
On the computational content of Zorn’s lemma

�omas Powell
University of Bath

Logic in Computer Science (LICS ’20)

Saarbrücken (held online)

8–11 July 2020

�ese slides are available at

https://t-powell.github.io/talks

https://t-powell.github.io/talks


Before I start...

�is talk is designed to complement the paper. Specifically I will focus on

• the mathematical and historical context

• outlining the main problem

• providing a brief sketch of the central ideas.

Any technical content is presented in a very informalmanner.

If you have any questions, please sendme an email!



Before I start...

�is talk is designed to complement the paper. Specifically I will focus on

• the mathematical and historical context

• outlining the main problem

• providing a brief sketch of the central ideas.

Any technical content is presented in a very informalmanner.

If you have any questions, please sendme an email!



�e paper in one slide

Zorn’s lemma

simplified to

��
syntactic Zorn’s lemma

functional interpretation // realizing terms

newmode of recursion

used to construct

OO



Zorn’s lemma

�eorem (Zorn’s lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) γ ⊆ S has an
upper bound in S, i.e. there exists some u ∈ S such that x ≤ u for all x ∈ γ.

�en S contains a maximal element i.e. there exists somem ∈ S such that¬(m < x)
for any x ∈ S.

In ‘ordinary’ mathematics, Zorn’s lemma is typically used to ‘build’ objects in stages

e.g.

• every set has a well ordering,
• every vector space has a basis,
• every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn’s lemma⇔ Axiom of choice



Zorn’s lemma

�eorem (Zorn’s lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) γ ⊆ S has an
upper bound in S, i.e. there exists some u ∈ S such that x ≤ u for all x ∈ γ.

�en S contains a maximal element i.e. there exists somem ∈ S such that¬(m < x)
for any x ∈ S.

In ‘ordinary’ mathematics, Zorn’s lemma is typically used to ‘build’ objects in stages

e.g.

• every set has a well ordering,
• every vector space has a basis,
• every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn’s lemma⇔ Axiom of choice



Zorn’s lemma

�eorem (Zorn’s lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) γ ⊆ S has an
upper bound in S, i.e. there exists some u ∈ S such that x ≤ u for all x ∈ γ.

�en S contains a maximal element i.e. there exists somem ∈ S such that¬(m < x)
for any x ∈ S.

In ‘ordinary’ mathematics, Zorn’s lemma is typically used to ‘build’ objects in stages

e.g.

• every set has a well ordering,
• every vector space has a basis,
• every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn’s lemma⇔ Axiom of choice



Zorn’s lemma

�eorem (Zorn’s lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) γ ⊆ S has an
upper bound in S, i.e. there exists some u ∈ S such that x ≤ u for all x ∈ γ.

�en S contains a maximal element i.e. there exists somem ∈ S such that¬(m < x)
for any x ∈ S.

In ‘ordinary’ mathematics, Zorn’s lemma is typically used to ‘build’ objects in stages

e.g.

• every set has a well ordering,
• every vector space has a basis,
• every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn’s lemma⇔ Axiom of choice



Zorn’s lemma

�eorem (Zorn’s lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) γ ⊆ S has an
upper bound in S, i.e. there exists some u ∈ S such that x ≤ u for all x ∈ γ.

�en S contains a maximal element i.e. there exists somem ∈ S such that¬(m < x)
for any x ∈ S.

In ‘ordinary’ mathematics, Zorn’s lemma is typically used to ‘build’ objects in stages

e.g.

• every set has a well ordering,
• every vector space has a basis,
• every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn’s lemma⇔ Axiom of choice



Zorn’s lemma

�eorem (Zorn’s lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) γ ⊆ S has an
upper bound in S, i.e. there exists some u ∈ S such that x ≤ u for all x ∈ γ.

�en S contains a maximal element i.e. there exists somem ∈ S such that¬(m < x)
for any x ∈ S.

In ‘ordinary’ mathematics, Zorn’s lemma is typically used to ‘build’ objects in stages

e.g.

• every set has a well ordering,
• every vector space has a basis,
• every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn’s lemma⇔ Axiom of choice



Gödel’s functional (Dialectica) interpretation

Translates each formula A in HAω (Heyting arithmetic in all finite types) to one of
the form ∃x∀y AD(x, y), where x, y are (possibly empty) tuples of variables and

• A⇔ ∃x∀y AD(x, y)

• AD(x, y) is quantifier-free (and hence decidable).

