On the computational content of Zorn's lemma

Thomas Powell University of Bath

LOGIC IN COMPUTER SCIENCE (LICS '20)

Saarbrücken (held online) 8–11 July 2020

These slides are available at https://t-powell.github.io/talks

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

Before I start...

This talk is designed to **complement** the paper. Specifically I will focus on

- the mathematical and historical context
- outlining the main problem
- providing a **brief sketch** of the central ideas.

Any technical content is presented in a **very informal** manner.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

If you have any questions, please send me an email!

Before I start...

This talk is designed to complement the paper. Specifically I will focus on

- the mathematical and historical context
- outlining the main problem
- providing a **brief sketch** of the central ideas.

Any technical content is presented in a **very informal** manner.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

If you have any questions, please send me an email!

new mode of recursion

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Theorem (Zorn's lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) $\gamma \subseteq S$ has an upper bound in S, i.e. there exists some $u \in S$ such that $x \leq u$ for all $x \in \gamma$.

Then S contains a maximal element i.e. there exists some $m \in S$ such that $\neg(m < x)$ for any $x \in S$.

In 'ordinary' mathematics, Zorn's lemma is typically used to 'build' objects in stages e.g.

- every set has a well ordering,
- every vector space has a basis,
- every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn's lemma \Leftrightarrow Axiom of choice

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ

Theorem (Zorn's lemma)

Let (S, <) be a <u>nonempty</u> set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) $\gamma \subseteq S$ has an upper bound in S, i.e. there exists some $u \in S$ such that $x \leq u$ for all $x \in \gamma$.

Then S contains a maximal element i.e. there exists some $m \in S$ such that $\neg(m < x)$ for any $x \in S$.

In 'ordinary' mathematics, Zorn's lemma is typically used to 'build' objects in stages e.g.

- every set has a well ordering,
- every vector space has a basis,
- every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn's lemma \Leftrightarrow Axiom of choice

Theorem (Zorn's lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) $\gamma \subseteq S$ has an upper bound in *S*, i.e. there exists some $u \in S$ such that $x \leq u$ for all $x \in \gamma$.

Then *S* contains a <u>maximal element</u> i.e. there exists some $m \in S$ such that $\neg(m < x)$ for any $x \in S$.

In 'ordinary' mathematics, Zorn's lemma is typically used to 'build' objects in stages e.g.

- every set has a well ordering,
- every vector space has a basis,
- every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn's lemma \Leftrightarrow Axiom of choice

・ロト・1 目 ト・1 日 ト・1 日 ・ つへつ

Theorem (Zorn's lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) $\gamma \subseteq S$ has an upper bound in *S*, i.e. there exists some $u \in S$ such that $x \leq u$ for all $x \in \gamma$.

Then *S* contains a <u>maximal element</u> i.e. there exists some $m \in S$ such that $\neg(m < x)$ for any $x \in S$.

In 'ordinary' mathematics, Zorn's lemma is typically used to 'build' objects in stages e.g.

- every set has a well ordering,
- every vector space has a basis,
- every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn's lemma \Leftrightarrow Axiom of choice

Theorem (Zorn's lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) $\gamma \subseteq S$ has an upper bound in *S*, i.e. there exists some $u \in S$ such that $x \leq u$ for all $x \in \gamma$.

Then *S* contains a <u>maximal element</u> i.e. there exists some $m \in S$ such that $\neg(m < x)$ for any $x \in S$.

In 'ordinary' mathematics, Zorn's lemma is typically used to 'build' objects in stages e.g.

- every set has a well ordering,
- every vector space has a basis,
- every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn's lemma \Leftrightarrow Axiom of choice

Theorem (Zorn's lemma)

Let (S, <) be a nonempty set equipped with a (strict) partial order.

Suppose that every nonempty chain (= totally ordered subset) $\gamma \subseteq S$ has an upper bound in *S*, i.e. there exists some $u \in S$ such that $x \leq u$ for all $x \in \gamma$.

Then *S* contains a <u>maximal element</u> i.e. there exists some $m \in S$ such that $\neg(m < x)$ for any $x \in S$.

In 'ordinary' mathematics, Zorn's lemma is typically used to 'build' objects in stages e.g.

- every set has a well ordering,
- every vector space has a basis,
- every nontrivial ring has a maximal ideal.

