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INTRODUCTION



Abel’s theorem

Let {a, } be a sequence of reals, and suppose that the power series

> .
F(x) := Za,'xl
i—o

converges on |x| < 1. Then whenever

oo
E a; =S
i=0

it follows that
F(x) »s as x /1L

This is a classical result in elementary analysis called Abel’s theorem (N.b. it also
holds in the complex setting). You can use it to e.g. prove that

(=1’
i+1

o

= log(2).

1=0



Does the converse of Abel’s theorem hold?

NO.

For a counterexample, define F : (—1,1) — Rby

1 S i
) = = 0
Then

F(x) > - as x "1

but

[e]

Z(—l)i does not converge

i=0



Tauber’s theorem fixes this

Let {a, } be a sequence of reals, and suppose that the power series

0 .
F(x) := Zaixl
i=0
converges on |x| < 1. Then whenever

F(x) —s as x 1 AND |nay| — O

it follows that

oo
E a; =S
i=0

This is Tauber’s theorem, proven in 1897 by Austrian mathematician Alfred Tauber
(1866 - 1942).




Tauberian theorems

The basic structure of Tauber’s theorem is:
oo
Let F(x) = Z aix'
i—o

Then if we know
(A) Something about the behaviour of F(x) asx 1
(B) Something about the growth of {a,} asn — oo
Then we can conclude

(C) Something about the convergence of 3 °  a;.

This basic idea has been considerably generalised e.g. for

E(s) := /Oo a(t)t™ dt

and has grown into an area of research known as Tauberian Theory.



There is now a whole textbook (published 2004, 501 pages)




Tauberian theorems have an interesting structure

convergence |+ | growth condition | = | convergence

Can we give a quantitative interpretation of these theorems e.g.

rate of convergence ‘ + ’ quantitative growth condition ‘ = ‘ rate of convergence

In many cases, this would seem to pose a real challenge, as the proofs of Tauberian
theorems are typically based on complicated analytic techniques.

Remainder of the talk:

@ Some very simple results (published)
® Some slightly less simple results (unpublished)

© Some rough ideas for the future (speculation)



SIMPLE RESULTS



Cauchy variants of Abelian and Tauberian theorems

n

From now on, {a,} is a sequence of reals, F(x) := > "> aix’ and s, := Y a;.

The following may well feature in some form elsewhere in the literature...

Theorem (Abel’s theorem, Cauchy variant)

Suppose that
e {s,}is Cauchy,
® {xn} € [0,1) satisfies limm—s 00 X = 1.

Then limy n— oo |F(%m) — sn| = O.

Theorem (Tauber’s theorem, Cauchy variant)

Suppose that
® {F(vm)} is Cauchy, where vy, :=1— =+,
® g, =o0(1/n).

Then limy, n—s 0o |F(Vm) — $u| = O.



A finitization of Abel’s theorem

Theorem (Finite Abel’s theorem, P. 2020)

Let {a,} and {x,} be arbitrary sequences of reals, and L € N a bound for {|s,|}. Fix some
€ € Q+andg : N — N. Suppose that N1, N, € Nandp > 1are such that

€ 1 €
|si—sn| < = and = <1—x, <
4 p 8LN1

foralli,n € [Ny; max{N + g(N),I}] andallm € [Ny; N + g(N)] where
N := max{Ni,N,} and |:=p- [log (SEH)—‘

Then we have |F(xy,) — su| < € forallm,n € [N; N + g(N)].

Simple application of Godel’s functional interpretation to textbook proof of Abel’s
theorem.

Nothing deep



Corollary: A quantitative Abel’s theorem

Suppose that |s,| < Lforall» € N and moreover

(A) ¢ 1is arate of Cauchy convergence for {s, }, or equivalently

Xn: ai S E)
i=m

Then a rate of convergence for limy, »— oo |F(%m) — s»| = Ois given by

Ve > 0Vm,n > ¢(e) <

(B) 1) is a rate of convergence for x,, 1.

