
PROOFMINING

Lecture 1 - Hilbert’s program and the rise of proof theory

�omas Powell

University of Bath

Nordic Logic Summer School 2022

University of Bergen

13 June 2022

�ese slides are available at https://t-powell.github.io/.

1 / 38

https://t-powell.github.io/


Proof mining

2 / 38



Structure of course

Historical introduction

Today: Hilbert’s program and the rise of proof theory

In-depth exploration

Tuesday:�e functional interpretation of intuitionistic arithmetic.

Wednesday: Classical logic and the negative translation.

Highlights

Thursday:Modern applications.

3 / 38



Outline

1 (Non-)constructivity in mathematics

2 �e rise of proof theory

3 Saving Hilbert: a computational reorientation

4 System T:�e primitive recursive functionals in all finite types

5 �e reorientation of the Dialectica

6 Summary of the course, and references

7 References

4 / 38



“Concrete” mathematics

Up to the 19
th
century, mathematics was primarily concerned with concrete objects

which could be explicitly constructed. E.g.:

• Every number is either even or odd.
• �ere are infinitely many prime numbers.

• Every number can be written as the sum of four squares.

• Every continuous function can be integrated.
• Every non-constant polynomial over over the complex numbers has a root.

Proofs of these results yield concrete algorithms. E.g.:

• We can decide whether a number is even or odd.
• We can find the next prime number.
• For any number we can find four squares which sum to that number.

• We can compute the integral of f up to any desired accuracy.
• We can compute roots of polynomials up to any desired accuracy.

5 / 38



Infinitude of primes

Proposition

�ere are infinitely many prime numbers.

Fundamental theoremof arithmetic: every number has a prime factorisation.

Proof (Aristotle, Euclid).

Suppose there are only finitely many primes and label them p1, . . . , pk. Apply the
fundamental theorem to p1 · · · · · pk + 1 to find a prime factor. �is cannot be any of

the pi.

What constructive information can we extract from this proof?

• �e fundamental theorem of arithmetic gives us a factoring algorithm.

• Given primes p1, . . . , pk, we simply factor p1 · · · pk + 1 to find a new prime.

In other words, the proof comes equipped with an algorithm for finding the next

prime.

We also derive a bound: for any number n there is a prime pwith

n < p ≤ n! + 1

6 / 38



Non-constructive mathematics

With the advent of modernmathematics in the 19
th
century, mathematicians started

to reason about non-constructible objects.

• For every f : N→ N there exists an n such that f (n) ≤ f (m) for allm.
• Every set of real numbers has a least upper bound.
• Every monotone, bounded sequence converges to a limit.
• Every ring has a maximal ideal.
• Every vector space has a basis.

In general, none of these existence results yield effective algorithms.

�ey give the existence of ideal objects, based purely on formal reasoning.

Question: Do these ideal objects really ‘exist’?

Intuitively, we believe they do since we trust mathematical reasoning. But some

rather bizarre phenomenamay occur...

7 / 38



Example: irrational powers

Proposition

�ere are irrational numbers a, b such that ab is rational.

Proof.

We know that

√
2 is irrational. What about

√
2

√
2

? We have two cases:

• If
√
2

√
2

is rational, then set a = b =
√
2.

• Otherwise, set a =
√
2

√
2

and b =
√
2. We have,

ab = (
√
2

√
2

)
√
2 =
√
2

√
2·
√
2

=
√
2

2

= 2

so ab is rational as required.

We have proved the proposition, but we do not know which of the cases hold!

Question: Is

√
2

√
2

rational or irrational?! Answered by the Gelfond-Schneider

theorem (it’s irrational).

8 / 38



Down the rabbit hole...

Even worse, this style of mathematical reasoning can lead us down fallacious paths.

Example (Russell’s paradox (B. Russell, 1901))

Let R := {x : x /∈ x}. Is R ∈ R?
• If R ∈ R then by definition wemust have that R /∈ R;
• But if R /∈ R then wemust have R ∈ R.

We have a contradiction!

Conclusion: Our naive formulation ofmathematics, in par-

ticular set theory, is inconsistent, and so cannot be trusted.

9 / 38



�e foundational crisis

�e discovery of various paradoxes (including Russell’s paradox) led to the so-called

foundational crisis at the turn of the century:

• Can we construct solid formal foundations for mathematics?
• Can we ensure that they are consistent, and do no succumb to paradoxes?
• In particular, can we give a formal treatment of set theory?

�ese led to the resurgence of fundamental philosophical questions:

• What is a mathematical proof?
• Canmathematics/arithmetic be reduced to pure logic?
• Domathematical objects ‘exist’ in some abstract sense, or are they just symbols
on a piece of paper?