Over ZF we have

Zorn's lemma \Leftrightarrow Axiom of choice

Translates each formula A in HA^{ω} (Heyting arithmetic in all finite types) to one of the form $\exists x \forall y A_D(x, y)$, where x, y are (possibly empty) tuples of variables and

- $A \Leftrightarrow \exists x \forall y A_D(x,y)$
- $A_D(x, y)$ is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

- 1. Suppose that $HA^{\omega} \vdash A$. Then from the proof of A we can extract a term t of System T such that $T \vdash \forall y A_D(t, y)$.
- 2. Suppose that $PA^{\omega} \vdash A$. Then we can extract a term *t* of System T such that $T \vdash \forall y \ (A^N)_D(t, y)$ where A^N is the negative translation of *A*.

- (a) Relative consistency proofs i.e. $Con(T) \Rightarrow Con(PA^{\omega})$,
- (b) Program extraction: if $PA^{\omega} \vdash \forall x \exists y \ P(x, y)$ we can extract a primitive recursive *t* such that $T \vdash \forall x \ P(x, tx)$. See also the **proof mining** program.

Translates each formula *A* in HA^{ω} (Heyting arithmetic in all finite types) to one of the form $\exists x \forall y A_D(x, y)$, where *x*, *y* are (possibly empty) tuples of variables and

- $A \Leftrightarrow \exists x \forall y A_D(x,y)$
- $A_D(x, y)$ is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

- 1. Suppose that $HA^{\omega} \vdash A$. Then from the proof of A we can extract a term t of System T such that $T \vdash \forall y A_D(t, y)$.
- 2. Suppose that $PA^{\omega} \vdash A$. Then we can extract a term *t* of System T such that $T \vdash \forall y \ (A^N)_D(t, y)$ where A^N is the negative translation of *A*.

- (a) Relative consistency proofs i.e. $Con(T) \Rightarrow Con(PA^{\omega})$,
- (b) Program extraction: if $PA^{\omega} \vdash \forall x \exists y \ P(x, y)$ we can extract a primitive recursive *t* such that $T \vdash \forall x \ P(x, tx)$. See also the **proof mining** program.

Translates each formula *A* in HA^{ω} (Heyting arithmetic in all finite types) to one of the form $\exists x \forall y A_D(x, y)$, where *x*, *y* are (possibly empty) tuples of variables and

- $A \Leftrightarrow \exists x \forall y A_D(x,y)$
- $A_D(x, y)$ is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

1. Suppose that $HA^{\omega} \vdash A$. Then from the proof of A we can extract a term t of System T such that $T \vdash \forall y A_D(t, y)$.

2. Suppose that $PA^{\omega} \vdash A$. Then we can extract a term *t* of System T such that $T \vdash \forall y \ (A^N)_D(t, y)$ where A^N is the negative translation of *A*.

- (a) Relative consistency proofs i.e. $Con(T) \Rightarrow Con(PA^{\omega})$,
- (b) Program extraction: if $PA^{\omega} \vdash \forall x \exists y \ P(x, y)$ we can extract a primitive recursive *t* such that $T \vdash \forall x \ P(x, tx)$. See also the **proof mining** program.

Translates each formula *A* in HA^{ω} (Heyting arithmetic in all finite types) to one of the form $\exists x \forall y A_D(x, y)$, where *x*, *y* are (possibly empty) tuples of variables and

- $A \Leftrightarrow \exists x \forall y A_D(x,y)$
- $A_D(x, y)$ is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

- 1. Suppose that $HA^{\omega} \vdash A$. Then from the proof of A we can extract a term t of System T such that $T \vdash \forall y A_D(t, y)$.
- 2. Suppose that $PA^{\omega} \vdash A$. Then we can extract a term *t* of System T such that $T \vdash \forall y \ (A^N)_D(t, y)$ where A^N is the negative translation of *A*.

- (a) Relative consistency proofs i.e. $Con(T) \Rightarrow Con(PA^{\omega})$,
- (b) Program extraction: if $PA^{\omega} \vdash \forall x \exists y \ P(x, y)$ we can extract a primitive recursive *t* such that $T \vdash \forall x \ P(x, tx)$. See also the **proof mining** program.

Translates each formula *A* in HA^{ω} (Heyting arithmetic in all finite types) to one of the form $\exists x \forall y A_D(x, y)$, where *x*, *y* are (possibly empty) tuples of variables and

- $A \Leftrightarrow \exists x \forall y A_D(x,y)$
- $A_D(x, y)$ is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

- 1. Suppose that $HA^{\omega} \vdash A$. Then from the proof of A we can extract a term t of System T such that $T \vdash \forall y A_D(t, y)$.
- 2. Suppose that $PA^{\omega} \vdash A$. Then we can extract a term *t* of System T such that $T \vdash \forall y \ (A^N)_D(t, y)$ where A^N is the negative translation of *A*.

