Some recent work in proof mining

Thomas Powell

University of Bath

(jww Franziskus Wiesnet)

LOGIC COLLOQUIUM '21

Session on Proofs and Programs 22 July 2021

These slides will be available at https://t-powell.github.io/talks

Applied proof theory (aka 'proof mining') in one slide:

Uses ideas and techniques from proof theory to analyse mathematical proofs and:

- Extract quantitative information (even when the proof is at first glance nonconstructive).
- Obtain generalisations of the original theorem through weakening/abstracting assumptions.
- Give deeper insights into theorems from 'mainstream' mathematics and provide a uniform framework through which different results can be brought together.

Aims of this talk:

- Present a recent application of proof theory in nonlinear analysis.
- Provide some general insight into how proof mining is done in practice.

Outline

1 A high level overview

2 A simple worked example

3 A first general result

4 Summary of further results and conclusion

We start with something familiar:

Throughout this talk, we work in a Banach space X.

A mapping $T : E \to E$ for $E \subseteq X$ is called *strongly contractive* (or often just a *contraction mapping*) if there exists $k \in [0, 1)$ such that $\forall x, y \in E$:

$$||Tx - Ty|| \le (1 - k) ||x - y||$$

Theorem (Banach fixed point theorem)

If T is strongly contractive then it possesses a fixpoint q. Moreover, from any starting point x_0 the sequence $\{x_n\}$ defined by $x_{n+1} := Tx_n$ converges to q, with rate of convergence

$$\|x_n - q\| \le rac{(1-k)^n}{k} \|x_1 - x_0\|$$

$$\boxed{\text{space } X} + \boxed{\text{mapping } T} + \boxed{\text{algorithm } \{x_n\}} \implies \boxed{\text{convergence to fixpoint}}$$

A generalisation of the Banach fixed point theorem:

A mapping $T : E \to E$ for $E \subseteq X$ is called ψ -weakly contractive if $\psi : [0, \infty) \to [0, \infty)$ is a nondecreasing function with $\psi(0) = 0$ and $\psi(t) > 0$ for t > 0, and $\forall x, y \in E$:

$$||Tx - Ty|| \le ||x - y|| - \psi(||x - y||)$$

In the case that $\psi(t) := kt$ then T is strongly contractive.

Theorem ([Alber and Guerre-Delabriere, 1997])

If T is weakly contractive then it possesses a fixpoint q. Moreover, from any starting point x_0 the sequence $\{x_n\}$ defined by $x_{n+1} := Tx_n$ converges to q, with rate of convergence

$$||x_n - q|| \le \Psi^{-1}(\Psi(||x_0 - q||) - n)$$

where Ψ is given by

$$\Psi(s) := \int^s \frac{dt}{\psi(t)}$$

space
$$X$$
 + mapping T + algorithm $\{x_n\}$ \implies convergence to fixpoint

Example of a weakly contractive mapping

Define $X = \mathbb{R}$ and $T : [0, 1] \to [0, 1]$ by $Tx := \sin x$. Then we can show that

$$|\sin x - \sin y| \le |x - y| - \frac{1}{8}|x - y|^3$$

and so sin is ψ -weakly contractive for $\psi(t) = \frac{1}{8}t^3$.

The unique fixpoint of sin is x = 0, and defining $x_{n+1} := \sin x_n$ we have $x_n \to 0$ with rate of convergence

$$x_n \leq \frac{1}{\sqrt{x_0^{-2} + \frac{n-1}{4}}}$$

(cf. [Alber and Guerre-Delabriere, 1997] for details).

A further generalisation:

A mapping $T : E \to E$ for $E \subseteq X$ is called totally asymptotically ψ -weakly contractive if $\psi, \phi : [0, \infty) \to [0, \infty)$ are nondecreasing functions with $\psi(0) = \phi(0) = 0$ and $\psi(t), \phi(t) > 0$ for t > 0, and $\forall x, y \in E$:

$$||T^{n}x - T^{n}y|| \leq ||x - y|| - \psi(||x - y||) + k_{n}\phi(||x - y||) + l_{n}$$

for $k_n, l_n \to 0$. In the case that $k_n = l_n := 0$ then *T* is ψ -weakly contractive.