10 / 38



Outline

1 (Non-)constructivity in mathematics

2 �e rise of proof theory

3 Saving Hilbert: a computational reorientation

4 System T:�e primitive recursive functionals in all finite types

5 �e reorientation of the Dialectica

6 Summary of the course, and references

7 References

11 / 38



Emerging philosophies

Two competing schools of thought emerged as a reaction to the foundational crisis:

Intuitionism (led by L. E. J. Brouwer, see [Iemhoff, 2016])

• Based on semantics.
• Mathematics is a mental construction: Something exists
only if it can be constructed.

• Infinite sets, maximals ideals, limits are all dubious
unless they can be built explicitly.

Formalism (led by D. Hilbert, see [Weir, 2015])

• Based on syntax.
• Mathematics is a game of symbols: something ‘exists’ if it
can be derived frommathematical axioms by logical

inference rules.

• Infinite sets, maximal ideals, limits are all fine, as long as
our underlying logical system can be trusted.

Wewill follow the formalist approach, but take advantage of elegant ideas from both.

12 / 38



Hilbert’s Program

In the early 20
th
century, Hilbert proposed a set of benchmarks for a satisfactory

foundation of arithmetic:

Hilbert’s Program, 1921

Find a collection of axioms and inference rulesP for arithmetic which is:
1 Complete: all true statements in the language of arithmetic are provable inP.

2 Consistency: P does not prove a contradiction.

Aside: But this statement is circular! To show thatP is consistent we need to work
in some other system, which in turn needs to be shown to be consistent etc. Hilbert

was well aware of this, so he asked for the following further refinement:

(continued)

3 Finitary consistency: the fact thatP is consistent is demonstrable using
only simple finitarymethods, whose validity cannot be questioned.

13 / 38



Unwinding Hilbert’s formalism

�e notion of ‘finitary’ in Hilbert’s program is crucial and, indeed, a subject of

debate. Hilbert asks us to distinguish object-level systemsP from ‘finitary’

meta-level systemsN where:

• P can reason about crazy objects which cannot be constructed (and which
would be rejected by intuitionists).

• N is grounded in a world of numbers and simple arithmetic operations, which

no reasonable person could doubt. It is unquestionably correct.

�emeta-level systemN should be adequate for proving the consistency of the

object-level systemP. In particular:

N ` “P is consistent” (1)

Intuition: to trustP, it is enough to trustN .

14 / 38



Chasing dreams

Hilbert’s program is a great idea! It is the gold standard of formalist philosophy,

guaranteeing mathematical practice that is free from contradictions and paradoxes.

�ere is only one tiny catch...

... it doesn’t work.

Enter K. Gödel:

15 / 38



HowGödel impacts Hilbert

• Wewould assume our formal systemP allows us, in particular, to reason about
elementary arithmetic.

• Gödel II: AssumeP is a consistent formal systemwhich contains elementary

arithmetic. �en

P 0 Con(P)
• LetN be our proposed finitary system. �en we would assume thatN is a

subsystem elementary arithmetic, and hence ofP. �erefore

N 0 Con(P)

16 / 38



�eway around Gödel

In a very specific sense, Hilbert’s program is impossible. But let’s reconsider our

assumption

... we would assume thatN is a subsystem of elementary arithmetic ...

Can we prove Con(P) in some systemN which is

• not a subsystem of elementary arithmetic, but

• still ‘finitary’ in some sense?

What would be a good candidate forN ?

17 / 38



Revised Hilbert’s program

A number of different approaches to Hilbert’s programwere proposed. In

particular, Gentzen proposed thatN could be a system of ordinals, and employed

ordinal analysis - induction up to ε0 - to prove the consistency of Peano arithmetic.

But there was another person who attempted to overcome the obstacle thrown down

by Gödel...

... Gödel himself!

18 / 38



Outline

1 (Non-)constructivity in mathematics

2 �e rise of proof theory

3 Saving Hilbert: a computational reorientation

4 System T:�e primitive recursive functionals in all finite types

5 �e reorientation of the Dialectica

6 Summary of the course, and references

7 References

19 / 38



Reformulating Hilbert’s program

Gödel’s incompleteness theorems demonstrate that Hilbert’s program could not be

achieved, but only in its most narrow sense.
From a broader perspective, Hilbert’s programwas an extraordinary success, and

continues in spirit in modernmathematics, particularly proof theory and

theoretical computer science. Its legacy includes:

• �e establishment of formalism: Proofs as syntactic objects which can be

manipulated according to combinatorial rules.

• �e connection between proofs and programs, and the development of

powerful techniques which translate between the two.

• Introducing the idea that ordinary mathematical proofs can be studied as
objects in their own right.

20 / 38



�is course

�is lecture course is about the success of Hilbert’s program and the role it plays in

research today.