- (a) Relative consistency proofs i.e. $Con(T) \Rightarrow Con(PA^{\omega})$,
- (b) Program extraction: if $PA^{\omega} \vdash \forall x \exists y \ P(x, y)$ we can extract a primitive recursive *t* such that $T \vdash \forall x \ P(x, tx)$. See also the **proof mining** program.

Translates each formula *A* in HA^{ω} (Heyting arithmetic in all finite types) to one of the form $\exists x \forall y A_D(x, y)$, where *x*, *y* are (possibly empty) tuples of variables and

- $A \Leftrightarrow \exists x \forall y A_D(x,y)$
- $A_D(x, y)$ is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

- 1. Suppose that $HA^{\omega} \vdash A$. Then from the proof of A we can extract a term t of System T such that $T \vdash \forall y A_D(t, y)$.
- 2. Suppose that $PA^{\omega} \vdash A$. Then we can extract a term *t* of System T such that $T \vdash \forall y \ (A^N)_D(t, y)$ where A^N is the negative translation of *A*.

Applications of the functional interpretation include:

- (a) Relative consistency proofs i.e. $Con(T) \Rightarrow Con(PA^{\omega})$,
- (b) Program extraction: if $PA^{\omega} \vdash \forall x \exists y \ P(x, y)$ we can extract a primitive recursive *t* such that $T \vdash \forall x \ P(x, tx)$. See also the **proof mining** program.

Translates each formula *A* in HA^{ω} (Heyting arithmetic in all finite types) to one of the form $\exists x \forall y A_D(x, y)$, where *x*, *y* are (possibly empty) tuples of variables and

- $A \Leftrightarrow \exists x \forall y A_D(x,y)$
- $A_D(x, y)$ is quantifier-free (and hence decidable).

Theorem. (essentially Goedel 1958)

- 1. Suppose that $HA^{\omega} \vdash A$. Then from the proof of A we can extract a term t of System T such that $T \vdash \forall y A_D(t, y)$.
- 2. Suppose that $PA^{\omega} \vdash A$. Then we can extract a term *t* of System T such that $T \vdash \forall y \ (A^N)_D(t, y)$ where A^N is the negative translation of *A*.

- (a) Relative consistency proofs i.e. $Con(T) \Rightarrow Con(PA^{\omega})$,
- (b) Program extraction: if $PA^{\omega} \vdash \forall x \exists y \ P(x, y)$ we can extract a primitive recursive *t* such that $T \vdash \forall x \ P(x, tx)$. See also the **proof mining** program.

Peano arithmetic \mapsto System T (Gödel '58)

fragments of arithmetic \mapsto fragments of System T (Parsons '71)

(ロ)、(型)、(E)、(E)、 E、のQの

Peano arithmetic \mapsto System T (Gödel '58)

feasible arithmetic → feasible functionals (Cook & Urquhart '93) fragments of arithmetic → fragments of System T (Parsons '71) Peano arithmetic → System T (Gödel '58)

(ロ)、(型)、(E)、(E)、 E、のQの

feasible arithmetic → feasible functionals (Cook & Urquhart '93) fragments of arithmetic → fragments of System T (Parsons '71) Peano arithmetic → System T (Gödel '58) arithmetical comprehension → bar recursion of lowest type (Spector '62)

feasible arithmetic \mapsto feasible functionals (Cook & Urquhart '93) fragments of arithmetic \mapsto fragments of System T (Parsons '71) Peano arithmetic \mapsto System T (Gödel '58) arithmetical comprehension \mapsto bar recursion of lowest type (Spector '62) countable choice \mapsto bar recursion (Spector '62)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

feasible arithmetic \mapsto feasible functionals (Cook & Urquhart '93) fragments of arithmetic \mapsto fragments of System T (Parsons '71) Peano arithmetic \mapsto System T (Gödel '58) arithmetical comprehension \mapsto bar recursion of lowest type (Spector '62) countable choice \mapsto bar recursion (Spector '62) syntactic Zorn's Lemma \mapsto ???

new mode of recursion

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

- Raoult 1988: Zorn's lemma as an inductive principle (open induction).
- **Berardi, Bezem and Coquand 1998:** Symmetric mode of recursion for interpreting axiom of countable choice (BBC functional), based making recursive calls to one-element extensions of countable sets.
- **Berger 2002:** Domain theoretic proof of totality of BBC functional using Zorn's lemma.
- **Berger 2004:** Realizability interpretation of open induction (on lexicographic ordering) via open recursion.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

• Raoult 1988: Zorn's lemma as an inductive principle (open induction).