Theorem (Adapted from [Alber et al., 2006])

Suppose that $E \subseteq X$ is convex, T is asymptotically ψ -weakly contractive and q is a fixpoint of T. Moreover, from any starting point x_0 define the sequence $\{x_n\}$ by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n$$

where $\{\alpha_n\}$ is some sequence of nonnegative reals with $\sum_{n=0}^{\infty} \alpha_n = \infty$. Suppose that $||x_n - q||$ is bounded. Then $x_n \to q$.

A clear closed form expression for a rate of convergence is not given in [Alber et al., 2006].

space X + mapping T + algorithm
$$\{x_n\}$$
 \implies convergence to fixpoint

Definition ([P. and Wiesnet, 2021])

A sequence of mappings $\{A_n\}$ with $A_n : E \to E$ is quasi asymptotically ψ -weakly contractive w.r.t q and with modulus σ if for all $\delta, c > 0$ and $x, y \in E$:

$$\|x-q\| \leq c \implies \forall n \geq \sigma(\delta, c)(\|A_n x - q\| \leq \|x-q\| - \psi(\|x-q\|) + \delta)$$

Example. If *T* is totally asymptotically ψ -weakly contractive in the sense that

$$||T^{n}x - T^{n}y|| \leq ||x - y|| - \psi(||x - y||) + k_{n}\phi(||x - y||) + l_{n}$$

then $\{T^n\}$ is quasi asymptotically $\psi\text{-weakly}$ contractive w.r.t. any fixpoint of T with modulus

$$\sigma(\delta, c) := \max\left\{f_1\left(\frac{\delta}{2\phi(c)}\right), f_2\left(\frac{\delta}{2}\right)\right\}$$

where f_1, f_2 are rates of convergence for $k_n, l_n \rightarrow 0$.

Theorem (Adapted from [P. and Wiesnet, 2021])

Suppose that $E \subseteq X$ is convex, $\{A_n\}$ is quasi asymptotically ψ -weakly contractive w.r.t q and with modulus σ . Moreover, from any starting point x_0 define the sequence $\{x_n\}$ by

 $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n A_n x_n$

where $\{\alpha_n\} \in [0, \alpha]$ is some sequence of nonnegative reals with $\sum_{n=0}^{\infty} \alpha_n = \infty$. Suppose that $||x_n - q||$ is bounded by c > 0. Then $x_n \to q$, with rate of convergence

$$\|x_n-q\|\leq F^{-1}\left(2\Psi(c)-\sum_{i=0}^{n-2}\alpha_i\right)$$

where $F:(0,\infty)\to\mathbb{R}$ is any strictly increasing and continuous function satisfying

$$F(\varepsilon) \geq 2\Psi\left(\frac{\varepsilon}{2}\right) - \alpha \cdot \sigma\left(\frac{1}{2}\min\left\{\psi\left(\frac{\varepsilon}{2}\right), \frac{\varepsilon}{\alpha}\right\}, c\right)$$

and Ψ is given by

$$\Psi(s) := \int^s \frac{dt}{\psi(t)}$$

How are these results obtained?

- An analysis of the logical structure of key properties and assumptions.
- An analysis of the convergence proofs (which often use liminfs, convergent subsequences etc).
- A study of the relevant literature, identifying common patterns.