�eorem. (essentially Goedel 1958)

1. Suppose that HA
ω ` A. �en from the proof of Awe can extract a term t of

System T such that T ` ∀y AD(t, y).
2. Suppose that PA

ω ` A. �en we can extract a term t of System T such that

T ` ∀y (AN)D(t, y)where AN is the negative translation of A.

Applications of the functional interpretation include:

(a) Relative consistency proofs i.e. Con(T)⇒ Con(PAω),

(b) Program extraction: if PA
ω ` ∀x∃y P(x, y)we can extract a primitive recursive

t such that T ` ∀x P(x, tx). See also the proofmining program.



Gödel’s functional (Dialectica) interpretation

Translates each formula A in HAω (Heyting arithmetic in all finite types) to one of
the form ∃x∀y AD(x, y), where x, y are (possibly empty) tuples of variables and

• A⇔ ∃x∀y AD(x, y)

• AD(x, y) is quantifier-free (and hence decidable).

�eorem. (essentially Goedel 1958)

1. Suppose that HA
ω ` A. �en from the proof of Awe can extract a term t of

System T such that T ` ∀y AD(t, y).
2. Suppose that PA

ω ` A. �en we can extract a term t of System T such that

T ` ∀y (AN)D(t, y)where AN is the negative translation of A.

Applications of the functional interpretation include:

(a) Relative consistency proofs i.e. Con(T)⇒ Con(PAω),

(b) Program extraction: if PA
ω ` ∀x∃y P(x, y)we can extract a primitive recursive

t such that T ` ∀x P(x, tx). See also the proofmining program.



Gödel’s functional (Dialectica) interpretation

Translates each formula A in HAω (Heyting arithmetic in all finite types) to one of
the form ∃x∀y AD(x, y), where x, y are (possibly empty) tuples of variables and

• A⇔ ∃x∀y AD(x, y)

• AD(x, y) is quantifier-free (and hence decidable).

�eorem. (essentially Goedel 1958)

1. Suppose that HA
ω ` A. �en from the proof of Awe can extract a term t of

System T such that T ` ∀y AD(t, y).
2. Suppose that PA

ω ` A. �en we can extract a term t of System T such that

T ` ∀y (AN)D(t, y)where AN is the negative translation of A.

Applications of the functional interpretation include:

(a) Relative consistency proofs i.e. Con(T)⇒ Con(PAω),

(b) Program extraction: if PA
ω ` ∀x∃y P(x, y)we can extract a primitive recursive

t such that T ` ∀x P(x, tx). See also the proofmining program.



Gödel’s functional (Dialectica) interpretation

Translates each formula A in HAω (Heyting arithmetic in all finite types) to one of
the form ∃x∀y AD(x, y), where x, y are (possibly empty) tuples of variables and

• A⇔ ∃x∀y AD(x, y)

• AD(x, y) is quantifier-free (and hence decidable).

�eorem. (essentially Goedel 1958)

1. Suppose that HA
ω ` A. �en from the proof of Awe can extract a term t of

System T such that T ` ∀y AD(t, y).
2. Suppose that PA

ω ` A. �en we can extract a term t of System T such that

T ` ∀y (AN)D(t, y)where AN is the negative translation of A.

Applications of the functional interpretation include:

(a) Relative consistency proofs i.e. Con(T)⇒ Con(PAω),

(b) Program extraction: if PA
ω ` ∀x∃y P(x, y)we can extract a primitive recursive

t such that T ` ∀x P(x, tx). See also the proofmining program.



Gödel’s functional (Dialectica) interpretation

Translates each formula A in HAω (Heyting arithmetic in all finite types) to one of
the form ∃x∀y AD(x, y), where x, y are (possibly empty) tuples of variables and

• A⇔ ∃x∀y AD(x, y)

• AD(x, y) is quantifier-free (and hence decidable).

�eorem. (essentially Goedel 1958)

1. Suppose that HA
ω ` A. �en from the proof of Awe can extract a term t of

System T such that T ` ∀y AD(t, y).
2. Suppose that PA

ω ` A. �en we can extract a term t of System T such that

T ` ∀y (AN)D(t, y)where AN is the negative translation of A.

Applications of the functional interpretation include:

(a) Relative consistency proofs i.e. Con(T)⇒ Con(PAω),

(b) Program extraction: if PA
ω ` ∀x∃y P(x, y)we can extract a primitive recursive

t such that T ` ∀x P(x, tx). See also the proofmining program.