- **Berardi, Bezem and Coquand 1998:** Symmetric mode of recursion for interpreting axiom of countable choice (BBC functional), based making recursive calls to one-element extensions of countable sets.
- **Berger 2002:** Domain theoretic proof of totality of BBC functional using Zorn's lemma.
- **Berger 2004:** Realizability interpretation of open induction (on lexicographic ordering) via open recursion.

- Raoult 1988: Zorn's lemma as an inductive principle (open induction).
- Berardi, Bezem and Coquand 1998: Symmetric mode of recursion for interpreting axiom of countable choice (BBC functional), based making recursive calls to one-element extensions of countable sets.
- **Berger 2002:** Domain theoretic proof of totality of BBC functional using Zorn's lemma.
- **Berger 2004:** Realizability interpretation of open induction (on lexicographic ordering) via open recursion.

- Raoult 1988: Zorn's lemma as an inductive principle (open induction).
- **Berardi, Bezem and Coquand 1998:** Symmetric mode of recursion for interpreting axiom of countable choice (BBC functional), based making recursive calls to one-element extensions of countable sets.
- **Berger 2002:** Domain theoretic proof of totality of BBC functional using Zorn's lemma.
- **Berger 2004:** Realizability interpretation of open induction (on lexicographic ordering) via open recursion.

- Raoult 1988: Zorn's lemma as an inductive principle (open induction).
- **Berardi, Bezem and Coquand 1998:** Symmetric mode of recursion for interpreting axiom of countable choice (BBC functional), based making recursive calls to one-element extensions of countable sets.
- **Berger 2002:** Domain theoretic proof of totality of BBC functional using Zorn's lemma.
- **Berger 2004:** Realizability interpretation of open induction (on lexicographic ordering) via open recursion.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Zorn's lemma: nonemptyness + chain bounded \Rightarrow maximal element

Syntactic Zorn's lemma (in language of PA^{ω})

$$SZL_{<} : \exists x P(x) \Rightarrow \exists y(P(y) \land \forall z > y \neg P(z))$$

where:

- < need not be wellfounded, but has specific logical structure
- P(x) is 'piecewise' (only looks at a 'finite parts' of x).

 $PA^{\omega} + SZL_{<}$ is valid in models where (the interpretation of) < is chain bounded.

SZL is a special instance of Zorn's lemma, and its validity depends on the choice of parameters. However, there is a simple instatiation $<_0$ of < for which

 $PA^{\omega} \vdash SZL_{<o} \Leftrightarrow dependent choice$

Zorn's lemma: nonemptyness + chain bounded \Rightarrow maximal element

• P(x) is 'piecewise' (only looks at a 'finite parts' of x).

 $PA^{\omega} + SZL_{<}$ is valid in models where (the interpretation of) < is chain bounded.

SZL is a special instance of Zorn's lemma, and its validity depends on the choice of parameters. However, there is a simple instatiation $<_0$ of < for which

 $PA^{\omega} \vdash SZL_{<o} \Leftrightarrow dependent choice$

Zorn's lemma: nonemptyness + chain bounded \Rightarrow maximal element

Syntactic Zorn's lemma (in language of PA^{ω})

$$SZL_{<} : \underbrace{\exists x \ P(x)}_{\text{nonemptyness}} \Rightarrow \underbrace{\exists y(P(y) \land \forall z > y \neg P(z))}_{\text{maximal element}}$$

where:

- < need not be wellfounded, but has specific logical structure,
- P(x) is 'piecewise' (only looks at a 'finite parts' of x).

 $PA^{\omega} + SZL_{<}$ is valid in models where (the interpretation of) < is chain bounded.

SZL is a special instance of Zorn's lemma, and its validity depends on the choice of parameters. However, there is a simple instatiation $<_0$ of < for which

 $PA^{\omega} \vdash SZL_{<o} \Leftrightarrow dependent choice$

Zorn's lemma: nonemptyness + chain bounded \Rightarrow maximal element

Syntactic Zorn's lemma (in language of PA^{ω})

$$SZL_{<} : \underbrace{\exists x \ P(x)}_{\text{nonemptyness}} \Rightarrow \underbrace{\exists y(P(y) \land \forall z > y \neg P(z))}_{\text{maximal element}}$$

where:

- < need not be wellfounded, but has specific logical structure,
- P(x) is 'piecewise' (only looks at a 'finite parts' of x).

 $PA^{\omega} + SZL_{<}$ is valid in models where (the interpretation of) < is chain bounded.

