivation using the axioms and rules. We write HA

ω ` A
for ‘we can prove A in HAω. Formal proofs are much longer that their ‘informal’
textbook counterparts!

�eorem

HA
ω ` ∀n(n = 0 ∨ n 6= 0).

Formal proof (sketch!)

Let A(n) :≡ n = 0 ∨ n 6= 0.

1 0 = 0 and 0 = 0→ 0 = 0 ∨ 0 6= 0 therefore A(0).
2 n+ 1 6= 0 and n+ 1 6= 0→ n+ 1 = 0 ∨ n+ 1 6= 0 therefore A(n+ 1).

3 A(n+ 1) ∧ A(n)→ A(n+ 1).

4 A(n+ 1)→ (A(n)→ A(n+ 1)).

5 �erefore A(n)→ A(n+ 1).

6 By quantifier-rules ∀n(A(n)→ A(n+ 1).

7 By the rule of induction ∀nA(n).

Remark. In Peano arithmetic, n = 0 ∨ n 6= 0 follows from excluded-middle.

18 / 42



Outline

1 Introduction

2 Prime numbers and programs

3 An extremely quick overview of intuitionistic arithmetic

4 Gödel’s functional interpretation (Part I)

5 Gödel’s functional interpretation (Part II)

6 �e soundness theorem

7 Case study: Reversing a list

8 References

19 / 42



Functional interpretation: �e basic idea

�e functional interpretation (also known as the Dialectica interpretation) is a

translation of the following form:

A 7→ ∃x~ρ∀y~σAD(x, y)

where

• A is a formula of Heyting arithmetic HAω ;

• AD(x, y) is a formula of SystemT (also a quantifier-free formula of HA
ω
);

• x~ρ and y~σ are (potentially empty) tuples of variables.

�e idea is that ∃x∀yAD(x, y) is obtained from A by

‘pulling all its quantifiers to the front’.

In particular,

A↔ ∃x∀yAD(x, y)

over some suitable theory.

20 / 42



Functional interpretation: �e simple cases

We define the functional interpretation formally using induction over the logical

structure of A.

For the base case:

• If A is atomic then A 7→ A i.e. x, y are empty and AD := A.

Suppose that A 7→ ∃x∀yAD(x, y) and B 7→ ∃u∀vBD(u, v). �en

• A ∧ B 7→ ∃x, u∀y, v(AD(x, y) ∧ BD(u, v))

• A ∨ B 7→ ∃b0, x, u∀y, v((b = 0→ AD(x, y)) ∧ (b 6= 0→ BD(u, v)))

• ∃zA(z) 7→ ∃z, x∀yAD(x, y, z)

• ∀zA(z) 7→ ∃X∀z, yAD(X(z), y, z)

Note that implication is still missing... �is is muchmore subtle and will come later.

21 / 42



Prime numbers again

�eorem

�ere are infinitely many primes.

�eorem (Formal)

∀n∃x(x ≥ n ∧ x is prime).

Proof.

Euclid or Euler.

�eorem (Functional interpretation)

∃X∀n(X(n) ≥ n ∧ X(n) is prime).

Canditates for X include:
• X(n) := search up to 1+ p1 . . . pk (corresponds to Euclid).
• X(n) := search up to den−γe (corresponds to Euler).

22 / 42



Another simple example

�eorem

For any number n there exists somem such that n = 2mor n = 2m+ 1.

�eorem (Formal)

∀n∃m(n = 2m ∨ n = 2m+ 1).

Proof.

Induction using case distinctions.

�eorem (Functional interpretation)

∃M,B∀n((B(n) = 0→ n = 2M(n)) ∧ (B(n) = 1→ n = 2M(n) + 1)).

Candidate realizer:

B(n) =

{
0 if n even
1 if n odd

M(n) = bn/2c

23 / 42



Outline

1 Introduction

2 Prime numbers and programs

3 An extremely quick overview of intuitionistic arithmetic

4 Gödel’s functional interpretation (Part I)

5 Gödel’s functional interpretation (Part II)

6 �e soundness theorem

7 Case study: Reversing a list

8 References

24 / 42



Completing the definition

We have one more logical connective to deal with, namely implication A→ B.

