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Introduction



Abel’s theorem

Let {an} be a sequence of reals, and suppose that the power series

F(x) :=

∞∑
i=0

aixi

converges on |x| < 1. �en whenever

∞∑
i=0

ai = s

it follows that

F(x)→ s as x↗ 1.

�is is a classical result in elementary analysis called Abel’s theorem (N.b. it also

holds in the complex setting). You can use it to e.g. prove that

∞∑
i=0

(−1)i

i+ 1

= log(2).



Does the converse of Abel’s theorem hold?

NO.

For a counterexample, define F : (−1, 1)→ R by

F(x) =
1

1+ x
=
∞∑
i=0

(−1)ixi

�en

F(x)→ 1

2

as x↗ 1

but
∞∑
i=0

(−1)i does not converge



Tauber’s theorem fixes this

Let {an} be a sequence of reals, and suppose that the power series

F(x) :=

∞∑
i=0

aixi

converges on |x| < 1. �en whenever

F(x)→ s as x↗ 1 AND |nan| → 0

it follows that
∞∑
i=0

ai = s

�is is Tauber’s theorem, proven in 1897 by Austrian mathematician Alfred Tauber
(1866 - 1942).



Tauberian theorems

�e basic structure of Tauber’s theorem is:

Let F(x) =
∞∑
i=0

aixi

�en if we know

(A) Something about the behaviour of F(x) as x↗ 1

(B) Something about the growth of {an} as n→∞

�enwe can conclude

(C) Something about the convergence of

∑∞
i=0

ai.

�is basic idea has been considerably generalised e.g. for

F(s) :=

∫ ∞
1

a(t)t−s dt

and has grown into an area of research known as Tauberian�eory.



�ere is now a whole textbook (published 2004, 501 pages)



Tauberian theorems have an interesting structure

convergence + growth condition ⇒ convergence

Can we give a quantitative interpretation of these theorems e.g.

rate of convergence + quantitative growth condition ⇒ rate of convergence

In many cases, this would seem to pose a real challenge, as the proofs of Tauberian

theorems are typically based on complicated analytic techniques.

Remainder of the talk:

1 Some very simple results (published)

2 Some slightly less simple results (unpublished)

3 Some rough ideas for the future (speculation)



Simple results



Cauchy variants of Abelian and Tauberian theorems

From now on, {an} is a sequence of reals, F(x) :=
∑∞

i=0
aixi and sn :=

∑n
i=0

ai.

�e followingmay well feature in some form elsewhere in the literature...

�eorem (Abel’s theorem, Cauchy variant)

Suppose that
• {sn} is Cauchy,
• {xm} ∈ [0, 1) satisfies limm→∞ xm = 1.

�en limm,n→∞ |F(xm)− sn| = 0.

�eorem (Tauber’s theorem, Cauchy variant)

Suppose that
• {F(vm)} is Cauchy, where vm := 1− 1

m ,
• an = o(1/n).

�en limm,n→∞ |F(vm)− sn| = 0.



A finitization of Abel’s theorem

�eorem (Finite Abel’s theorem, P. 2020)

Let {an} and {xk} be arbitrary sequences of reals, and L ∈ N a bound for {|sn|}. Fix some
ε ∈ Q+ and g : N→ N. Suppose that N1,N2 ∈ N and p ≥ 1 are such that

|si − sn| ≤
ε

4

and
1

p
≤ 1− xm ≤

ε

8LN1

for all i, n ∈ [N1; max{N + g(N), l}] and all m ∈ [N2;N + g(N)]where

N := max{N1,N2} and l := p ·
⌈
log

(
8Lp
ε

)⌉
�enwe have |F(xm)− sn| ≤ ε for all m, n ∈ [N;N + g(N)].

Simple application of Gödel’s functional interpretation to textbook proof of Abel’s

theorem.

Nothing deep



Corollary: A quantitative Abel’s theorem

Suppose that |sn| ≤ L for all n ∈ N andmoreover

(A) φ is a rate of Cauchy convergence for {sn}, or equivalently

∀ε > 0 ∀m, n ≥ φ(ε)

(∣∣∣∣∣
n∑

i=m

ai

∣∣∣∣∣ ≤ ε
)

(B) ψ is a rate of convergence for xm ↗ 1.

�en a rate of convergence for limm,n→∞ |F(xm)− sn| = 0 is given by

ΦL,φ,ψ(ε) := max

{
φ(ε/4), ψ

(
ε

8Lφ(ε/4)

)}



A finitization of Tauber’s theorem

�eorem (Finite Tauber’s theorem, P. 2020)

Let {an} be an arbitrary sequence of reals, and L a bound for {|an|}. Define vm := 1− 1

m , and
fix some ε ∈ Q+ and g : N→ N. Suppose that N1,N2 ∈ N are such that

i|ai| ≤
ε

8

and |F(vm)− F(vn)| ≤
ε

4

for all i ∈ [N1; l] and all m, n ∈ [N2;N + g(N)]where

N := max

{
2LN2

1

ε
,N2
}

and p ·
⌈
log

(
4Lp
ε

)⌉
for p := N + g(N)

�enwe have |F(vm)− sn| ≤ ε for all m, n ∈ [N;N + g(N)].



