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Applied proof theory (aka ‘proof mining’) in one slide:

Uses ideas and techniques from proof theory to analyse mathematical proofs and:

• Extract quantitative information (even when the proof is at first glance
nonconstructive).

• Obtain generalisations of the original theorem through weakening/abstracting

assumptions.

• Give deeper insights into theorems from ‘mainstream’ mathematics and

provide a uniform framework through which different results can be brought

together.

Aims of this talk:

• Present a recent application of proof theory in nonlinear analysis.
• Provide some general insight into how proof mining is done in practice.
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We start with something familiar:

�roughout this talk, we work in a Banach space X.

A mapping T : E→ E for E ⊆ X is called strongly contractive (or often just a contraction
mapping) if there exists k ∈ [0, 1) such that ∀x, y ∈ E:

‖Tx − Ty‖ ≤ (1− k) ‖x − y‖

�eorem (Banach fixed point theorem)

If T is strongly contractive then it possesses a fixpoint q. Moreover, from any starting point x0
the sequence {xn} defined by xn+1 := Txn converges to q, with rate of convergence

‖xn − q‖ ≤
(1− k)n

k
‖x1 − x0‖

space X + mapping T + algorithm {xn} =⇒ convergence to fixpoint



A generalisation of the Banach fixed point theorem:

Amapping T : E→ E for E ⊆ X is calledψ-weakly contractive ifψ : [0,∞)→ [0,∞)
is a nondecreasing function withψ(0) = 0 andψ(t) > 0 for t > 0, and ∀x, y ∈ E:

‖Tx − Ty‖ ≤ ‖x − y‖ − ψ(‖x − y‖)

In the case thatψ(t) := kt then T is strongly contractive.

�eorem ([Alber and Guerre-Delabriere, 1997])

If T is weakly contractive then it possesses a fixpoint q. Moreover, from any starting point x0 the
sequence {xn} defined by xn+1 := Txn converges to q, with rate of convergence

‖xn − q‖ ≤ Ψ−1(Ψ(‖x0 − q‖)− n)

whereΨ is given by

Ψ(s) :=

∫ s dt
ψ(t)

space X + mapping T + algorithm {xn} =⇒ convergence to fixpoint



Example of a weakly contractive mapping

Define X = R and T : [0, 1]→ [0, 1] by Tx := sin x. �en we can show that

| sin x − sin y | ≤ |x − y| − 1

8

|x − y|3

and so sin isψ-weakly contractive forψ(t) = 1

8
t3.

�e unique fixpoint of sin is x = 0, and defining xn+1 := sin xn we have xn → 0 with

rate of convergence

xn ≤
1√

x−2
0

+ n−1
4

(cf. [Alber and Guerre-Delabriere, 1997] for details).



A further generalisation:

Amapping T : E→ E for E ⊆ X is called totally asymptoticallyψ-weakly contractive
ifψ, φ : [0,∞)→ [0,∞) are nondecreasing functions withψ(0) = φ(0) = 0 and

ψ(t), φ(t) > 0 for t > 0, and ∀x, y ∈ E:

‖Tnx − Tny‖ ≤ ‖x − y‖ − ψ(‖x − y‖) + knφ(‖x − y‖) + ln

for kn, ln → 0. In the case that kn = ln := 0 then T isψ-weakly contractive.

�eorem (Adapted from [Alber et al., 2006])

Suppose that E ⊆ X is convex, T is asymptoticallyψ-weakly contractive and q is a fixpoint of
T. Moreover, from any starting point x0 define the sequence {xn} by

xn+1 = (1− αn)xn + αnTnxn

where {αn} is some sequence of nonnegative reals with
∑∞

n=0
αn =∞. Suppose that

‖xn − q‖ is bounded. �en xn → q.