Suppose that A 7→ ∃x∀yAD(x, y) and B 7→ ∃u∀vBD(u, v), and consider the
implication

∃x∀yAD(x, y)→ ∃u∀vBD(u, v).

Wewant to bring the quantifiers to the front in the least non-constructive way

possible.

Note. For a detailed discussion of this, and the various possibilities, see
[Kohlenbach, 2008, Chapter 8].

We describe the functional interpretation of implication using the language of game

semantics. �e idea here is to visualise the quantifiers as representing a game

between two players:

• Eloise(existential quantifier) wants to find evidence that the statement is true;
• Abelard(universal quantifier) tries to confound Eloise by claiming that the
statement is false.

25 / 42



�e functional interpretation of implication I

∃x∀yAD(x, y)→ ∃u∀vBD(u, v)

Let’s imagine this as a game between Eloise and Abelard, who are trying to

respectively prove and disprove the implication.

• Abelard: I claim that there is a realizer x for the premise, and challenge you to
find a realizer for the conclusion.

• Eloise: I accept the challenge, and give you a witness u for the conclusion.

• Abelard: I claim that there is a counterexample v to your witness u.

• Eloise: In which case, I give you a counterexample y to your original witness x.

�e formula is true if Eloisehas a winning strategy against any choices from Abelard.

26 / 42



�e functional interpretation of implication II

For any witness challenge x from Abelard

∀x(∀yAD(x, y)→ ∃u∀vBD(u, v))

there is a witness response u from Eloise

∀x∃u(∀yAD(x, y)→ ∀vBD(u, v))

such that for any counterexample challenge v from Abelard

∀x∃u∀v(∀yAD(x, y)→ BD(u, v))

there is a counterexample response y from Eloise

∀x∃u∀v∃y(AD(x, y)→ BD(u, v))

Nowwe convert these to functions:

∃U, Y∀x, v(AD(x, Y(x, v))→ BD(U(x), v)︸ ︷︷ ︸
(A→B)D(U,Y,x,v)

)

27 / 42



Euler’s proof revisited I

Euler’s proof of the infinitude of primes used the assumption that

∑∞
i=1

1

i diverges

i.e.
∞∑
i=1

1

i
=∞→ ∀n∃x(x > n ∧ x is prime).

Written out with quantifiers this becomes

∀m∃k

(
k∑
i=1

1

i
> m

)
→ ∀n∃x(x > n ∧ x is prime).

Applying the functional interpretation to premise and conclusion:

∃g∀m

g(m)∑
i=1

1

i
> m

→ ∃X∀n(X(n) > n ∧ X(n) is prime).

Now interpreting implication:

∃X,M∀g, n

g(M(g,n))∑
i=1

1

i
> M(g, n)→ X(g, n) > n ∧ X(g, n) is prime


28 / 42



Euler’s proof revisited II

A quantitative analysis of Euler’s proof actually produces functionals X andM
satisfying

∃X,M∀g, n

g(M(g,n))∑
i=1

> M(g, n)→ X(g, n) < n ∧ X(g, n) is prime


In particular, we have a map

rate of divergence g 7→ function X(g) for finding the next prime.

In our case we took a known rate of divergence, namely

dem−γe∑
i=1

1

i
> m

where γ is the Euler-Mascheroni constant, and used it to produce an upper bound
on the next prime.

29 / 42



Outline

1 Introduction

2 Prime numbers and programs

3 An extremely quick overview of intuitionistic arithmetic

4 Gödel’s functional interpretation (Part I)

5 Gödel’s functional interpretation (Part II)

6 �e soundness theorem

7 Case study: Reversing a list

8 References

30 / 42



Gödel’s main theorem

So far we have a translation

A 7→ ∃x∀yAD(x, y).

which maps formulas A of HAω to formulas AD(x, y) of SystemT.