Gödel’s functional (Dialectica) interpretation

Translates each formula A in HAω (Heyting arithmetic in all finite types) to one of
the form ∃x∀y AD(x, y), where x, y are (possibly empty) tuples of variables and

• A⇔ ∃x∀y AD(x, y)

• AD(x, y) is quantifier-free (and hence decidable).

�eorem. (essentially Goedel 1958)

1. Suppose that HA
ω ` A. �en from the proof of Awe can extract a term t of

System T such that T ` ∀y AD(t, y).
2. Suppose that PA

ω ` A. �en we can extract a term t of System T such that

T ` ∀y (AN)D(t, y)where AN is the negative translation of A.

Applications of the functional interpretation include:

(a) Relative consistency proofs i.e. Con(T)⇒ Con(PAω),

(b) Program extraction: if PA
ω ` ∀x∃y P(x, y)we can extract a primitive recursive

t such that T ` ∀x P(x, tx). See also the proofmining program.



Gödel’s functional (Dialectica) interpretation

Translates each formula A in HAω (Heyting arithmetic in all finite types) to one of
the form ∃x∀y AD(x, y), where x, y are (possibly empty) tuples of variables and

• A⇔ ∃x∀y AD(x, y)

• AD(x, y) is quantifier-free (and hence decidable).

�eorem. (essentially Goedel 1958)

1. Suppose that HA
ω ` A. �en from the proof of Awe can extract a term t of

System T such that T ` ∀y AD(t, y).
2. Suppose that PA

ω ` A. �en we can extract a term t of System T such that

T ` ∀y (AN)D(t, y)where AN is the negative translation of A.

Applications of the functional interpretation include:

(a) Relative consistency proofs i.e. Con(T)⇒ Con(PAω),

(b) Program extraction: if PA
ω ` ∀x∃y P(x, y)we can extract a primitive recursive

t such that T ` ∀x P(x, tx). See also the proofmining program.



�e functional interpretation of subsystems of mathematics

feasible arithmetic 7→ feasible functionals (Cook & Urquhart ’93)

fragments of arithmetic 7→ fragments of System T (Parsons ’71)

Peano arithmetic 7→ System T (Gödel ’58)

arithmetical comprehension 7→ bar recursion of lowest type (Spector ’62)

countable choice 7→ bar recursion (Spector ’62)

syntactic Zorn’s Lemma 7→ ???



�e functional interpretation of subsystems of mathematics

feasible arithmetic 7→ feasible functionals (Cook & Urquhart ’93)

fragments of arithmetic 7→ fragments of System T (Parsons ’71)

Peano arithmetic 7→ System T (Gödel ’58)

arithmetical comprehension 7→ bar recursion of lowest type (Spector ’62)

countable choice 7→ bar recursion (Spector ’62)

syntactic Zorn’s Lemma 7→ ???



�e functional interpretation of subsystems of mathematics

feasible arithmetic 7→ feasible functionals (Cook & Urquhart ’93)

fragments of arithmetic 7→ fragments of System T (Parsons ’71)

Peano arithmetic 7→ System T (Gödel ’58)

arithmetical comprehension 7→ bar recursion of lowest type (Spector ’62)

countable choice 7→ bar recursion (Spector ’62)

syntactic Zorn’s Lemma 7→ ???



�e functional interpretation of subsystems of mathematics

feasible arithmetic 7→ feasible functionals (Cook & Urquhart ’93)

fragments of arithmetic 7→ fragments of System T (Parsons ’71)

Peano arithmetic 7→ System T (Gödel ’58)

arithmetical comprehension 7→ bar recursion of lowest type (Spector ’62)

countable choice 7→ bar recursion (Spector ’62)

syntactic Zorn’s Lemma 7→ ???



�e functional interpretation of subsystems of mathematics

feasible arithmetic 7→ feasible functionals (Cook & Urquhart ’93)

fragments of arithmetic 7→ fragments of System T (Parsons ’71)

Peano arithmetic 7→ System T (Gödel ’58)

arithmetical comprehension 7→ bar recursion of lowest type (Spector ’62)

countable choice 7→ bar recursion (Spector ’62)

syntactic Zorn’s Lemma 7→ ???



