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Before I start...

This talk is designed to complement the paper. Specifically I will focus on

® the mathematical and historical context
¢ outlining the main problem

® providing a brief sketch of the central ideas.
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This talk is designed to complement the paper. Specifically I will focus on

® the mathematical and historical context
¢ outlining the main problem

® providing a brief sketch of the central ideas.

Any technical content is presented in a very informal manner.

If you have any questions, please send me an email!
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Zorn's lemma

Theorem (Zorn's lemma)

e.g.

In ‘ordinary’ mathematics, Zorn's lemma is typically used to ‘build’ objects in stages
® every set has a well ordering,
® every vector space has a basis,

® every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn's lemma < Axiom of choice
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Godel’s functional (Dialectica) interpretation

Translates each formula A in HA® (Heyting arithmetic in all finite types) to one of
the form 3xVy Ap(x,y), where x, y are (possibly empty) tuples of variables and
® A< Iy Ap(x,y)

® Ap(x,y) is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

Applications of the functional interpretation include:

(2) Relative consistency proofsi.e. Con(T) = Con(PA%),

(b) Program extraction: if PA” - Vx3y P(x, y) we can extract a primitive recursive
t such that T F Vx P(x, tx). See also the proof mining program.

«40O> «Fr «E» <

>

A



Godel’s functional (Dialectica) interpretation

Translates each formula A in HA® (Heyting arithmetic in all finite types) to one of
the form 3xVy Ap(x,y), where x, y are (possibly empty) tuples of variables and

® A< Iy Ap(x,y)

® Ap(x,y) is quantifier-free (and hence decidable).



Godel’s functional (Dialectica) interpretation

Translates each formula A in HA® (Heyting arithmetic in all finite types) to one of
the form 3xVy Ap(x,y), where x, y are (possibly empty) tuples of variables and

® A< Iy Ap(x,y)

® Ap(x,y) is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

1. Suppose that HA” | A. Then from the proof of A we can extract a term t of
System T such that T + Vy Ap (¢, 7).



Godel’s functional (Dialectica) interpretation

Translates each formula A in HA® (Heyting arithmetic in all finite types) to one of
the form 3xVy Ap(x,y), where x, y are (possibly empty) tuples of variables and

® A< Iy Ap(x,y)

® Ap(x,y) is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

1. Suppose that HA” | A. Then from the proof of A we can extract a term t of
System T such that T + Vy Ap (¢, 7).

2. Suppose that PA“ - A. Then we can extract a term ¢ of System T such that
T I Vy (AY)p(t,y) where A is the negative translation of A.



Godel’s functional (Dialectica) interpretation
Translates each formula A in HA® (Heyting arithmetic in all finite types) to one of
the form 3xVy Ap(x,y), where x, y are (possibly empty) tuples of variables and
® A< Iy Ap(x,y)
® Ap(x,y) is quantifier-free (and hence decidable).
Theorem. (essentially Goedel 1958)

1. Suppose that HA” | A. Then from the proof of A we can extract a term t of
System T such that T + Vy Ap (¢, 7).

2. Suppose that PA“ - A. Then we can extract a term ¢ of System T such that
T I Vy (AY)p(t,y) where A is the negative translation of A.

Applications of the functional interpretation include:



Godel’s functional (Dialectica) interpretation

Translates each formula A in HA® (Heyting arithmetic in all finite types) to one of
the form 3xVy Ap(x,y), where x, y are (possibly empty) tuples of variables and

® A< Iy Ap(x,y)

® Ap(x,y) is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

1. Suppose that HA” | A. Then from the proof of A we can extract a term t of
System T such that T + Vy Ap (¢, 7).

2. Suppose that PA“ - A. Then we can extract a term ¢ of System T such that
T I Vy (AY)p(t,y) where A is the negative translation of A.

Applications of the functional interpretation include:

(2) Relative consistency proofsi.e. Con(T) = Con(PA¥),



Godel’s functional (Dialectica) interpretation

Translates each formula A in HA® (Heyting arithmetic in all finite types) to one of
the form 3xVy Ap(x,y), where x, y are (possibly empty) tuples of variables and

® A< Iy Ap(x,y)

® Ap(x,y) is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

1. Suppose that HA” | A. Then from the proof of A we can extract a term t of
System T such that T + Vy Ap (¢, 7).

2. Suppose that PA“ - A. Then we can extract a term ¢ of System T such that
T I Vy (AY)p(t,y) where A is the negative translation of A.

Applications of the functional interpretation include:
(2) Relative consistency proofsi.e. Con(T) = Con(PA¥),

(b) Program extraction: if PA* - Vx3y P(x, y) we can extract a primitive recursive
t such that T F Vx P(x, tx). See also the proof mining program.