Gödel’s soundness theorem says that we can translate a proof of A to a program
witnessing ∃x∀yAD(x, y).

�eorem (K. Gödel, 1958)

Suppose that

HA
ω ` A

�en there exists a term t of SystemT such that

HA
ω ` ∀yAD(t, y)

andmoreover, we can formally extract t from the proof of A.

Proof.

Induction over formal proofs of HA
ω
.

31 / 42



A quick aside: Relative consistency

Actually, Gödel established the conclusion of the soundness theoremwithin System

T itself i.e. he showed that if HA
ω ` A then

SystemT ` AD(t, y).

�erefore, if HA
ω
is inconsistent i.e. HA

ω ` 0 = 1, then SystemT is inconsistent

i.e. SystemT ` 0 = 1.

�is follows from the soundness of the functional intepretation, plus the fact that

0 = 1 gets mapped to itself.

Another way of saying this is

Con(T)⇒ Con(HAω).

�is is the last time wemention relative consistency proofs and Hilbert’s program!

From now on, our interest lies primarily in Kreisel’s shift of emphasis towards the

extraction of programs from proofs.

In particular, it is more practical to reason about terms of SystemT in HA
ω
, since

we have access to quantifiers.

32 / 42



�e proof: Modus ponens

Modus ponens. If A and A→ B then we can infer B:

Soundness ofmodus ponens. If we have a witness for the f.i. of A and A→ B then
we can produce a witness for the f.i. of B.

Suppose that A 7→ ∃x∀yAD(x, y) and B 7→ ∃u∀vBD(u, v). We are given
• A term r such that ∀yAD(r, y);
• Terms s1 and s2 such that ∀x, v(AD(x, s2xv)→ BD(s1x, v)).

We want to produce:

• A term t such that ∀vBD(t, v).

For any v, instantiating y := s2rv and x := r yields

AD(r, s2rv) and AD(r, s2rv)→ BD(s1r, v)

fromwhich we infer

BD(s1r, v).

So t := s1r works.

33 / 42



�e proof: Induction

Induction. From A(0) and ∀n(A(n)→ A(n+ 1))we can infer ∀nA(n).

Soundness of induction. If we have a witness for the f.i. of A(0) and
∀n(A(n)→ A(n+ 1)) then we can produce a witness for the f.i. of ∀nA(n).

Suppose that A(n) 7→ ∃x∀yAD(n, x, y). We are given
• A term r such that ∀yAD(0, r, y);
• Terms s1 and s2 such that ∀n, x, y(AD(n, x, s2xy)→ AD(n+ 1, s1x, y)).

We want to produce:

• A term t such that ∀n, yAD(n, tn, y).
Using the recursors, define t by

t0 := r and t(n+ 1) := s1(tn).

We prove by another induction that this term works. First, note that ∀yAD(0, t0, y).
Now if ∀yA(n, tn, y), then in particular AD(n, tn, s2(tn)y) and therefore
AD(n+ 1, s1(tn), y), which is just AD(n+ 1, t(n+ 1), y).

34 / 42



For the enthusiasts: Contraction

�e rest of the soundness proof is fairly straightforward, with the exception of the

seemingly innocuous axiom of contraction i.e.

A→ A ∧ A.

For this we need a pair of function t1, t2 and s satisfying

∀x, y, y′(AD(x, sxyy′)→ AD(t1x, y) ∧ AD(t2x, y′)).

Define t1x = t2x := x and

sxyy′ :=

{
y if AD(x, y′)
y′ if¬AD(x, y′)

�is works, but there are two issues:

1 We need the quantifier-free AD(x, y′) to be decidable.
Consequence. Extending the functional interpretation to theories where
quantifier-free formulas are not decidable (e.g. set theory) is difficult.

2 �e interpretation is asymmetric.

Consequence. Building nice categorical models of the functional interpretation
is difficult.