�e functional interpretation of subsystems of mathematics

feasible arithmetic 7→ feasible functionals (Cook & Urquhart ’93)

fragments of arithmetic 7→ fragments of System T (Parsons ’71)

Peano arithmetic 7→ System T (Gödel ’58)

arithmetical comprehension 7→ bar recursion of lowest type (Spector ’62)

countable choice 7→ bar recursion (Spector ’62)

syntactic Zorn’s Lemma 7→ ???



�e paper in one slide

Zorn’s lemmaX

simplified to

��
syntactic Zorn’s lemma

functional interpretationX // realizing terms

newmode of recursion

used to construct

OO



Related work

• Raoult 1988: Zorn’s lemma as an inductive principle (open induction).

• Berardi, Bezem andCoquand 1998: Symmetric mode of recursion for
interpreting axiom of countable choice (BBC functional), based making

recursive calls to one-element extensions of countable sets.

• Berger 2002: Domain theoretic proof of totality of BBC functional using Zorn’s
lemma.

• Berger 2004: Realizability interpretation of open induction (on lexicographic
ordering) via open recursion.



Related work

• Raoult 1988: Zorn’s lemma as an inductive principle (open induction).

• Berardi, Bezem andCoquand 1998: Symmetric mode of recursion for
interpreting axiom of countable choice (BBC functional), based making

recursive calls to one-element extensions of countable sets.

• Berger 2002: Domain theoretic proof of totality of BBC functional using Zorn’s
lemma.

• Berger 2004: Realizability interpretation of open induction (on lexicographic
ordering) via open recursion.



Related work

• Raoult 1988: Zorn’s lemma as an inductive principle (open induction).

• Berardi, Bezem andCoquand 1998: Symmetric mode of recursion for
interpreting axiom of countable choice (BBC functional), based making

recursive calls to one-element extensions of countable sets.

• Berger 2002: Domain theoretic proof of totality of BBC functional using Zorn’s
lemma.

• Berger 2004: Realizability interpretation of open induction (on lexicographic
ordering) via open recursion.



Related work

• Raoult 1988: Zorn’s lemma as an inductive principle (open induction).

• Berardi, Bezem andCoquand 1998: Symmetric mode of recursion for
interpreting axiom of countable choice (BBC functional), based making

recursive calls to one-element extensions of countable sets.

• Berger 2002: Domain theoretic proof of totality of BBC functional using Zorn’s
lemma.

• Berger 2004: Realizability interpretation of open induction (on lexicographic
ordering) via open recursion.



Related work

• Raoult 1988: Zorn’s lemma as an inductive principle (open induction).

• Berardi, Bezem andCoquand 1998: Symmetric mode of recursion for
interpreting axiom of countable choice (BBC functional), based making

recursive calls to one-element extensions of countable sets.

• Berger 2002: Domain theoretic proof of totality of BBC functional using Zorn’s
lemma.

• Berger 2004: Realizability interpretation of open induction (on lexicographic
ordering) via open recursion.



A syntactic formulation of Zorn’s lemma

Zorn’s lemma: nonemptyness+ chain bounded⇒ maximal element

Syntactic Zorn’s lemma (in language of PA
ω
)

SZL< : ∃x P(x)︸ ︷︷ ︸
nonemptyness

⇒ ∃y(P(y) ∧ ∀z > y¬P(z))︸ ︷︷ ︸
maximal element

where:

• < need not be wellfounded, but has specific logical structure,

• P(x) is ‘piecewise’ (only looks at a ‘finite parts’ of x).

PA
ω + SZL< is valid in models where (the interpretation of)< is chain bounded.

SZL is a special instance of Zorn’s lemma, and its validity depends on the choice of

parameters. However, there is a simple instatiation<0 of< for which

PA
ω ` SZL<0

⇔ dependent choice

and so a special case of SZL has the strength of full classical analysis (in the sense of

Spector).



A syntactic formulation of Zorn’s lemma

Zorn’s lemma: nonemptyness+ chain bounded⇒ maximal element

Syntactic Zorn’s lemma (in language of PA
ω
)

SZL< : ∃x P(x)︸ ︷︷ ︸
nonemptyness

⇒ ∃y(P(y) ∧ ∀z > y¬P(z))︸ ︷︷ ︸
maximal element

where:

• < need not be wellfounded, but has specific logical structure,

• P(x) is ‘piecewise’ (only looks at a ‘finite parts’ of x).