We focus on proof interpretations: formal translations between strong logical

theoriesP and ‘finitary’ systemsN

P 7→ N

Our aims are to:

1 Introduce Goedel’s Dialectica interpretation and explain how it works;

2 Emphasise the connection between proof and computation;

3 Explain how we can ‘compute’ fundamentally non-computable objects;

4 Give some examples of modern research that uses proof interpretations and

ideas fromHilbert’s program to obtain new results in mathematics.

For the remainder of this lecture we give an broad outline of the main ideas.

21 / 38



Proof Interpretations

Recall the original aim of Hilbert’s program: Reduce a mathematical theoryP to a
very simple finitary theoryN , which we imagine as a map

P 7→ N

�e aim is that we would then have

Con(N )⇒ Con(P).

In Hilbert’s original formulation:

• P is a theory which contains a reasonable portion of ‘ordinary mathematics’,
such as Peano arithmetic. We can use these theories to prove the existence of

non-computable objects.

• N is a simple, finitistic theory. �is was never fully specified by Hilbert, but the

intuition was that it contains nothing beyond simple numbers and arithmetical

operations, and is entirely computational.

22 / 38



Gödel’s functional (‘Dialectica’) interpretation (1958)

One of the first responses to Hilbert’s programwas given by Gödel himself. His idea

was to weaken the notion of ‘finitary’:

PA︸︷︷︸
P

7→ SystemT︸ ︷︷ ︸
N

He achieved one of the first relative consistency proofs of ordinary mathematics,
namely:

Con(T)⇒ Con(PA)

In Gödel’s consistency proof:

• P is the theory of Peano arithmetic;
• N is a new theory called SystemT. It contains simple operations on numbers,
but also more complicated things, such as recursion over higher types, which

are not strictly finitary in Hilbert’s sense.

• SystemT is essentially a simple functional programming language akin to

Haskell.

23 / 38



Outline

1 (Non-)constructivity in mathematics

2 �e rise of proof theory

3 Saving Hilbert: a computational reorientation

4 System T:�e primitive recursive functionals in all finite types

5 �e reorientation of the Dialectica

6 Summary of the course, and references

7 References

24 / 38



Gödel’s idea

Gödel’s idea was to choose, as our ‘finitary’ systemN , a prototypical programming
language called System T.

System T doesn’t look like a programming language in the modern sense: Rather, it

is a simple and cleanmathematical systemwhich allows us to define programs using

primitive recursion.

For example, if we wanted to construct the factorial function we would simply write

f (0) = 1 f (n+ 1) = (n+ 1) · f (n)

So far everything looks very finitary indeed. �e catch is that System T allows us to

construct functionals of higher-type i.e. functions which take functions as

arguments e.g.

F(g, n) = g(g(n+ 1)) + g(n− 1)

In this sense, System T is a precursor to the modern functional programming

language, which include Haskell andML.

25 / 38



System T:�e types

In functional languages, programs are usually assigned a type.

In System T, the types are defined by two simple rules:

• N is a type;
• If ρ and τ are types, so is ρ→ τ .

SoN,N→ N, (N→ N)→ N etc. are all types. �e latter is a functional: a function

which takes a function as an input.

Key point: System T is not a subsystem of elementary arithmetic, since arithmetic

also talks about numbers and functions...

26 / 38



System T:�e terms

Objects - or terms - of System T are defined by the following rules. We write t : ρ to
denote ‘t has type ρ’.

• there are infinitely many variables xρ, yρ, zρ, . . . of each type
• 0 : N is a term
• the successor function s : N→ N is a term. We write x + 1 for s(x).
• if t : ρ→ τ and s : ρ are terms, then so is t(s).
• if t : τ is a term and x : ρ a variable, then λx.t : ρ→ τ is a term.

• for each type, the recursor Rρ : ρ→ (N→ ρ→ ρ)→ N→ ρ is a term

�ese terms are governed by axioms, which characterise how they behave. In

particular, the λ-operator allows us to construct functions from terms:

(λx.t)(s) = t[s/x]

while the recursor allows us to carry out recursion:

Rρaf 0 = a
Rρaf (n+ 1) = fn(Rρafn)

27 / 38



�e Ackermann function in System T

Define I : (N→ N)→ N→ N by

I(g, 0) = g(1)
I(g, n+ 1) = g(I(g, n))

and then A : N→ N→ N by

A(0) = λn.n+ 1

A(m+ 1) = I(A(m))

It now follows that

A(0, n) = n+ 1

A(m+ 1, 0) = I(A(m), 0)
= A(m, 1)

A(m+ 1, n+ 1) = I(A(m), n+ 1)

= A(m, I(A(m), n))
= A(m, A(m+ 1, n))

28 / 38



System T:�e rest

Formally speaking, System T is a logical systemwhose objects are the terms

described just now, and whose axioms consist of those which govern the terms,

together with axioms of propositional logic and a scheme of induction.