Outline

1 A high level overview

2 A simple worked example

3 A first general result

4 Summary of further results and conclusion

 $T: E \to E$ is ψ -weakly contractive if $\psi : [0, \infty) \to [0, \infty)$ is a nondecreasing function with $\psi(0) = 0$ and $\psi(t) > 0$ for t > 0, and $\forall x, y \in E$:

$$||Tx - Ty|| \le ||x - y|| - \psi(||x - y||)$$

Theorem (A)

Suppose that T is ψ -weakly contractive and q is a fixpoint of T. Define $x_{n+1} := Tx_n$ for any starting point x_0 . Then

$$||x_{n+1}-q|| \le ||x_n-q|| - \psi(||x_n-q||)$$

for all $n \in \mathbb{N}$.

Proof. We observe that

$$\begin{aligned} \|x_{n+1} - q\| &= \|Tx_n - q\| & \text{definition of } x_{n+1} \\ &= \|Tx_n - Tq\| & q \text{ a fixpoint of } T \\ &\leq \|x_n - q\| - \psi(\|x_n - q\|) & T \text{ is } \psi \text{-weakly contractive} \end{aligned}$$

Lemma (B)

Let $\{\mu_n\}$ be a sequence of nonnegative reals satisfying

$$\mu_{n+1} \le \mu_n - \psi(\mu_n)$$

where $\psi : [0, \infty) \to [0, \infty)$ is a nondecreasing function with $\psi(t) > 0$ for t > 0. Then $\mu_n \to 0$, and moreover, for any $\varepsilon > 0$ we have

$$\forall n \geq \Phi(\varepsilon)(\mu_n \leq \varepsilon)$$

where Φ is defined by

$$\Phi(\varepsilon) := \left\lceil \int_{\varepsilon}^{\mu_0} \frac{dt}{\psi(t)} \right\rceil$$

Proof. Suppose for contradiction that there exists $\varepsilon > 0$ such that $\mu_n > \varepsilon$ for all $n \in \mathbb{N}$. Observe that

$$1 \leq rac{\mu_n - \mu_{n+1}}{\psi(\mu_n)}$$
 (definition of μ_n and $\psi(\mu_n) > 0$)
 $\leq \int_{\mu_{n+1}}^{\mu_n} rac{dt}{\psi(t)}$ (1/ $\psi(t)$ nonincreasing)

Proof (cont).

For any $N \in \mathbb{N}$ we have

$$N = \sum_{i=0}^{N-1} 1$$

$$\leq \sum_{i=0}^{N-1} \int_{\mu_{n+1}}^{\mu_n} \frac{dt}{\psi(t)} \quad \text{(previous slide)}$$

$$\leq \int_{\mu_N}^{\mu_0} \frac{dt}{\psi(t)} \quad (\mu_{n+1} < \mu_n)$$

$$\leq \int_{\varepsilon}^{\mu_0} \frac{dt}{\psi(t)} \quad (\varepsilon < \mu_N)$$

But this is false for

$$N:=\left\lceil\int_{\varepsilon}^{\mu_{0}}\frac{dt}{\psi(t)}\right\rceil$$

and therefore there exists some $n \leq N$ such that $\mu_n \leq \varepsilon$. But then in particular, since

$$\mu_{n+1} \le \mu_n - \psi(\mu_n) \le \mu_n$$

it follows that $\mu_n \leq \varepsilon$ for all $n \geq N$.

Theorem (= Theorem A + Lemma B)

Suppose that T is ψ -weakly contractive and q is a fixpoint of T. Define $x_{n+1} := Tx_n$ for any starting point x_0 . Then $||x_n - q|| \to 0$, and moreover, for any $\varepsilon > 0$ we have

$$\forall n \geq \Phi(\varepsilon)(\|x_n-q\| \leq \varepsilon)$$

where Φ is defined by

$$\Phi(\varepsilon) := \left[\int_{\varepsilon}^{\|\mathbf{x}_0 - q\|} \frac{dt}{\psi(t)} \right]$$

This is a perfectly satisfactory quantitaive convergence theorem, where we provide a 'proof theorist's' rate of convergence for $\mu_n \to 0$ i.e. a function Φ such that

$$\forall \varepsilon > 0, \forall n \geq \Phi(\varepsilon)(\mu_n \leq \varepsilon)$$

Analysts, on the other hand, typically formulate a rate of convergence as a function f such that

$$\forall n(\mu_n \leq f(n))$$

where $f(n) \to 0$ as $n \to \infty$.