PA
ω + SZL< is valid in models where (the interpretation of)< is chain bounded.

SZL is a special instance of Zorn’s lemma, and its validity depends on the choice of

parameters. However, there is a simple instatiation<0 of< for which

PA
ω ` SZL<0

⇔ dependent choice

and so a special case of SZL has the strength of full classical analysis (in the sense of

Spector).



A syntactic formulation of Zorn’s lemma

Zorn’s lemma: nonemptyness+ chain bounded⇒ maximal element

Syntactic Zorn’s lemma (in language of PA
ω
)

SZL< : ∃x P(x)︸ ︷︷ ︸
nonemptyness

⇒ ∃y(P(y) ∧ ∀z > y¬P(z))︸ ︷︷ ︸
maximal element

where:

• < need not be wellfounded, but has specific logical structure,

• P(x) is ‘piecewise’ (only looks at a ‘finite parts’ of x).

PA
ω + SZL< is valid in models where (the interpretation of)< is chain bounded.

SZL is a special instance of Zorn’s lemma, and its validity depends on the choice of

parameters. However, there is a simple instatiation<0 of< for which

PA
ω ` SZL<0

⇔ dependent choice

and so a special case of SZL has the strength of full classical analysis (in the sense of

Spector).



A syntactic formulation of Zorn’s lemma

Zorn’s lemma: nonemptyness+ chain bounded⇒ maximal element

Syntactic Zorn’s lemma (in language of PA
ω
)

SZL< : ∃x P(x)︸ ︷︷ ︸
nonemptyness

⇒ ∃y(P(y) ∧ ∀z > y¬P(z))︸ ︷︷ ︸
maximal element

where:

• < need not be wellfounded, but has specific logical structure,

• P(x) is ‘piecewise’ (only looks at a ‘finite parts’ of x).

PA
ω + SZL< is valid in models where (the interpretation of)< is chain bounded.

SZL is a special instance of Zorn’s lemma, and its validity depends on the choice of

parameters. However, there is a simple instatiation<0 of< for which

PA
ω ` SZL<0

⇔ dependent choice

and so a special case of SZL has the strength of full classical analysis (in the sense of

Spector).



A syntactic formulation of Zorn’s lemma

Zorn’s lemma: nonemptyness+ chain bounded⇒ maximal element

Syntactic Zorn’s lemma (in language of PA
ω
)

SZL< : ∃x P(x)︸ ︷︷ ︸
nonemptyness

⇒ ∃y(P(y) ∧ ∀z > y¬P(z))︸ ︷︷ ︸
maximal element

where:

• < need not be wellfounded, but has specific logical structure,

• P(x) is ‘piecewise’ (only looks at a ‘finite parts’ of x).

PA
ω + SZL< is valid in models where (the interpretation of)< is chain bounded.

SZL is a special instance of Zorn’s lemma, and its validity depends on the choice of

parameters. However, there is a simple instatiation<0 of< for which

PA
ω ` SZL<0

⇔ dependent choice

and so a special case of SZL has the strength of full classical analysis (in the sense of

Spector).



Simple example: Subsets ofN

Suppose that x, y, z : nat→ bool represent characteristic functions of subsets of
natural numbers, and define

x < y :⇔ x ⊂ y.

�en SZL⊂ becomes

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))

where here P(x) is piecewise if it can be written as

P(x) :≡ ∀n Q([x0, . . . , xn−1]).

SZL⊂ is closely related to Berger’s update induction. Can be used to give direct
proofs to a number of important results e.g.

PA
ω + SZL⊂ ` all nontrivial countable commutative rings have a maximal ideal

Can show that both Sω and Cω are models of PAω + SZL⊂.



Simple example: Subsets ofN

Suppose that x, y, z : nat→ bool represent characteristic functions of subsets of
natural numbers, and define

x < y :⇔ x ⊂ y.

�en SZL⊂ becomes

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))

where here P(x) is piecewise if it can be written as

P(x) :≡ ∀n Q([x0, . . . , xn−1]).

SZL⊂ is closely related to Berger’s update induction. Can be used to give direct
proofs to a number of important results e.g.

PA
ω + SZL⊂ ` all nontrivial countable commutative rings have a maximal ideal

Can show that both Sω and Cω are models of PAω + SZL⊂.