But for this course, the details are not important! Here’s what you need to know:

• System T is a simple programming language, which allows us to construct and

reason about simple recursive functions and functionals.

• It is not a subsystem of elementary arithmetic, because it talks about

higher-order objects, but it is fundamentally computational, or ‘finitary’.

• It is nevertheless surprisingly strong! We can not only define all primitive
recursive functions, but also things like the Ackermann function.

29 / 38



Outline

1 (Non-)constructivity in mathematics

2 �e rise of proof theory

3 Saving Hilbert: a computational reorientation

4 System T:�e primitive recursive functionals in all finite types

5 �e reorientation of the Dialectica

6 Summary of the course, and references

7 References

30 / 38



G. Kreisel and the ‘unwinding of proofs’

To summarise:

• Gödel’s functional interpretation is to interpret a complicated logical theory in
a simpler calculus of programs (i.e. programming language).

• Originally, this was to obtain relative consistency proofs - to reduce the
‘trustworthyness’ of ordinary mathematics to that of a simple programming

language.

However, in the 1960s the Austrian logician G. Kreisel proposed using proof

interpretations for a different purpose: to extract explicit computational

information from existential statements, or more generally put:

“What more do we know if we have proved a theorem by restricted mean than if we
merely know that it is true?”

For example: If we have a concrete proof that an object x exists, can we analyse the
proof to find some ‘computational information’ about x?

31 / 38



Computational information

What do wemean by ‘computational information’?

• A proof of P ∨ Q a boolean which tells us which of P orQ one is true.
• A proof that a set X ⊆ N is infinite for each n ∈ N a way to find somem > n
withm ∈ X.
• A proof that there is a real number x satisfying R(x) amethod for computing

approximations to x up to any desired accuracy.

But what about those fundamentally non-constructive objects?

• A proof that a sequence converges A rate of convergence? Can we always find

this?

• A proof that every vector space has a basis ???

�is is a question central to the course.

32 / 38



Outline

1 (Non-)constructivity in mathematics

2 �e rise of proof theory

3 Saving Hilbert: a computational reorientation

4 System T:�e primitive recursive functionals in all finite types

5 �e reorientation of the Dialectica

6 Summary of the course, and references

7 References

33 / 38



�e functional interpretation of intuitionistic arithmetic (Lecture 2)

Gödel’s intuitionistic functional interpretation maps theorems A in Heyting
arithmetic (i.e. Peano arithmetic but without the law of excluded-middle P ∨ ¬P) to
formulas of the form ∃x∀yAD(x, y)where AD(x, y) is a quantifier-free formula of
SystemT. �emain soundness theorem states:

If HA proves A then System T proves ∀yAD(t, y)

where t is a term (i.e. a program) that can be formally extracted from the proof of A.

In Lecture 2we will:

1 discuss the notion of program extraction in more detail;

2 briefly outline the theory of Heyting arithmetic;

3 study the interpretation A 7→ AD(x, y);
4 give an overview of the soundness theorem;

5 carry out some worked examples.

34 / 38



Classical logic and the negative translation (Lecture 3)

�ere are some things which cannot be explicitly constructed e.g. a function f
witnessing the Halting problem.

f (e, x) :=

{
1 if {e} terminates on input x
0 otherwise

One can prove that such a function exists, but no computable f can be constructed.

So how does the functional interpretation treat this kind of thing?

In Lecture 3we will:

1 give some examples of existential statements which are fundamentally

non-computable;

2 describe the kind of ‘indirect’ information we can nevertheless extract from the

underlying classical proofs;

3 make this formal via the negative translation of classical logic into

intuitionistic logic;

4 discuss the special case of ∀∃ statements.

35 / 38



Proof interpretations today (Lecture 4)

�e application of proof interpretations inmathematics and computer science has taken
off in the last two decades, and is an active and exciting area of research today. We

will outline several topics at the cutting edge, and describe a range of open

questions.

Lecture 4will provide a high level snapshot of present day research in applied proof

theory...

36 / 38



Outline

1 (Non-)constructivity in mathematics

2 �e rise of proof theory

3 Saving Hilbert: a computational reorientation

4 System T:�e primitive recursive functionals in all finite types

5 �e reorientation of the Dialectica

6 Summary of the course, and references

7 References

37 / 38



References I

Iemhoff, R. (2016).

Intuitionism in the philosophy of mathematics.

In Zalta, E. N., editor,�eStanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, winter 2016 edition.

Weir, A. (2015).

Formalism in the philosophy of mathematics.

In Zalta, E. N., editor,�eStanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, spring 2015 edition.

38 / 38


	(Non-)constructivity in mathematics
	The rise of proof theory
	Saving Hilbert: a computational reorientation
	System T: The primitive recursive functionals in all finite types
	The reorientation of the Dialectica
	Summary of the course, and references
	References