Rate conversion. We have shown that for any $\varepsilon > 0$ we have $||x_n - q|| \le \varepsilon$ for

$$n \geq \left[\int_{\varepsilon}^{\|x_0-q\|} \frac{dt}{\psi(t)}\right]$$

We now want to find for each $n \in \mathbb{N}$ some ε_n such that

$$\|x_n-q\|\leq \varepsilon_n$$

This would work for any ε_n with

$$n-1 < \int_{\varepsilon_n}^{\|\mathbf{x}_0-q\|} \frac{dt}{\psi(t)} = \Psi(\|\mathbf{x}_0-q\|) - \Psi(\varepsilon_n) \le n$$

so define ε_n such that

$$\Psi(\|x_0-q\|)-\Psi(\varepsilon_n)=n$$

i.e.

$$\varepsilon_n := \Psi^{-1}(\Psi(\|x_0 - q\|) - n)$$

Theorem (= Theorem A + Lemma B + rate conversion)

Suppose that T is ψ -weakly contractive and q is a fixpoint of T. Define $x_{n+1} := Tx_n$ for any starting point x_0 . Then $||x_n - q|| \to 0$, and moreover, for any $n \in \mathbb{N}$ we have

$$||x_n - q|| \le \Psi^{-1}(\Psi(||x_0 - q||) - n)$$

where Ψ is given by

$$\Psi(s) := \int^s \frac{dt}{\psi(t)}$$

Now compare this to:

Theorem ([Alber and Guerre-Delabriere, 1997])

If T is weakly contractive then it possesses a fixpoint q. Moreover, from any starting point x_0 the sequence $\{x_n\}$ defined by $x_{n+1} := Tx_n$ converges to q, with rate of convergence

$$||x_n - q|| \le \Psi^{-1}(\Psi(||x_0 - q||) - n)$$

where Ψ is given by

$$\Psi(s) := \int^s \frac{dt}{\psi(t)}$$

- Reduce everything to a recursive inequality in terms of $\mu_n := ||x_n q||$.
- Apply a general quantitative convergence theorem for this inequality.
- Convert proof-theoretic rate into analyst's rate (optional, but essential if we want to compare with known bounds in simple cases).

Steps 2 and 3 can be done in a very general setting, so that in concrete cases, we only need to adapt Step 1!

Outline

1 A high level overview

2 A simple worked example

3 A first general result

4 Summary of further results and conclusion

A sequence $\{A_n\}$ with $A_n : E \to E$ is quasi asymptotically ψ -weakly contractive w.r.t. q and with modulus σ if for all $\delta, c > 0$ and $x, y \in E$:

$$\|x-q\| \leq c \implies \forall n \geq \sigma(\delta, c)(\|A_n x-q\| \leq \|x-q\| - \psi(\|x-q\|) + \delta)$$

Theorem (A^+)

Suppose that $\{A_n\}$ is quasi asymptotically ψ -weakly contractive w.r.t. q and σ , and that the sequence $\{x_n\}$ satisfies

$$\mathbf{x}_{n+1} = (1 - \alpha_n)\mathbf{x}_n + \alpha_n \mathbf{A}_n \mathbf{x}_n$$

for $\{\alpha_n\}$ a sequence of nonnegative reals. Then whenever $||x_n - q||$ is bounded above by some c > 0, for any $\delta > 0$ and $n \ge \sigma(\delta, c)$ we have:

$$||x_{n+1} - q|| \le ||x_n - q|| - \alpha_n \psi(||x_n - q||) + \alpha_n \delta$$