35 / 42



Outline

1 Introduction

2 Prime numbers and programs

3 An extremely quick overview of intuitionistic arithmetic

4 Gödel’s functional interpretation (Part I)

5 Gödel’s functional interpretation (Part II)

6 �e soundness theorem

7 Case study: Reversing a list

8 References

36 / 42



A proof that all lists can be reversed

�eorem

For all lists of natural numbers a ∈ N∗ there exists a list b ∈ N∗ which is the reversal of a.

�eorem (Formal)

∀a∃b Rev(a, b).

Note.We can encode lists as single natural numbers and reason about them inHAω.

Proof.

We use induction on the length of a. Define

A(n, a, b) :≡ (len(a) = n→ Rev(a, b)).

First, note that A(0, a, []) and so ∀a∃bA(0, a, b).

Now fix n and suppose that ∀a∃bA(n, a, b). Take some a′ with len(a′) = n+ 1. �en

a′ = x :: a for some awith len(a) = n. By hypothesis there is some bwith Rev(a, b)
and hence Rev(x :: a, b :: x). We have shown

∀a∃bA(n, a, b)→ ∀a′∃b′A(n+ 1, a′, b′)

and hence by induction ∀n, a∃bA(n, a, b), fromwhich the theorem follows.

37 / 42



An extracted list reversal program

How does the functional interpretation treat this proof? Note that

∀a∃bA(n, a, b) 7→ ∃f ∀aA(n, a, fa).

where A(n, a, b) :≡ (len(a) = n→ Rev(a, b)). We have:

• ∀aA(0, a, []︸︷︷︸
ra

)

• ∀n, f , a(AD(n, tail(a)︸ ︷︷ ︸
s2 fa

, f (tail(a)))→ AD(n+ 1, a, f (tail(a)) :: head(a)︸ ︷︷ ︸
s1 fa

))

�erefore defining

t(0, a) = [] and t(n+ 1, a) = t(n, tail(a)) :: head(a)

we have ∀nA(n, a, t(n, a)). In other words, defining

t′a := t(len(a), a)

we have ∀aRev(a, t′a).

38 / 42



�e extraction process

How do we extract programs from proofs in practice?

Option 1: ‘by hand’
• Take a textbook proof and try to understand its general logical structure.
• Use the proof interpretation as a tool to guide you in extracting a program.
• Write down the program using pen and paper.

Option 1: ‘bymachine’
• Take a textbook proof and formalise it rigorously in a proof assistant.
• Press a button and automatically extract a program.
• Display the program in some implementation of SystemT.

Both approaches have their advantages and drawbacks, and depending on the

context.

39 / 42



A look ahead to Lecture 3

Everything in thie lecture applied to intuitionistic arithmetic. All of our proofs were

fundamentally constructive in nature - the functional interpretation just allows us to

systematically extract the program implicit in the proof.

Classical arithmetic, on the other hand, is able to prove existential theorems whose

functional interpretation cannot be realized by any computable functional.

But does this mean that classical proofs don’t contain any computational
information?

40 / 42



Outline

1 Introduction

2 Prime numbers and programs

3 An extremely quick overview of intuitionistic arithmetic

4 Gödel’s functional interpretation (Part I)

5 Gödel’s functional interpretation (Part II)

6 �e soundness theorem

7 Case study: Reversing a list

8 References

41 / 42



References I

Avigad, J. and Feferman, S. (1998).

Gödel’s functional (“Dialectica”) interpretation.

In Buss, S. R., editor,Handbook of Proof�eory, volume 137, pages 337–405. Elsevier.

Gödel, K. (1958).

Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.

Dialectica, 12:280–287.

Kohlenbach, U. (2008).

Applied Proof�eory - Proof Interpretations and their Use inMathematics.
Springer Monographs in Mathematics. Springer.

42 / 42


	Introduction
	Prime numbers and programs
	An extremely quick overview of intuitionistic arithmetic
	Gödel's functional interpretation (Part I)
	Gödel's functional interpretation (Part II)
	The soundness theorem
	Case study: Reversing a list
	References