SZL is a special instance of Zorn's lemma, and its validity depends on the choice of parameters. However, there is a simple instatiation $<_0$ of < for which

 $PA^{\omega} \vdash SZL_{<o} \Leftrightarrow dependent choice$

Zorn's lemma: nonemptyness + chain bounded \Rightarrow maximal element

Syntactic Zorn's lemma (in language of PA^{ω})

$$SZL_{<} : \underbrace{\exists x \ P(x)}_{\text{nonemptyness}} \Rightarrow \underbrace{\exists y(P(y) \land \forall z > y \neg P(z))}_{\text{maximal element}}$$

where:

- < need not be wellfounded, but has specific logical structure,
- P(x) is 'piecewise' (only looks at a 'finite parts' of x).

 $PA^{\omega} + SZL_{<}$ is valid in models where (the interpretation of) < is chain bounded.

SZL is a special instance of Zorn's lemma, and its validity depends on the choice of parameters. However, there is a simple instatiation $<_0$ of < for which

 $PA^{\omega} \vdash SZL_{<0} \Leftrightarrow dependent choice$

Simple example: Subsets of \mathbb{N}

Suppose that x, y, z: nat \rightarrow bool represent characteristic functions of subsets of natural numbers, and define

$$x < y : \Leftrightarrow x \subset y.$$

Then SZL_{\subset} becomes

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))$$

where here P(x) is piecewise if it can be written as

$$P(x) :\equiv \forall n \ Q([x_0,\ldots,x_{n-1}]).$$

 SZL_{C} is closely related to Berger's **update induction**. Can be used to give direct proofs to a number of important results e.g.

 $PA^{\omega} + SZL_{\mathbb{C}} \vdash all nontrivial countable commutative rings have a maximal ideal Can show that both <math>S^{\omega}$ and \mathcal{C}^{ω} are models of $PA^{\omega} + SZL_{\mathbb{C}}$.

Simple example: Subsets of \mathbb{N}

Suppose that x, y, z: nat \rightarrow bool represent characteristic functions of subsets of natural numbers, and define

 $x < y : \Leftrightarrow x \subset y.$

Then SZL_{\subset} becomes

 $\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))$

where here P(x) is piecewise if it can be written as

 $P(x) :\equiv \forall n \ Q([x_0,\ldots,x_{n-1}]).$

 $\rm SZL_{C}$ is closely related to Berger's **update induction**. Can be used to give direct proofs to a number of important results e.g.

 $PA^{\omega} + SZL_{\subset} \vdash$ all nontrivial countable commutative rings have a maximal ideal Can show that both S^{ω} and C^{ω} are models of $PA^{\omega} + SZL_{\subset}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose that x, y, z: nat \rightarrow bool represent characteristic functions of subsets of natural numbers, and define

$$x < y : \Leftrightarrow x \subset y.$$

Then $SZL_{\mathbb{C}}$ becomes

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))$$

where here P(x) is piecewise if it can be written as

$$P(x) :\equiv \forall n \ Q([x_0,\ldots,x_{n-1}]).$$

 SZL_{\subset} is closely related to Berger's **update induction**. Can be used to give direct proofs to a number of important results e.g.

 $PA^{\omega} + SZL_{\subset} \vdash$ all nontrivial countable commutative rings have a maximal ideal Can show that both S^{ω} and C^{ω} are models of $PA^{\omega} + SZL_{\subset}$.

Suppose that x, y, z: nat \rightarrow bool represent characteristic functions of subsets of natural numbers, and define

$$x < y : \Leftrightarrow x \subset y.$$

Then $SZL_{\mathbb{C}}$ becomes

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))$$

where here P(x) is piecewise if it can be written as

$$P(x) :\equiv \forall n \ Q([x_0,\ldots,x_{n-1}]).$$

 ${\rm SZL}_{\subset}$ is closely related to Berger's **update induction**. Can be used to give direct proofs to a number of important results e.g.

 $PA^{\omega} + SZL_{\subset} \vdash$ all nontrivial countable commutative rings have a maximal ideal Can show that both S^{ω} and C^{ω} are models of $PA^{\omega} + SZL_{\subset}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose that x, y, z: nat \rightarrow bool represent characteristic functions of subsets of natural numbers, and define

$$x < y : \Leftrightarrow x \subset y.$$

Then $SZL_{\mathbb{C}}$ becomes

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))$$

where here P(x) is piecewise if it can be written as

$$P(x) :\equiv \forall n \ Q([x_0,\ldots,x_{n-1}]).$$

 ${\rm SZL}_{\subset}$ is closely related to Berger's **update induction**. Can be used to give direct proofs to a number of important results e.g.