Simple example: Subsets ofN

Suppose that x, y, z : nat→ bool represent characteristic functions of subsets of
natural numbers, and define

x < y :⇔ x ⊂ y.

�en SZL⊂ becomes

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))

where here P(x) is piecewise if it can be written as

P(x) :≡ ∀n Q([x0, . . . , xn−1]).

SZL⊂ is closely related to Berger’s update induction. Can be used to give direct
proofs to a number of important results e.g.

PA
ω + SZL⊂ ` all nontrivial countable commutative rings have a maximal ideal

Can show that both Sω and Cω are models of PAω + SZL⊂.



Simple example: Subsets ofN

Suppose that x, y, z : nat→ bool represent characteristic functions of subsets of
natural numbers, and define

x < y :⇔ x ⊂ y.

�en SZL⊂ becomes

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))

where here P(x) is piecewise if it can be written as

P(x) :≡ ∀n Q([x0, . . . , xn−1]).

SZL⊂ is closely related to Berger’s update induction. Can be used to give direct
proofs to a number of important results e.g.

PA
ω + SZL⊂ ` all nontrivial countable commutative rings have a maximal ideal

Can show that both Sω and Cω are models of PAω + SZL⊂.



Simple example: Subsets ofN

Suppose that x, y, z : nat→ bool represent characteristic functions of subsets of
natural numbers, and define

x < y :⇔ x ⊂ y.

�en SZL⊂ becomes

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))

where here P(x) is piecewise if it can be written as

P(x) :≡ ∀n Q([x0, . . . , xn−1]).

SZL⊂ is closely related to Berger’s update induction. Can be used to give direct
proofs to a number of important results e.g.

PA
ω + SZL⊂ ` all nontrivial countable commutative rings have a maximal ideal

Can show that both Sω and Cω are models of PAω + SZL⊂.



Simple example: Subsets ofN

Suppose that x, y, z : nat→ bool represent characteristic functions of subsets of
natural numbers, and define

x < y :⇔ x ⊂ y.

�en SZL⊂ becomes

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))

where here P(x) is piecewise if it can be written as

P(x) :≡ ∀n Q([x0, . . . , xn−1]).

SZL⊂ is closely related to Berger’s update induction. Can be used to give direct
proofs to a number of important results e.g.

PA
ω + SZL⊂ ` all nontrivial countable commutative rings have a maximal ideal

Can show that both Sω and Cω are models of PAω + SZL⊂.



A computational counterpart to SZL⊂

What form of recursion can we associate with

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))?

�emost obvious is a recursor over⊃ i.e.

Φf (x) =ρ fx(λy . Φf (y) if y ⊃ x).

�is tricky because x ⊃ y is not decidable, but can reformulate as

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

But isΦf (x)well-defined?

�eorem (sketch)

Suppose that ρ := nat. �enΦf is a total object in the model of partial continuous
functionals since the value ofΦf (x) only depends on a finite part of the input x.



A computational counterpart to SZL⊂

What form of recursion can we associate with

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))?

�emost obvious is a recursor over⊃ i.e.

Φf (x) =ρ fx(λy . Φf (y) if y ⊃ x).

�is tricky because x ⊃ y is not decidable, but can reformulate as

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

But isΦf (x)well-defined?

�eorem (sketch)

Suppose that ρ := nat. �enΦf is a total object in the model of partial continuous
functionals since the value ofΦf (x) only depends on a finite part of the input x.



A computational counterpart to SZL⊂

What form of recursion can we associate with

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))?

�emost obvious is a recursor over⊃ i.e.

Φf (x) =ρ fx(λy . Φf (y) if y ⊃ x).

�is tricky because x ⊃ y is not decidable, but can reformulate as

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

But isΦf (x)well-defined?

�eorem (sketch)

Suppose that ρ := nat. �enΦf is a total object in the model of partial continuous
functionals since the value ofΦf (x) only depends on a finite part of the input x.



A computational counterpart to SZL⊂

What form of recursion can we associate with

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))?

�emost obvious is a recursor over⊃ i.e.

Φf (x) =ρ fx(λy . Φf (y) if y ⊃ x).

�is tricky because x ⊃ y is not decidable, but can reformulate as

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

But isΦf (x)well-defined?

�eorem (sketch)

Suppose that ρ := nat. �enΦf is a total object in the model of partial continuous
functionals since the value ofΦf (x) only depends on a finite part of the input x.



A computational counterpart to SZL⊂

What form of recursion can we associate with

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))?