A clear closed form expression for a rate of convergence is not given in [Alber et al., 2006].

space X + mapping T + algorithm {xn} =⇒ convergence to fixpoint



First objective: Define a general class of mappings of ‘weakly contractive type’

Definition ([P. andWiesnet, 2021])

A sequence of mappings {An}with An : E→ E is quasi asymptoticallyψ-weakly
contractive w.r.t q and with modulus σ if for all δ, c > 0 and x, y ∈ E:

‖x − q‖ ≤ c =⇒ ∀n ≥ σ(δ, c)(‖Anx − q‖ ≤ ‖x − q‖ − ψ(‖x − q‖) + δ)

Example. If T is totally asymptoticallyψ-weakly contractive in the sense that

‖Tnx − Tny‖ ≤ ‖x − y‖ − ψ(‖x − y‖) + knφ(‖x − y‖) + ln

then {Tn} is quasi asymptoticallyψ-weakly contractive w.r.t. any fixpoint of T with
modulus

σ(δ, c) := max

{
f1
(

δ

2φ(c)

)
, f2
(
δ

2

)}
where f1, f2 are rates of convergence for kn, ln → 0.



Second objective: Produce general convergence theorems

�eorem (Adapted from [P. andWiesnet, 2021])

Suppose that E ⊆ X is convex, {An} is quasi asymptoticallyψ-weakly contractive w.r.t q and
withmodulusσ. Moreover, from any starting point x0 define the sequence {xn} by

xn+1 = (1− αn)xn + αnAnxn

where {αn} ∈ [0, α] is some sequence of nonnegative reals with
∑∞

n=0
αn =∞. Suppose

that ‖xn − q‖ is bounded by c > 0. �en xn → q, with rate of convergence

‖xn − q‖ ≤ F−1
(
2Ψ(c)−

n−2∑
i=0

αi

)

where F : (0,∞)→ R is any strictly increasing and continuous function satisfying

F(ε) ≥ 2Ψ
(ε
2

)
− α · σ

(
1

2

min
{
ψ
(ε
2

)
,
ε

α

}
, c
)

andΨ is given by

Ψ(s) :=

∫ s dt
ψ(t)



How are these results obtained?

• An analysis of the logical structure of key properties and assumptions.

• An analysis of the convergence proofs (which often use liminfs, convergent
subsequences etc).

• A study of the relevant literature, identifying common patterns.
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T : E→ E isψ-weakly contractive ifψ : [0,∞)→ [0,∞) is a nondecreasing
function withψ(0) = 0 andψ(t) > 0 for t > 0, and ∀x, y ∈ E:

‖Tx − Ty‖ ≤ ‖x − y‖ − ψ(‖x − y‖)

�eorem (A)

Suppose that T isψ-weakly contractive and q is a fixpoint of T. Define xn+1 := Txn for any
starting point x0. �en

‖xn+1 − q‖ ≤ ‖xn − q‖ − ψ(‖xn − q‖)

for all n ∈ N.

Proof.We observe that

‖xn+1 − q‖ = ‖Txn − q‖ definition of xn+1

= ‖Txn − Tq‖ q a fixpoint of T
≤ ‖xn − q‖ − ψ(‖xn − q‖) T isψ-weakly contractive



Lemma (B)

Let {µn} be a sequence of nonnegative reals satisfying

µn+1 ≤ µn − ψ(µn)

whereψ : [0,∞)→ [0,∞) is a nondecreasing function withψ(t) > 0 for t > 0. �en
µn → 0, andmoreover, for any ε > 0we have

∀n ≥ Φ(ε)(µn ≤ ε)

whereΦ is defined by

Φ(ε) :=
⌈∫ µ0

ε

dt
ψ(t)

⌉

Proof. Suppose for contradiction that there exists ε > 0 such that µn > ε for all
n ∈ N. Observe that

1 ≤ µn − µn+1

ψ(µn)
(definition of µn andψ(µn) > 0)

≤
∫ µn

µn+1

dt
ψ(t)

(1/ψ(t) nonincreasing)



Proof (cont).
For anyN ∈ Nwe have

N =

N−1∑
i=0

1

≤
N−1∑
i=0

∫ µn

µn+1

dt
ψ(t)

(previous slide)

≤
∫ µ0

µN

dt
ψ(t)

(µn+1 < µn)

≤
∫ µ0

ε

dt
ψ(t)

(ε < µN)

But this is false for

N :=
⌈∫ µ0

ε

dt
ψ(t)

⌉
and therefore there exists some n ≤ N such thatµn ≤ ε. But then in particular, since

µn+1 ≤ µn − ψ(µn) ≤ µn

it follows that µn ≤ ε for all n ≥ N.