D0 (€) = max {¢(E/4)’ v (m)}



A finitization of Tauber’s theorem

Theorem (Finite Tauber’s theorem, P. 2020)

Let {ay} be an arbitrary sequence of veals, and L a bound for { |a,|}. Definevy, :=1— %, and
fixsomee € Q1 andg : N — N. Suppose that N1, N, € Nare such that

il gg and |F(vm) — E(v)| <

A m

foralli € [Ny; 1] andallm,n € [Ny; N + g(N)] where

2
N:= maX{ZLNI,Nz} and p - [log (%)—I for p:=N+g(N)

€

Then we have |F(vy) — su| < eforallm,n € [N; N + g(N)].



Corollary: A quantitative Tauber’s theorem

Suppose that |a,| < Lforalln € N and moreover
(A) ¢ isarate of Cauchy convergence for n|a,| — O

(B) 1 is a rate of convergence for {F(1 — 1)}

Then a rate of convergence for limp »— o0 |[F(1 — 1) — s, = O is given by

Oy 4y (c) = max {%5/8)2 w(s/4)}



Again, nothing deep in any of the above results, but they can be used in conjunction
with known results from proof mining to generate concrete quantitative lemmas:

Lemma

Let {a, } be a sequence of positive reals whose partial sums {s, } are bounded above. Then
limyp, oo [F(1— 2) — 5| = 0.

Note: If {s, } is a Specker sequence then there is no computable rate of convergence
for limy, oo [F(1— 1) — 54| = 0.

Lemma

Let {a, } be a sequence of positive reals and L a bound for the partial sums {s, }. Then for any
€ € Qtandg : N — Nwe have

3N <Ti(e,g) Ym,n € [N,N+g(N)] (|[FQ—2) —sa| <)

m

forT'L(e, g) given as follows:
sLF(M/e1) (o
° Ii(e,g) = [u]




These results (and more) appear in:

A note on the finitization of Abelian and Tauberian theorems

Thomas Powell

Abstract

We present finitary formulations of two well known results concerning infinite series, namely Abel’s
theorem, which establishes that if a series converges to some limit then its Abel sum converges to the
same limit, and Tauber’s theorem, which presents a simple condition under which the converse holds.
Our approach is inspired by proof theory, and in particular Gédel’s 1 inter ion, which we

use to establish quantitative version of both of these results.

1 Introduction

In an essay of 2007 [17] (later published as part of [18]) T. Tao discussed the so-called correspondence
principle between ‘soft’ and ‘hard’ analysis, whereby many infinitary notions from analysis can be given
an equivalent finitary formulation. An important instance of this phenomenon is provided by the simple
concept of Cauchy convergence of a sequence {c, }:

Ve > 03N Vm,n > N (|em — cu| < €).
This corresponds to the finitary notion of {c,} being metastable, which is given by the following formula:

Ve >0Vg:N—NINVm,ne NN+ g(N)] (Jom — | < &), 1)

where | +k + k}. Roughly speakin
for any given error € > 0 it contains a finite regions of stability of any ‘size’,
function ¢ : N — N.

The equivalence of Cauchy convergenc bility is established via purely logical reasoning, and
indeed, as was quickly observed, the correspondence principle as presented in [17] has deep connections with
proof theory. More specifically, the finitary variant of an infinitary statement is typically closely related to
its classical Dialectica interpretation [1], which provides a general method for obtaining quantitative versions
of mathematical theorems.

Finitary formulations of infinitary properties play a central role in the proof mining program developed
by U. Kohlenbach from the early 90s [7]. Here, it is often the case that a given mathematical theorem has,
in general, no computable realizer (for Cauchy convergence this is demonstrated by the existence of so-called
Specker sequences [16], which will be discussed further in Section 3). On the other hand, the corresponding
finitary formulation can typically not only be realized, but a realizer can be directly extracted from a proof
1 i O T (1Y e crmallad vete

a sequence {c, } is metastable if
where size is represented by the

Y An

Shat +he arainal nranerte holde The ovtractionm of o orrr-




LESS SIMPLE RESULTS



Tauber’s theorem was first extended by Littlewood (1911)

THE CONVERSE OF ABEL'S THEOREM ON POWER SERIES
By J. E. LirrLewoop,

[Received September 28th, 1910.—Read November 10th, 1910.—
Revised December, 1910.*]