Proof. We observe that for $n \ge \sigma(\delta, c)$

$$\begin{aligned} \|x_{n+1} - q\| &= \|(1 - \alpha_n)(x_n - q) + \alpha_n(A_n x_n - q)\| & (\text{rearranging}) \\ &\leq (1 - \alpha_n) \|x_n - q\| + \alpha_n \|A_n x_n - q\| & (\text{triangle inequality}) \\ &\leq (1 - \alpha_n) \|x_n - q\| + \alpha_n (\|x_n - q\| - \psi(\|x_n - q\|) + \delta) & (\text{property of } \{A_n\}) \\ &= \|x_n - q\| - \alpha_n \psi(\|x_n - q\|) + \alpha_n \delta \end{aligned}$$

Lemma (B⁺)

Let $\{\mu_n\}$ be a sequence of nonnegative reals such that for any $\delta > 0$ we have

$$\mu_{n+1} \le \mu_n - \alpha_n \psi(\mu_n) + \alpha_n \delta$$

for all $n \geq \sigma(\delta)$, where:

- $\psi: [0,\infty) \to [0,\infty)$ is a nondecreasing function with $\psi(t) > 0$ for t > 0;
- $\{\alpha_n\} \subset [0, \alpha]$ is a sequence of nonnegative real numbers such that $\sum_{n=0}^{\infty} \alpha_n = \infty$ with rate of divergence $r : (0, \infty) \times (0, \infty) \to \mathbb{N}$ i.e.

$$\forall N \in \mathbb{N}, x > \mathsf{O}\left(\sum_{n=N}^{r(N,x)} lpha_n > x\right)$$

Then $\mu_n
ightarrow$ 0, and moreover, for any $\varepsilon >$ 0 we have

$$\forall n \geq \Phi(\varepsilon)(\mu_n \leq \varepsilon)$$

where Φ is defined by

$$\Phi(\varepsilon) := r\left(\sigma\left(\frac{1}{2}\min\left\{\psi\left(\frac{\varepsilon}{2}\right),\frac{\varepsilon}{\alpha}\right\}\right), 2\int_{\varepsilon/2}^{\varepsilon}\frac{dt}{\psi(t)}\right)$$

and c is an upper bound for $\{\mu_n\}$.

Theorem (= Theorem A^+ + Lemma B^+)

Suppose that $\{A_n\}$ is quasi asymptotically ψ -weakly contractive w.r.t. q and σ , and that the sequence $\{x_n\}$ satisfies

$$\mathbf{x}_{n+1} = (1 - \alpha_n)\mathbf{x}_n + \alpha_n A_n \mathbf{x}_n$$

for $\{\alpha_n\}$ a sequence of nonnegative reals such that $\sum_{n=0}^{\infty} \alpha_n = \infty$ with rate of divergence r. Then whenever $||x_n - q||$ is bounded above by some c > 0, we have $||x_n - q|| \to 0$, and moreover, for any $\varepsilon > 0$ we have

$$\forall n \geq \Phi(\varepsilon)(\|\mathbf{x}_n - q\| \leq \varepsilon)$$

where Φ is defined by

$$\Phi(\varepsilon) := r\left(\sigma\left(\frac{1}{2}\min\left\{\psi\left(\frac{\varepsilon}{2}\right), \frac{\varepsilon}{\alpha}\right\}, c\right), 2\int_{\varepsilon/2}^{c} \frac{dt}{\psi(t)}\right)$$

Recall from earlier...