�eorem (=�eorem A + Lemma B)

Suppose that T isψ-weakly contractive and q is a fixpoint of T. Define xn+1 := Txn for any
starting point x0. �en ‖xn − q‖ → 0, andmoreover, for any ε > 0we have

∀n ≥ Φ(ε)(‖xn − q‖ ≤ ε)

whereΦ is defined by

Φ(ε) :=
⌈∫ ‖x0−q‖

ε

dt
ψ(t)

⌉

�is is a perfectly satisfactory quantiative convergence theorem, where we provide a

‘proof theorist’s’ rate of convergence for µn → 0 i.e. a functionΦ such that

∀ε > 0, ∀n ≥ Φ(ε)(µn ≤ ε)

Analysts, on the other hand, typically formulate a rate of convergence as a function f
such that

∀n(µn ≤ f (n))

where f (n)→ 0 as n→∞.



Rate conversion.We have shown that for any ε > 0 we have ‖xn − q‖ ≤ ε for

n ≥
⌈∫ ‖x0−q‖

ε

dt
ψ(t)

⌉
We nowwant to find for each n ∈ N some εn such that

‖xn − q‖ ≤ εn

�is would work for any εn with

n− 1 <
∫ ‖x0−q‖
εn

dt
ψ(t)

= Ψ(‖x0 − q‖)−Ψ(εn) ≤ n

so define εn such that
Ψ(‖x0 − q‖)−Ψ(εn) = n

i.e.

εn := Ψ−1(Ψ(‖x0 − q‖)− n)



�eorem (=�eorem A + Lemma B + rate conversion)

Suppose that T isψ-weakly contractive and q is a fixpoint of T. Define xn+1 := Txn for any
starting point x0. �en ‖xn − q‖ → 0, andmoreover, for any n ∈ Nwe have

‖xn − q‖ ≤ Ψ−1(Ψ(‖x0 − q‖)− n)

whereΨ is given by

Ψ(s) :=

∫ s dt
ψ(t)

Now compare this to:

�eorem ([Alber and Guerre-Delabriere, 1997])

If T is weakly contractive then it possesses a fixpoint q. Moreover, from any starting point x0 the
sequence {xn} defined by xn+1 := Txn converges to q, with rate of convergence

‖xn − q‖ ≤ Ψ−1(Ψ(‖x0 − q‖)− n)

whereΨ is given by

Ψ(s) :=

∫ s dt
ψ(t)



General route to a convergence theorem

1 Reduce everything to a recursive inequality in terms of µn := ‖xn − q‖.

2 Apply a general quantitative convergence theorem for this inequality.

3 Convert proof-theoretic rate into analyst’s rate (optional, but essential if we

want to compare with known bounds in simple cases).

Steps 2 and 3 can be done in a very general setting, so that in concrete cases, we
only need to adapt Step 1!
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A sequence {An}with An : E→ E is quasi asymptoticallyψ-weakly contractive w.r.t.
q and with modulus σ if for all δ, c > 0 and x, y ∈ E:

‖x − q‖ ≤ c =⇒ ∀n ≥ σ(δ, c)(‖Anx − q‖ ≤ ‖x − q‖ − ψ(‖x − q‖) + δ)

�eorem (A
+
)

Suppose that {An} is quasi asymptoticallyψ-weakly contractive w.r.t. q andσ, and that the
sequence {xn} satisfies

xn+1 = (1− αn)xn + αnAnxn

for {αn} a sequence of nonnegative reals. �enwhenever ‖xn − q‖ is bounded above by some
c > 0, for any δ > 0 and n ≥ σ(δ, c)we have:

‖xn+1 − q‖ ≤ ‖xn − q‖ − αnψ(‖xn − q‖) + αnδ

Proof.We observe that for n ≥ σ(δ, c)

‖xn+1 − q‖ = ‖(1− αn)(xn − q) + αn(Anxn − q)‖ (rearranging)

≤ (1− αn) ‖xn − q‖+ αn ‖Anxn − q‖ (triangle inequality)

≤ (1− αn) ‖xn − q‖+ αn(‖xn − q‖ − ψ(‖xn − q‖) + δ) (property of {An})
= ‖xn − q‖ − αnψ(‖xn − q‖) + αnδ



Lemma (B
+
)

Let {µn} be a sequence of nonnegative reals such that for any δ > 0we have

µn+1 ≤ µn − αnψ(µn) + αnδ

for all n ≥ σ(δ), where:
• ψ : [0,∞)→ [0,∞) is a nondecreasing function withψ(t) > 0 for t > 0;
• {αn} ⊂ [0, α] is a sequence of nonnegative real numbers such that

∑∞
n=0

αn =∞
with rate of divergence r : (0,∞)× (0,∞)→ N i.e.

∀N ∈ N, x > 0

r(N,x)∑
n=N

αn > x


�enµn → 0, andmoreover, for any ε > 0we have

∀n ≥ Φ(ε)(µn ≤ ε)

whereΦ is defined by

Φ(ε) := r

(
σ
(
1

2

min
{
ψ
(ε
2

)
,
ε

α

})
, 2

∫ c

ε/2

dt
ψ(t)

)

and c is an upper bound for {µn}.



�eorem (=�eorem A
+
+ Lemma B

+
)

Suppose that {An} is quasi asymptoticallyψ-weakly contractive w.r.t. q andσ, and that the
sequence {xn} satisfies

xn+1 = (1− αn)xn + αnAnxn

for {αn} a sequence of nonnegative reals such that
∑∞

n=0
αn =∞with rate of divergence r.

�enwhenever ‖xn − q‖ is bounded above by some c > 0, we have ‖xn − q‖ → 0, and
moreover, for any ε > 0we have

∀n ≥ Φ(ε)(‖xn − q‖ ≤ ε)

whereΦ is defined by

Φ(ε) := r

(
σ
(
1

2

min
{
ψ
(ε
2

)
,
ε

α

}
, c
)
, 2

∫ c

ε/2

dt
ψ(t)

)



Recall from earlier...

Definition ([P. andWiesnet, 2021])

A sequence of mappings {An}with An : E→ E is quasi asymptoticallyψ-weakly
contractive w.r.t q and with modulus σ if for all δ, c > 0 and x, y ∈ E:

‖x − q‖ ≤ c =⇒ ∀n ≥ σ(δ, c)(‖Anx − q‖ ≤ ‖x − q‖ − ψ(‖x − q‖) + δ)

Example. If T is totally asymptoticallyψ-weakly contractive in the sense that

‖Tnx − Tny‖ ≤ ‖x − y‖ − ψ(‖x − y‖) + knφ(‖x − y‖) + ln

then {Tn} is quasi asymptoticallyψ-weakly contractive w.r.t. any fixpoint of T with
modulus

σ(δ, c) := max

{
f1
(

δ

2φ(c)

)
, f2
(
δ

2

)}
where f1, f2 are rates of convergence for kn, ln → 0.



Corollary (Quantitative version of [Alber et al., 2006])

Suppose that T : E→ E is quasi totally asymptoticallyψ-weakly contractive in the sense that

‖Tnx − Tny‖ ≤ ‖x − y‖ − ψ(‖x − y‖) + knφ(‖x − y‖) + ln

for kn, ln → 0, that q is a fixpoint of T and that the sequence {xn} satisfies

xn+1 = (1− αn)xn + αnTnxn

for {αn} a sequence of nonnegative reals such that
∑∞

n=0
αn =∞with rate of divergence r.