Introduction.
Abel’s theorem states that if Za, is convergent, then limZXa,z"
0 0

exists as « — 1 by real values, and is equal to Za,. The converse theorem,
however, that the existence of lim Za,z" implies the eonvergence of Za,,
i

is very far from being true; for example, either the Cesaro or the Borel
summability of £a, suffices for the existence of Abel's limit. It is known,
however, that the existence of this limit, combined with certain conditions
satisfied by the @'s, does imply the convergence of Za,. Three such sets
of conditions, for example, are :

(@)t the a's are all positive ;

(b) the order of @, has a certain upper limit ;

()} the function Za,z" is regular at the point z = 1 and a,— 0.

In the present paper we are concerned with the problems arising out
of case (b), where the only additional restriction on the a's is an upper
limit to the order of @,. The theorem of this case is due to M. Tauber.§
The result is remarkable and apparently paradoxical in view of Abel’s
theorem, for it may be expressed roughly by saying that if Za, is not



Littlewood Tauberian theorem

Let {a } be a sequence of reals, and suppose that the power series

> .
F(x) := Zaixl
i—0

converges on |x| < 1. Then whenever
F(x) -s as x /1 AND |na,| <C

for some constant C, it follows that

One of Littlewood’s first major results. In A Mathematical Education he writes (of this
period)
“On looking back this time seems to me to mark my arrival at a reasonably assured
judgement and taste, the end of my "education’. I soon began my 35-year collabora-
tion with Hardy.”



One of first papers of this collaboration (1914):

TAUBERIAN THEOREMS CONCERNING POWER SERIES AND
DIRICHLET'S SERIES WHOSE COEFFICIENTS ARE
POSITIVE*

By G. H. Haroy and J. E. LirrLEwoo.

{Received October 8rd, 1918.—Read November 13th, 1913.]

1. The general nature of the theorems contained in this paper re-
sembles that of the ‘ Tauberian ” theorems which we have proved in a
series of recent papers.t They have, however, a character of their own,
in that they are concerned primarily with series of positive terms.

Let fl@) = Za.a™

be & power sevies convergent for z|< 1. Weshall consider only positive
valves of x less than 1.

Let S0 = @gtay+... +a,,
L () = (log )" (log log ) ...,
where the a’s are real, Then it is known that, if
8, ~ An*L(n),

where A 40, as n—> o, the indices a, ay, ay, ... being such that n°L(n)
fonde to a noortine hamat ar 0 2nfiantn Fhan



The Hardy-Littlewood Tauberian theorem

Let {a,} be a sequence of reals, and suppose that >_:° a;x' converges for |x| < 1.
Then whenever

(I—X)Za,vxi—m as x /*1 AND a, > —C
i=0
for some constant C, it follows that

n
1
- E ai—S§ as n— o0
n

i=0

They later used this result to give a new proof of the prime number theorem:

(%)

X
log(x)




A quantitative analysis of the Littlewood Tauberian theorem

Theorem (Finite Littlewood theorem, (unpublished))

Suppose that {ay } satisfies n|a,| < Cand Lis a bound for |F(x)| on (0, 1). Then there are
constants Ky and K, such that whenever Nj satisfies

- —ik/m —jk/n €
ap(e =@ <
; k( ) = 4K§/E
forall (i, m), (j, n) € [L;d] X [dNy; AN + g(dN)], where
C/e
N := [L—‘ -N; and d:= ke
€ €

k=0

thenwe have |>"1°  are /™ — S 1 ak‘ < eforallm,n € [N;N + g(N)].

Not quite as simple as Tauber’s theorem: Requires in particular quantitative results
bounding degree and coefficients of approximating polynomials.



Corollary: A quantitative Littlewood’s Tauberian theorem (unpublished)

Suppose Lis a bound for |F(x)| on (0,1), and moreover
(A) ¢ : (0,e) — Nisarate of Cauchy convergence for F(x) in the sense that

Ve > 0Vx,y € [e7/?®) 1) (|F(x) — Fp)| < e).

(B) Cissuch that {a,} satisfies nja,| < C
Then a rate of Cauchy convergence ¢ : (0,00) — N for {s,} i.e.
Ve > 0Vn > 1(e) (Jsm — sa] <€)

is given by
C/e

=

Ye,s(e) :=Lu- ¢ (i) foru := [

for a suitable constant D.