�emost obvious is a recursor over⊃ i.e.

Φf (x) =ρ fx(λy . Φf (y) if y ⊃ x).

�is tricky because x ⊃ y is not decidable, but can reformulate as

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

But isΦf (x)well-defined?

�eorem (sketch)

Suppose that ρ := nat. �enΦf is a total object in the model of partial continuous
functionals since the value ofΦf (x) only depends on a finite part of the input x.



A computational counterpart to SZL⊂

What form of recursion can we associate with

∃x P(x)⇒ ∃y(P(y) ∧ ∀z ⊃ y ¬P(z))?

�emost obvious is a recursor over⊃ i.e.

Φf (x) =ρ fx(λy . Φf (y) if y ⊃ x).

�is tricky because x ⊃ y is not decidable, but can reformulate as

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

But isΦf (x)well-defined?

�eorem (sketch)

Suppose that ρ := nat. �enΦf is a total object in the model of partial continuous
functionals since the value ofΦf (x) only depends on a finite part of the input x.



A problemwith higher types

Let us now consider

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

in the case ρ := nat→ nat. Define f by

fxp := λn . 1+ p(n, {n})(n+ 1).

�en for k := Φf (∅)0 we have

k = 1+ Φf ({0})(1) = 2+ Φf ({0, 1})(2)
. . . = k+ 1+ Φf ({0, . . . , k})(k+ 1) > k

so the defining equation ofΦ is inconsistent with PA
ω
.

Problem

We need a form of recursion which is valid for all output types ρ to solve the
functional interpretation of SZL⊂.



A problemwith higher types

Let us now consider

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

in the case ρ := nat→ nat. Define f by

fxp := λn . 1+ p(n, {n})(n+ 1).

�en for k := Φf (∅)0 we have

k = 1+ Φf ({0})(1) = 2+ Φf ({0, 1})(2)
. . . = k+ 1+ Φf ({0, . . . , k})(k+ 1) > k

so the defining equation ofΦ is inconsistent with PA
ω
.

Problem

We need a form of recursion which is valid for all output types ρ to solve the
functional interpretation of SZL⊂.



A problemwith higher types

Let us now consider

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

in the case ρ := nat→ nat. Define f by

fxp := λn . 1+ p(n, {n})(n+ 1).

�en for k := Φf (∅)0 we have

k = 1+ Φf ({0})(1) = 2+ Φf ({0, 1})(2)
. . . = k+ 1+ Φf ({0, . . . , k})(k+ 1) > k

so the defining equation ofΦ is inconsistent with PA
ω
.

Problem

We need a form of recursion which is valid for all output types ρ to solve the
functional interpretation of SZL⊂.



A problemwith higher types

Let us now consider

Φf (x) =ρ fx(λnnat, y . Φf (x ∪ y) if n ∈ y and n /∈ x).

in the case ρ := nat→ nat. Define f by

fxp := λn . 1+ p(n, {n})(n+ 1).

�en for k := Φf (∅)0 we have

k = 1+ Φf ({0})(1) = 2+ Φf ({0, 1})(2)
. . . = k+ 1+ Φf ({0, . . . , k})(k+ 1) > k

so the defining equation ofΦ is inconsistent with PA
ω
.

Problem

We need a form of recursion which is valid for all output types ρ to solve the
functional interpretation of SZL⊂.



Solution

We define an alternative form of recursion based on the idea of a ‘truncation’. Let

Ψωf (x) =ρ f {x}ω(λn, y . Ψf ({x}ω ∪ y) if n ∈ y and n /∈ {x}ω)

where, very roughly, {x}ω is an operation which truncates the input x and forces
only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

�eorem (sketch)

Under reasonable assumptions,Ψf defines a total continuous functional for any
output type ρ.

Main contributions (sketch)

• A generalisation ofΨ above toΨ<, together with precise conditions on<
which guarantee thatΨ< defines a total continuous functional.

• Proof that there is a term definable inΨ< which realizes the functional

interpretation of SZL
N
<, hence

PA
ω + SZL< 7→ System T + (Ψ<).



Solution

We define an alternative form of recursion based on the idea of a ‘truncation’. Let

Ψωf (x) =ρ f {x}ω(λn, y . Ψf ({x}ω ∪ y) if n ∈ y and n /∈ {x}ω)

where, very roughly, {x}ω is an operation which truncates the input x and forces
only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

�eorem (sketch)

Under reasonable assumptions,Ψf defines a total continuous functional for any
output type ρ.