Definition ([P. and Wiesnet, 2021])

A sequence of mappings $\{A_n\}$ with $A_n : E \to E$ is quasi asymptotically ψ -weakly contractive w.r.t q and with modulus σ if for all $\delta, c > 0$ and $x, y \in E$:

$$\|x-q\| \leq c \implies \forall n \geq \sigma(\delta, c)(\|A_n x-q\| \leq \|x-q\| - \psi(\|x-q\|) + \delta)$$

Example. If T is totally asymptotically ψ -weakly contractive in the sense that

$$||T^{n}x - T^{n}y|| \leq ||x - y|| - \psi(||x - y||) + k_{n}\phi(||x - y||) + l_{n}$$

then $\{T^n\}$ is quasi asymptotically $\psi\text{-weakly contractive w.r.t.}$ any fixpoint of T with modulus

$$\sigma(\delta, c) := \max\left\{f_1\left(rac{\delta}{2\phi(c)}
ight), f_2\left(rac{\delta}{2}
ight)
ight\}$$

where f_1, f_2 are rates of convergence for $k_n, l_n \rightarrow 0$.

Corollary (Quantitative version of [Alber et al., 2006])

Suppose that $T: E \to E$ is quasi totally asymptotically ψ -weakly contractive in the sense that

$$||T^{n}x - T^{n}y|| \le ||x - y|| - \psi(||x - y||) + k_{n}\phi(||x - y||) + l_{n}$$

for $k_n, l_n \rightarrow 0$, that q is a fixpoint of T and that the sequence $\{x_n\}$ satisfies

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n$$

for $\{\alpha_n\}$ a sequence of nonnegative reals such that $\sum_{n=0}^{\infty} \alpha_n = \infty$ with rate of divergence r. Then whenever $||x_n - q||$ is bounded above by some c > 0, we have $||x_n - q|| \to 0$, and moreover, for any $\varepsilon > 0$ we have

$$\forall n \geq \Phi(\varepsilon)(\|\mathbf{x}_n - q\| \leq \varepsilon)$$

where Φ is defined by

$$\Phi(\varepsilon) := r\left(\sigma\left(\frac{1}{2}\min\left\{\psi\left(\frac{\varepsilon}{2}\right),\frac{\varepsilon}{\alpha}\right\}, c\right), 2\int_{\varepsilon/2}^{\varepsilon}\frac{dt}{\psi(t)}\right)$$

and

$$\max\left\{f_1\left(\frac{\delta}{2\phi(c)}\right), f_2\left(\frac{\delta}{2}\right)\right\}$$

where f_1, f_2 are rates of convergence for $k_n, l_n \rightarrow 0$.

Theorem (= Theorem A^+ + Lemma B^+ + rate conversion)

Suppose that $\{A_n\}$ is quasi asymptotically ψ -weakly contractive w.r.t. q and σ , and that the sequence $\{x_n\}$ satisfies

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n A_n x_n$$

for $\{\alpha_n\}$ a sequence of nonnegative reals such that $\sum_{n=0}^{\infty} \alpha_n = \infty$. Then whenever $||x_n - q||$ is bounded above by some c > 0, we have $||x_n - q|| \to 0$, with rate of convergence

$$\|x_n-q\| \leq F^{-1}\left(2\Psi(c)-\sum_{i=0}^{n-2}\alpha_i\right)$$

where $F:(0,\infty)\to\mathbb{R}$ is any strictly increasing and continuous function satisfying

$$F(\varepsilon) \ge 2\Psi\left(\frac{\varepsilon}{2}\right) - \alpha \cdot \sigma\left(\frac{1}{2}\min\left\{\psi\left(\frac{\varepsilon}{2}\right), \frac{\varepsilon}{\alpha}\right\}, c\right)$$

and Ψ is given by

$$\Psi(s) := \int^s \frac{dt}{\psi(t)}$$

Outline

1 A high level overview

2 A simple worked example

3 A first general result

4 Summary of further results and conclusion

Further results I: *d*-weakly contractive mappings

Let X be a **uniformly smooth** Banach space, X^* be the dual of X, and $J : X \to X^*$ the normalized duality mapping i.e.

$$\langle x, Jx \rangle = \|x\|^2 = \|Jx\|^2$$

We call $\{A_n\}$ quasi asymptotically *d*-weakly contractive w.r.t. ψ and *q* with modulus σ if for any δ , c > 0 we have

$$\|x-q\| \leq c \implies \forall n \geq \sigma(\delta, c)(\langle A_n x - q, J(A_n x - q) \rangle \leq \|x-q\|^2 - \psi(\|x-q\|) + \delta)$$

The sequence

$$\mathbf{x}_{n+1} = (1 - \alpha_n)\mathbf{x}_n + \alpha_n \mathbf{A}_n \mathbf{x}_n$$

converges to q, where we can construct a rate of convergence in the modulus of uniform smoothness for the space X.