The functional interpretation of subsystems of mathematics

Peano arithmetic — System T (G6del ’58)



The functional interpretation of subsystems of mathematics

fragments of arithmetic — fragments of System T (Parsons 71)

Peano arithmetic — System T (G6del ’58)



The functional interpretation of subsystems of mathematics

feasible arithmetic — feasible functionals (Cook & Urquhart ’93)
fragments of arithmetic — fragments of System T (Parsons 71)

Peano arithmetic — System T (G6del ’58)



The functional interpretation of subsystems of mathematics

feasible arithmetic +— feasible functionals (Cook & Urquhart ’93)
fragments of arithmetic — fragments of System T (Parsons 71)
Peano arithmetic — System T (G6del ’58)

arithmetical comprehension — bar recursion of lowest type (Spector ’62)



The functional interpretation of subsystems of mathematics

feasible arithmetic +— feasible functionals (Cook & Urquhart ’93)
fragments of arithmetic — fragments of System T (Parsons 71)
Peano arithmetic — System T (G6del ’58)
arithmetical comprehension — bar recursion of lowest type (Spector ’62)

countable choice — bar recursion (Spector ’62)



The functional interpretation of subsystems of mathematics

feasible arithmetic +— feasible functionals (Cook & Urquhart ’93)
fragments of arithmetic — fragments of System T (Parsons 71)
Peano arithmetic — System T (G6del ’58)
arithmetical comprehension — bar recursion of lowest type (Spector ’62)
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syntactic Zorn's Lemma ~— ?2?
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Related work

® Raoult 1988: Zorn's lemma as an inductive principle (open induction).

® Berardi, Bezem and Coquand 1998: Symmetric mode of recursion for
interpreting axiom of countable choice (BBC functional), based making
recursive calls to one-element extensions of countable sets.

® Berger 2002: Domain theoretic proof of totality of BBC functional using Zorn's
lemma.

® Berger 2004: Realizability interpretation of open induction (on lexicographic
ordering) via open recursion.
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Syntactic Zorn's lemma (in language of PA“)

SZLis a special instance of Zorn's lemma, and its validity depends on the choice of
parameters. However, there is a simple instatiation <o of < for which

PA” |- SZL., < dependent choice
Spector).

and so a special case of SZL has the strength of full classical analysis (in the sense of
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Suppose thatx, y,z : nat — bool represent characteristic functions of subsets of
natural numbers, and define
x<y:=xC}y.

Then SZL becomes
Ix P(x) = Jy(P(y) AVz Dy —P(z))
where here P(x) is piecewise if it can be written as
P(x) :=Vn Q([xo, - - . ; Xn—1])-

SZLc is closely related to Berger’s update induction. Can be used to give direct
proofs to a number of important results e.g.

PA® + SZLc + all nontrivial countable commutative rings have a maximal ideal

Can show that both §“ and C* are models of PA* + SZL.



A computational counterpart to SZL~

What form of recursion can we associate with
Ix P(x) = Fy(P(y) AVz Dy —P(z))?
The most obvious is a recursor over D i.e.
O (x) =, oAy . BF ) ify > x).
This tricky because x D y is not decidable, but can reformulate as
Of (x) =, fe(An"" y . Bf (xUy)ifn € yandn ¢ x).
But is ®f (x) well-defined?

Theorem (sketch)

Suppose that p := nat. Then ®f is a total object in the model of partial continuous
functionals since the value of ®f (x) only depends on a finite part of the input x.
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A problem with higher types

Let us now consider
Of (x) =, e(An",y . Of (xUy)ifn € yandn ¢ x).
in the case p := nat — nat. Define f by
fep=n. 14+ pn, {n})(n+1).
Then for k := ®f ()0 we have

k=14 of({0})(1) =2+ ©f({0,1})(2)
o=k 1+0f({O0,.. . kP (k+1) >k

so the defining equation of ® is inconsistent with PA“.

We need a form of recursion which is valid for all output types p to solve the
functional interpretation of SZL.
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Solution
We define an alternative form of recursion based on the idea of a ‘truncation’. Let
Vowf (x) =p f{x}o(An,y . Uf({x}o Uy)ifn € yandn ¢ {x}.)

where, very roughly, {x}., is an operation which truncates the input x and forces
only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

Theorem (sketch)

Under reasonable assumptions, Uf defines a total continuous functional for any
output type p.

Main contributions (sketch)
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Solution

We define an alternative form of recursion based on the idea of a ‘truncation’. Let

Vaf (x) =p f{x}o (An,y . Uf({x}o Uy) ifn € yand n ¢ {x}.,)

where, very roughly, {x}., is an operation which truncates the input x and forces
only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

Theorem (sketch)

Under reasonable assumptions, Uf defines a total continuous functional for any
output type p.

Main contributions (sketch)

® A generalisation of ¥ above to U ., together with precise conditions on <
which guarantee that U defines a total continuous functional.

® Proof that there is a term definable in ¥ - which realizes the functional
interpretation of SZLY , hence

PA® + SZL. > System T+ (V).
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