 $\mathrm{PA}^\omega + \mathrm{SZL}_{\mathbb{C}} \vdash \mathrm{all}$ nontrivial countable commutative rings have a maximal ideal

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Can show that both \mathcal{S}^{ω} and \mathcal{C}^{ω} are models of $\mathrm{PA}^{\omega} + \mathrm{SZL}_{\mathbb{C}}$.

Suppose that x, y, z: nat \rightarrow bool represent characteristic functions of subsets of natural numbers, and define

$$x < y : \Leftrightarrow x \subset y.$$

Then $SZL_{\mathbb{C}}$ becomes

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))$$

where here P(x) is piecewise if it can be written as

$$P(x) :\equiv \forall n \ Q([x_0,\ldots,x_{n-1}]).$$

 ${\rm SZL}_{\subset}$ is closely related to Berger's **update induction**. Can be used to give direct proofs to a number of important results e.g.

 $PA^{\omega} + SZL_{\subset} \vdash$ all nontrivial countable commutative rings have a maximal ideal Can show that both S^{ω} and C^{ω} are models of $PA^{\omega} + SZL_{\subset}$.

A computational counterpart to $\mathrm{SZL}_{\mathbb{C}}$

What form of recursion can we associate with

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))?$$

The most obvious is a recursor over \supset i.e.

 $\Phi f(x) =_{\rho} f_{x}(\lambda y \cdot \Phi f(y) \text{ if } y \supset x).$

This tricky because $x \supset y$ is not decidable, but can reformulate as

 $\Phi f(x) =_{\rho} f_x(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$

But is $\Phi f(x)$ well-defined?

Theorem (sketch)

What form of recursion can we associate with

$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))?$

The most obvious is a recursor over \supset i.e.

 $\Phi f(x) =_{\rho} f_x(\lambda y \cdot \Phi f(y) \text{ if } y \supset x).$

This tricky because $x \supset y$ is not decidable, but can reformulate as

 $\Phi f(x) =_{\rho} f_x(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$

But is $\Phi f(x)$ well-defined?

Theorem (sketch)

What form of recursion can we associate with

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))?$$

The most obvious is a recursor over \supset i.e.

 $\Phi f(x) =_{\rho} f_{x}(\lambda y \cdot \Phi f(y) \text{ if } y \supset x).$

This tricky because $x \supset y$ is not decidable, but can reformulate as

 $\Phi f(x) =_{\rho} f_x(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$

But is $\Phi f(x)$ well-defined?

Theorem (sketch)

What form of recursion can we associate with

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))?$$

The most obvious is a recursor over \supset i.e.

$$\Phi f(x) =_{\rho} f_{x}(\lambda y \cdot \Phi f(y) \text{ if } y \supset x).$$

This tricky because $x \supset y$ is not decidable, but can reformulate as

$$\Phi f(x) =_{\rho} fx(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$$

But is $\Phi f(x)$ well-defined?

Theorem (sketch)

What form of recursion can we associate with

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))?$$

The most obvious is a recursor over \supset i.e.

$$\Phi f(x) =_{\rho} f_{x}(\lambda y \cdot \Phi f(y) \text{ if } y \supset x).$$

This tricky because $x \supset y$ is not decidable, but can reformulate as

$$\Phi f(x) =_{\rho} f_x(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$$

But is $\Phi f(x)$ well-defined?

Theorem (sketch)

What form of recursion can we associate with

$$\exists x \ P(x) \Rightarrow \exists y (P(y) \land \forall z \supset y \neg P(z))?$$

The most obvious is a recursor over \supset i.e.

$$\Phi f(x) =_{\rho} f_{x}(\lambda y \cdot \Phi f(y) \text{ if } y \supset x).$$

This tricky because $x \supset y$ is not decidable, but can reformulate as

$$\Phi f(x) =_{\rho} fx(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$$

But is $\Phi f(x)$ well-defined?

Theorem (sketch)

Let us now consider

 $\Phi f(x) =_{\rho} f_x(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$

in the case $\rho := nat \rightarrow nat$. Define f by

 $f_{xp} := \lambda n \cdot 1 + p(n, \{n\})(n+1).$

Then for $k := \Phi f(\emptyset)$ 0 we have

$$k = 1 + \Phi f(\{0\})(1) = 2 + \Phi f(\{0,1\})(2)$$

... = k + 1 + \Delta f(\{0,...,k\})(k+1) > k

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

so the defining equation of Φ is inconsistent with PA^{ω} .