Main contributions (sketch)

• A generalisation ofΨ above toΨ<, together with precise conditions on<
which guarantee thatΨ< defines a total continuous functional.

• Proof that there is a term definable inΨ< which realizes the functional

interpretation of SZL
N
<, hence

PA
ω + SZL< 7→ System T + (Ψ<).



Solution

We define an alternative form of recursion based on the idea of a ‘truncation’. Let

Ψωf (x) =ρ f {x}ω(λn, y . Ψf ({x}ω ∪ y) if n ∈ y and n /∈ {x}ω)

where, very roughly, {x}ω is an operation which truncates the input x and forces
only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

�eorem (sketch)

Under reasonable assumptions,Ψf defines a total continuous functional for any
output type ρ.

Main contributions (sketch)

• A generalisation ofΨ above toΨ<, together with precise conditions on<
which guarantee thatΨ< defines a total continuous functional.

• Proof that there is a term definable inΨ< which realizes the functional

interpretation of SZL
N
<, hence

PA
ω + SZL< 7→ System T + (Ψ<).



Solution

We define an alternative form of recursion based on the idea of a ‘truncation’. Let

Ψωf (x) =ρ f {x}ω(λn, y . Ψf ({x}ω ∪ y) if n ∈ y and n /∈ {x}ω)

where, very roughly, {x}ω is an operation which truncates the input x and forces
only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

�eorem (sketch)

Under reasonable assumptions,Ψf defines a total continuous functional for any
output type ρ.

Main contributions (sketch)

• A generalisation ofΨ above toΨ<, together with precise conditions on<
which guarantee thatΨ< defines a total continuous functional.

• Proof that there is a term definable inΨ< which realizes the functional

interpretation of SZL
N
<, hence

PA
ω + SZL< 7→ System T + (Ψ<).



Solution

We define an alternative form of recursion based on the idea of a ‘truncation’. Let

Ψωf (x) =ρ f {x}ω(λn, y . Ψf ({x}ω ∪ y) if n ∈ y and n /∈ {x}ω)

where, very roughly, {x}ω is an operation which truncates the input x and forces
only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

�eorem (sketch)

Under reasonable assumptions,Ψf defines a total continuous functional for any
output type ρ.

Main contributions (sketch)

• A generalisation ofΨ above toΨ<, together with precise conditions on<
which guarantee thatΨ< defines a total continuous functional.

• Proof that there is a term definable inΨ< which realizes the functional

interpretation of SZL
N
<, hence

PA
ω + SZL< 7→ System T + (Ψ<).



Solution

We define an alternative form of recursion based on the idea of a ‘truncation’. Let

Ψωf (x) =ρ f {x}ω(λn, y . Ψf ({x}ω ∪ y) if n ∈ y and n /∈ {x}ω)

where, very roughly, {x}ω is an operation which truncates the input x and forces
only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

�eorem (sketch)

Under reasonable assumptions,Ψf defines a total continuous functional for any
output type ρ.

Main contributions (sketch)

• A generalisation ofΨ above toΨ<, together with precise conditions on<
which guarantee thatΨ< defines a total continuous functional.

• Proof that there is a term definable inΨ< which realizes the functional

interpretation of SZL
N
<, hence

PA
ω + SZL< 7→ System T + (Ψ<).



Solution

We define an alternative form of recursion based on the idea of a ‘truncation’. Let

Ψωf (x) =ρ f {x}ω(λn, y . Ψf ({x}ω ∪ y) if n ∈ y and n /∈ {x}ω)

where, very roughly, {x}ω is an operation which truncates the input x and forces
only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

�eorem (sketch)

Under reasonable assumptions,Ψf defines a total continuous functional for any
output type ρ.

Main contributions (sketch)

• A generalisation ofΨ above toΨ<, together with precise conditions on<
which guarantee thatΨ< defines a total continuous functional.

• Proof that there is a term definable inΨ< which realizes the functional

interpretation of SZL
N
<, hence

PA
ω + SZL< 7→ System T + (Ψ<).



�e paper in one slide

Zorn’s lemmaX

simplified to

��
syntactic Zorn’s lemmaX

functional interpretationX // realizing terms

newmode of recursionX

used to construct

OO



THANK YOU!