Rates of convergence for Littlewood’s Tauberian theorem have already been
studied

BEST L, APPROXIMATION AND THE REMAINDER IN
LITTLEWOOD’S THEOREM ')
BY

JACOB KOREVAAR

(Communicated by Prof. H. D. Krnoosterman at the meeting of March 28, 1953)

L. Iutroduction and results.  Let f(x) be continuous on ¢ < 2 < b and
satisfy a Lapscurrz condition of order 1:

(L) [f(@) — f(wy)| < Alay — @y for all 2, 7, on a v < b

D. Jacksox [2] has shown that for such an f(z) there are a constant D
and a sequence of polynomials p,(z) of degree n, w — 1,2, ..., such that

’ )

max |f(x) — p,(x)| < Din.
acech

In this paper we consider approximation to functions f(x) which are
continuous on @ << x < b except for a finite number of jump discontinu-
ities, and which satisfy a Liescrrrz condition (1. 1) on each of the sub-
intervals of @ <= @ < 6 on which they are continuous (*‘functions of elass
J(a, b)”). It follows from results by Nikorsky [7] that for any such
function J(x) there still are a constant )} and a sequence of polynomials
pulx) of degree n such that

(1.2) { 1i(@) — p(a)] de < Dyfn, (n=12...)

We shall prove that this sequence of polynomials p,(z) = ¥e¢,2* can be
chosen in such a way that moreover



How does this compare to known remainder theorems?

282

The above results are used to obtain a best possible estimate of the
remainder in LirTLEWo0D’s TAUBERian theorem [5] for power series. Let
(1. 5) |na,| < K, n=12...),
and let Ya,2" —s as @ 1 1. Then LirtLewoop’s theorem asserts that
.. +a, —>sasn—oo. What can we say about the order

8 =0ay +a;+ .
<1? To

of |s—s,| if something is known about |>a,2" —s| on 0< x
take a simple case, assume that
| Z a2 —s| < Ky(1 —z), (0 <

<)

0 it is shown that

(1.6)
Using the above approximation theory for the case m
(1. 5) and (1. 6) together imply that there is a constant €' such that

(1. 7) |8 —s,| < Cllog(n + 2), (n=0,1,...),
where (! depends only on K, and K,. From the theory for m — 1 it follows
that

(n=10,1,

(L.8) [s— (s + 8 + ... +8&)(n+ 1) <Cyfflog(n + 2)},

O, = Cy(K,, K,), ete. The estimates (1. 7) and (1. 8) ete. are best possible
(see [4] and section 5). They improve earlier results by PostNikov (who
proved |s—s,| < C (logn)~* for n >mn,, see [8]) and the author [4].
Using the methods of the present paper it can be shown that for a fairly
extensive class of functions w(u) which | 0 as u | 0 the hypotheses (1. 5)
and

(1. 9)
imply
(1. 10)

1Ja,2" — 8| < w(l —z) (0 <2z <1)

|s—s,| < Cfllog e(1/n)| (n > n,).



A special case of our analysis

Suppose that
|F(x) —s| <K(1-x)

for some constant K.
Then the correponding rate of Cauchy convergence for F(x) — sis

=
3

6() = |

Plugging this in to our corollary yields the following rate of Cauchy convergence for
the partial sums {s, }:
W(e) = LD{/*

for suitable D;.
Rearranging, we can show that

o]
log(N)

sy — 5| <

for suitable C;.



So far we have

® A quantitative analysis of Abel and Tauber’s theorems (not deep, but maybe

useful and a nice simple example of finitization).

® A quantitative analysis of Littlewood’s Tauberian theorem (more interesting,

work in progress...)

Open questions:

1.

2.

Can we finitize the Hardy-Littlewood theorem?

What about deeper results in Tauberian theory?

. Extracted numerical data matches well with known results. Can we produce

new “remainder theorems” which don't have any precedent in the literature?

. Are there abstract proof theoretic metatheorems which describe and generalise

certain phenomena is Tauberian theory?

THANK YouU!