Problem

We need a form of recursion which is valid for all output types ρ to solve the functional interpretation of SZL_ .

Let us now consider

 $\Phi f(x) =_{\rho} fx(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$

in the case $\rho := nat \rightarrow nat$. Define f by

 $f_{xp} := \lambda n \cdot 1 + p(n, \{n\})(n+1).$

Then for $k := \Phi f(\emptyset)$ 0 we have

$$k = 1 + \Phi f(\{0\})(1) = 2 + \Phi f(\{0,1\})(2)$$

... = k + 1 + \Phi f(\{0,...,k\})(k+1) > k

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

so the defining equation of Φ is inconsistent with PA^{ω}.

Problem

We need a form of recursion which is valid for all output types ρ to solve the functional interpretation of SZL_ .

Let us now consider

$$\Phi f(x) =_{\rho} fx(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$$

in the case $\rho := \mathsf{nat} \to \mathsf{nat}$. Define f by

$$f_{xp} := \lambda n \cdot 1 + p(n, \{n\})(n+1).$$

Then for $k := \Phi f(\emptyset)$ 0 we have

$$k = 1 + \Phi f(\{0\})(1) = 2 + \Phi f(\{0,1\})(2)$$

... = k + 1 + \Phi f(\{0,...,k\})(k+1) > k

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

so the defining equation of Φ is inconsistent with $\mathrm{PA}^\omega.$

Problem

We need a form of recursion which is valid for all output types ho to solve the functional interpretation of SZL $_{\sub}$.

Let us now consider

$$\Phi f(x) =_{\rho} fx(\lambda n^{\mathsf{nat}}, y \cdot \Phi f(x \cup y) \text{ if } n \in y \text{ and } n \notin x).$$

in the case $\rho := \mathsf{nat} \to \mathsf{nat}$. Define f by

$$f_{xp} := \lambda n \cdot 1 + p(n, \{n\})(n+1).$$

Then for $k := \Phi f(\emptyset)$ 0 we have

$$k = 1 + \Phi f(\{0\})(1) = 2 + \Phi f(\{0,1\})(2)$$

... = k + 1 + \Phi f(\{0,...,k\})(k+1) > k

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

so the defining equation of Φ is inconsistent with $\mathrm{PA}^\omega.$

Problem

We need a form of recursion which is valid for all output types ρ to solve the functional interpretation of SZL_C.

We define an alternative form of recursion based on the idea of a 'truncation'. Let

 $\Psi \omega f(x) =_{\rho} f\{x\}_{\omega} (\lambda n, y . \Psi f(\{x\}_{\omega} \cup y) \text{ if } n \in y \text{ and } n \notin \{x\}_{\omega})$

where, very roughly, $\{x\}_{\omega}$ is an operation which truncates the input x and forces only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

Theorem (sketch)

Under reasonable assumptions, Ψf defines a total continuous functional for any output type $\rho.$

- A generalisation of Ψ above to $\Psi_<$, together with precise conditions on < which guarantee that $\Psi_<$ defines a total continuous functional.
- Proof that there is a term definable in $\Psi_<$ which realizes the functional interpretation of ${\rm SZL}^N_<,$ hence

$$PA^{\omega} + SZL_{\leq} \mapsto System T + (\Psi_{\leq}).$$

We define an alternative form of recursion based on the idea of a 'truncation'. Let

 $\Psi \omega f(x) =_{\rho} f\{x\}_{\omega}(\lambda n, y : \Psi f(\{x\}_{\omega} \cup y) \text{ if } n \in y \text{ and } n \notin \{x\}_{\omega})$

where, very roughly, $\{x\}_{\omega}$ is an operation which truncates the input x and forces only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

Theorem (sketch)

Under reasonable assumptions, Ψf defines a total continuous functional for any output type $\rho.$

- A generalisation of Ψ above to $\Psi_<$, together with precise conditions on < which guarantee that $\Psi_<$ defines a total continuous functional.
- Proof that there is a term definable in $\Psi_<$ which realizes the functional interpretation of ${\rm SZL}^N_<,$ hence

$$PA^{\omega} + SZL_{\leq} \mapsto System T + (\Psi_{\leq}).$$

We define an alternative form of recursion based on the idea of a 'truncation'. Let

$$\Psi \omega f(x) =_{\rho} f\{x\}_{\omega} (\lambda n, y . \Psi f(\{x\}_{\omega} \cup y) \text{ if } n \in y \text{ and } n \notin \{x\}_{\omega})$$

where, very roughly, $\{x\}_{\omega}$ is an operation which truncates the input x and forces only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