�enwhenever ‖xn − q‖ is bounded above by some c > 0, we have ‖xn − q‖ → 0, and
moreover, for any ε > 0we have

∀n ≥ Φ(ε)(‖xn − q‖ ≤ ε)

whereΦ is defined by

Φ(ε) := r

(
σ
(
1

2

min
{
ψ
(ε
2

)
,
ε

α

}
, c
)
, 2

∫ c

ε/2

dt
ψ(t)

)

and
max

{
f1
(

δ

2φ(c)

)
, f2
(
δ

2

)}
where f1, f2 are rates of convergence for kn, ln → 0.



�eorem (=�eorem A
+
+ Lemma B

+
+ rate conversion)

Suppose that {An} is quasi asymptoticallyψ-weakly contractive w.r.t. q andσ, and that the
sequence {xn} satisfies

xn+1 = (1− αn)xn + αnAnxn

for {αn} a sequence of nonnegative reals such that
∑∞

n=0
αn =∞. �enwhenever ‖xn − q‖

is bounded above by some c > 0, we have ‖xn − q‖ → 0, with rate of convergence

‖xn − q‖ ≤ F−1
(
2Ψ(c)−

n−2∑
i=0

αi

)

where F : (0,∞)→ R is any strictly increasing and continuous function satisfying

F(ε) ≥ 2Ψ
(ε
2

)
− α · σ

(
1

2

min
{
ψ
(ε
2

)
,
ε

α

}
, c
)

andΨ is given by

Ψ(s) :=

∫ s dt
ψ(t)
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Further results I: d-weakly contractive mappings

Let X be a uniformly smooth Banach space, X∗ be the dual of X, and J : X → X∗ the
normalized duality mapping i.e.

〈x, Jx〉 = ‖x‖2 = ‖Jx‖2

We call {An} quasi asymptotically d-weakly contractive w.r.t. ψ and qwith modulus
σ if for any δ, c > 0 we have

‖x − q‖ ≤ c =⇒ ∀n ≥ σ(δ, c)(〈Anx − q, J(Anx − q)〉 ≤ ‖x − q‖2−ψ(‖x − q‖)+δ)

�e sequence

xn+1 = (1− αn)xn + αnAnxn

converges to q, where we can construct a rate of convergence in the modulus of
uniform smoothness for the space X.

�is generalises and provides a rate of convergence for a theorem of

[Chidume et al., 2002].



Further results II: Perturbed schemes

Suppose that {An}with An : En → E are asymptotically weakly contractive w.r.t. ψ
and q, and {xn} satisfies the perturbed scheme

xn+1 = Qn((1− αn)xn + αnAnxn)

whereQn : X → En+1 is a Sunny nonexpansive retraction. �en xn converges to q,
provided that X is uniformly smooth and

En → E

w.r.t Hausdorff metric. Uses a formalisation of the Hausdorff distance first used in

[Kohlenbach and Powell, 2020].

�is generalises and provides a rate of convergence for a theorem of

[Alber et al., 2003].



Summary

space X + mapping {An} + algorithm {xn} =⇒ convergence

space contraction mapping algorithm

normed ψ-weakly Picard

normed totally asymptoticallyψ-weakly Mann

normed quasi asymptoticallyψ-weakly Mann

unif. smooth quasi asymptotically d-weakly Mann

unif. smooth asymptoticallyψ-weakly perturbedMann

In each case, we use the same reduction to the recursive inequality

µn+1 ≤ µn − αnψ(µn) + αnδ

for sufficiently large n, and provide explicit rates of convergence.



My priority for future work

Abstract recursive inequalities play a central role in nonlinear analysis, and a

quantitative analysis of such inequalities has been crucial in many applied proof

theory papers.

For instance, in [Kohlenbach and Powell, 2020] the following recursive inequality is

studied:

µn+1 ≤ µn − αnψ(µn+1) + αnγn

for γn → 0.

It would be interesting to have a general quantitative study of recursive inequalities:

• Bringing together known results and establishing new ones,

• Providing a repository of quantitative lemmas which could then be applied in
concrete situations.

Thank you!
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