Corollary: A quantitative Tauber’s theorem

Suppose that |an| ≤ L for all n ∈ N andmoreover

(A) φ is a rate of Cauchy convergence for n|an| → 0

(B) ψ is a rate of convergence for {F(1− 1

m )}

�en a rate of convergence for limm,n→∞ |F(1− 1

m )− sn| = 0 is given by

ΦL,φ,ψ(ε) := max

{
2Lφ(ε/8)2

ε
, ψ(ε/4)

}



Again, nothing deep in any of the above results, but they can be used in conjunction

with known results from proof mining to generate concrete quantitative lemmas:

Lemma

Let {an} be a sequence of positive reals whose partial sums {sn} are bounded above. �en
limm,n→∞ |F(1− 1

m )− sn| = 0.

Note: If {sn} is a Specker sequence then there is no computable rate of convergence
for limm,n→∞ |F(1− 1

m )− sn| = 0.

Lemma

Let {an} be a sequence of positive reals and L a bound for the partial sums {sn}. �en for any
ε ∈ Q+ and g : N→ Nwe have

∃N ≤ ΓL(ε, g) ∀m, n ∈ [N,N + g(N)] (|F(1− 1

m )− sn| ≤ ε)

forΓL(ε, g) given as follows:

• ΓL(ε, g) :=
⌈
8Lf (d4L/εe)(0)

ε

⌉
• f (a) := pa ·

⌈
log
(
8Lpa
ε

)⌉
• pa := g̃

(⌈
8La
ε

⌉)
for g̃(x) := x + g(x).



�ese results (andmore) appear in:



Less simple results



Tauber’s theoremwas first extended by Littlewood (1911)



Littlewood Tauberian theorem

Let {an} be a sequence of reals, and suppose that the power series

F(x) :=

∞∑
i=0

aixi

converges on |x| < 1. �en whenever

F(x)→ s as x↗ 1 AND |nan| ≤ C

for some constant C, it follows that
∞∑
i=0

ai = s

One of Littlewood’s first major results. In AMathematical Education he writes (of this
period)

“ On looking back this time seems to me to mark my arrival at a reasonably assured
judgement and taste, the end of my "education". I soon began my 35-year collabora-
tion withHardy.”



One of first papers of this collaboration (1914):



�eHardy-Littlewood Tauberian theorem

Let {an} be a sequence of reals, and suppose that
∑∞

i=0
aixi converges for |x| < 1.

�en whenever

(1− x)
∞∑
i=0

aixi → s as x↗ 1 AND an ≥ −C

for some constant C, it follows that

1

n

n∑
i=0

ai → s as n→∞

�ey later used this result to give a new proof of the prime number theorem:

π(x) ∼ x
log(x)



A quantitative analysis of the Littlewood Tauberian theorem

�eorem (Finite Littlewood theorem, (unpublished))

Suppose that {an} satisfies n|an| ≤ C and L is a bound for |F(x)| on (0, 1). �en there are
constants K1 and K2 such that whenever N1 satisfies∣∣∣∣∣

∞∑
k=0

ak(e−ik/m − e−jk/n)

∣∣∣∣∣ ≤ ε

4KC/ε
2

for all (i,m), (j, n) ∈ [1; d]× [dN1; dN + g(dN)], where

N :=
⌈
4LKC/ε

2

ε

⌉
· N1 and d :=

K1C
ε

then we have
∣∣∣∑∞k=0

ake−k/m −
∑n−1

k=0
ak
∣∣∣ ≤ ε for all m, n ∈ [N;N + g(N)].

Not quite as simple as Tauber’s theorem: Requires in particular quantitative results

bounding degree and coefficients of approximating polynomials.



Corollary: A quantitative Littlewood’s Tauberian theorem (unpublished)

Suppose L is a bound for |F(x)| on (0, 1), andmoreover

(A) φ : (0, ε)→ N is a rate of Cauchy convergence for F(x) in the sense that

∀ε > 0 ∀x, y ∈ [e−1/φ(ε), 1) (|F(x)− F(y)| ≤ ε).

(B) C is such that {an} satisfies n|an| ≤ C

�en a rate of Cauchy convergenceψ : (0,∞)→ N for {sn} i.e.

∀ε > 0 ∀n ≥ ψ(ε) (|sm − sn| ≤ ε)

is given by

ψC,L,φ(ε) := Lu · φ
(
1

u

)
for u :=

⌈DC/ε
ε

⌉
for a suitable constantD.



Rates of convergence for Littlewood’s Tauberian theorem have already been

studied



How does this compare to known remainder theorems?



A special case of our analysis

Suppose that

|F(x)− s| ≤ K(1− x)

for some constant K.

�en the correponding rate of Cauchy convergence for F(x)→ s is

φ(ε) =
⌈
2K
ε

⌉
Plugging this in to our corollary yields the following rate of Cauchy convergence for

the partial sums {sn}:
ψ(ε) := LDC/ε

1

for suitableD1.

Rearranging, we can show that

|sN − s| ≤
C1

log(N)

for suitable C1.



So far we have

• A quantitative analysis of Abel and Tauber’s theorems (not deep, but maybe
useful and a nice simple example of finitization).

• A quantitative analysis of Littlewood’s Tauberian theorem (more interesting,

work in progress...)

Open questions:

1. Can we finitize the Hardy-Littlewood theorem?

2. What about deeper results in Tauberian theory?

3. Extracted numerical data matches well with known results. Can we produce

new “remainder theorems” which don’t have any precedent in the literature?

4. Are there abstract proof theoretic metatheorems which describe and generalise

certain phenomena is Tauberian theory?

Thank You!