Theorem (sketch)

Under reasonable assumptions, Ψf defines a total continuous functional for any output type $\rho.$

- A generalisation of Ψ above to $\Psi_{<}$, together with precise conditions on < which guarantee that $\Psi_{<}$ defines a total continuous functional.
- Proof that there is a term definable in $\Psi_<$ which realizes the functional interpretation of ${\rm SZL}^N_<,$ hence

$$PA^{\omega} + SZL_{\leq} \mapsto System T + (\Psi_{\leq}).$$

We define an alternative form of recursion based on the idea of a 'truncation'. Let

 $\Psi \omega f(x) =_{\rho} f\{x\}_{\omega}(\lambda n, y : \Psi f(\{x\}_{\omega} \cup y) \text{ if } n \in y \text{ and } n \notin \{x\}_{\omega})$

where, very roughly, $\{x\}_{\omega}$ is an operation which truncates the input x and forces only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

Theorem (sketch)

Under reasonable assumptions, Ψf defines a total continuous functional for any output type $\rho.$

- A generalisation of Ψ above to $\Psi_{<}$, together with precise conditions on < which guarantee that $\Psi_{<}$ defines a total continuous functional.
- Proof that there is a term definable in $\Psi_<$ which realizes the functional interpretation of ${\rm SZL}^N_<$, hence

$$PA^{\omega} + SZL_{\leq} \mapsto System T + (\Psi_{\leq}).$$

We define an alternative form of recursion based on the idea of a 'truncation'. Let

 $\Psi \omega f(x) =_{\rho} f\{x\}_{\omega}(\lambda n, y : \Psi f(\{x\}_{\omega} \cup y) \text{ if } n \in y \text{ and } n \notin \{x\}_{\omega})$

where, very roughly, $\{x\}_{\omega}$ is an operation which truncates the input x and forces only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

Theorem (sketch)

Under reasonable assumptions, Ψf defines a total continuous functional for any output type $\rho.$

Main contributions (sketch)

- A generalisation of Ψ above to $\Psi_{<}$, together with precise conditions on < which guarantee that $\Psi_{<}$ defines a total continuous functional.
- Proof that there is a term definable in $\Psi_<$ which realizes the functional interpretation of ${\rm SZL}^N_<$, hence

 $PA^{\omega} + SZL_{\leq} \mapsto System T + (\Psi_{\leq}).$

We define an alternative form of recursion based on the idea of a 'truncation'. Let

 $\Psi \omega f(x) =_{\rho} f\{x\}_{\omega}(\lambda n, y : \Psi f(\{x\}_{\omega} \cup y) \text{ if } n \in y \text{ and } n \notin \{x\}_{\omega})$

where, very roughly, $\{x\}_{\omega}$ is an operation which truncates the input x and forces only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

Theorem (sketch)

Under reasonable assumptions, Ψf defines a total continuous functional for any output type $\rho.$

Main contributions (sketch)

- A generalisation of Ψ above to $\Psi_<$, together with precise conditions on < which guarantee that $\Psi_<$ defines a total continuous functional.
- Proof that there is a term definable in $\Psi_<$ which realizes the functional interpretation of ${\rm SZL}^N_<$, hence

 $PA^{\omega} + SZL_{\leq} \mapsto System T + (\Psi_{\leq}).$

We define an alternative form of recursion based on the idea of a 'truncation'. Let

 $\Psi \omega f(x) =_{\rho} f\{x\}_{\omega}(\lambda n, y : \Psi f(\{x\}_{\omega} \cup y) \text{ if } n \in y \text{ and } n \notin \{x\}_{\omega})$

where, very roughly, $\{x\}_{\omega}$ is an operation which truncates the input x and forces only a finite part to be relevant.

Idea: Piecewiseness of totality predicate is controlled syntactically.

Theorem (sketch)

Under reasonable assumptions, Ψf defines a total continuous functional for any output type $\rho.$

- A generalisation of Ψ above to $\Psi_{<}$, together with precise conditions on < which guarantee that $\Psi_{<}$ defines a total continuous functional.
- Proof that there is a term definable in $\Psi_<$ which realizes the functional interpretation of SZL^N_<, hence

$$PA^{\omega} + SZL_{\leq} \mapsto System T + (\Psi_{\leq}).$$

new mode of recursion \checkmark

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

THANK YOU!

▲□▶ < 団▶ < 団▶ < 団▶ < 団▶ < 団 < つへの</p>