This generalises and provides a rate of convergence for a theorem of [Chidume et al., 2002].

Further results II: Perturbed schemes

Suppose that $\{A_n\}$ with $A_n : E_n \to E$ are asymptotically weakly contractive w.r.t. ψ and q, and $\{x_n\}$ satisfies the perturbed scheme

$$x_{n+1} = Q_n((1 - \alpha_n)x_n + \alpha_nA_nx_n)$$

where $Q_n : X \to E_{n+1}$ is a Sunny nonexpansive retraction. Then x_n converges to q, provided that X is uniformly smooth and

$$E_n \rightarrow E$$

w.r.t Hausdorff metric. Uses a formalisation of the Hausdorff distance first used in [Kohlenbach and Powell, 2020].

This generalises and provides a rate of convergence for a theorem of [Alber et al., 2003].

Summary

$$\boxed{\texttt{space } X} + \boxed{\texttt{mapping } \{A_n\}} + \boxed{\texttt{algorithm } \{x_n\}} \implies \boxed{\texttt{convergence}}$$

space	contraction mapping	algorithm
normed	ψ -weakly	Picard
normed	totally asymptotically ψ -weakly	Mann
normed	\overline{quasi} asymptotically ψ -weakly	Mann
unif. smooth	quasi asymptotically d-weakly	Mann
unif. smooth	asymptotically ψ -weakly	perturbed Mann

In each case, we use the same reduction to the recursive inequality

$$\mu_{n+1} \le \mu_n - \alpha_n \psi(\mu_n) + \alpha_n \delta$$

for sufficiently large n, and provide explicit rates of convergence.

My priority for future work

Abstract recursive inequalities play a central role in nonlinear analysis, and a quantitative analysis of such inequalities has been crucial in many applied proof theory papers.

For instance, in [Kohlenbach and Powell, 2020] the following recursive inequality is studied:

$$\mu_{n+1} \le \mu_n - \alpha_n \psi(\mu_{n+1}) + \alpha_n \gamma_n$$

for $\gamma_n \to 0$.

It would be interesting to have a general quantitative study of recursive inequalities:

- Bringing together known results and establishing new ones,
- Providing a repository of quantitative lemmas which could then be applied in concrete situations.

Thank you!

Alber, Y., Chidume, C., and Zegeye, H. (2006).

Approximating fixed points of total asymptotically nonexpansive mappings.

Fixed Point Theory and Applications, 2006:1687–1812.

Alber, Y. and Guerre-Delabriere, S. (1997).

Principle of weakly contractive maps in Hilbert spaces.

In Gohberg, I. and Lyubich, Y., editors, New Results in Operator Theory and its Applications, volume 98, pages 7–22.

Alber, Y., Reich, S., and Yao, J.-C. (2003).

Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces. *Abstract and Applied Analysis*, 2003(4).

Chidume, C., Zegeye, H., and Aneke, S. J. (2002). Approximation of fixed points of weakly contractive nonself maps in Banach spaces.

Journal of Mathematical Analysis and Applications, 270:189–199.

Kohlenbach, U. and Powell, T. (2020).

Rates of convergence for iterative solutions of equations involving set-valued accretive operators.

Computers and Mathematics with Applications, 80:490–503.

P. and Wiesnet, F. (2021).

Rates of convergence for asymptotically weakly contractive mappings in normed spaces. Submitted.