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Outline

This is a talk on proof mining in fixpoint theory.

I will outline results presented in the recent paper:

Powell, T. (2019). A new metastable convergence criterion and an application in the
theory of uniformly convex banach spaces.
Journal of Mathematical Analysis and Applications, 478:790–805

I’ll try to make everything as accessible to the non-proof miner as possible!

I intend to cover the following things:

1. Relevant background in fixpoint theory (but no introduction to proof mining!)

2. Informal overview of the proof-theoretic analysis

3. Statement of the main quantitative results

Most of the details of are not important for understanding the talk.
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Banach’s fixed point theorem

Let (X, d) be a complete metric space and C ⊆ X a closed subset of X. A mapping
T : C→ C is a contraction if there exists some 0 ≤ q < 1 such that

d(Tx, Ty) ≤ q · d(x, y).

for all x, y ∈ C. The following is a classic result in metric fixed point theory.

Theorem (Banach, 1922)
If T is a contraction, then its Picard iterates (Tnx)n∈N converge to a fixpoint of T.

This theorem no longer holds if we weaken the premise by allowing T to be
nonexpansive i.e.

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C. E.g. For X = R, C = [0, 1] and Tx = 1− x we have

(Tn0)n∈N = (0, 1, 0, 1, 0, 1, . . .)



Picard iterates of nonexpansive maps

A natural question is the following: Under what additional conditions can we
ensure that the Picard iterates (Tnx)n∈N converges for nonexpansive T. For Hilbert
spaces, a nonempty interior condition sufficies.

Theorem (Moreau)
Let X be a Hilbert space, C ⊆ X closed and T : C→ C nonexpansive. If the fixed point set
Fix(T) has nonempty interior, then the Picard iterates converge to a point of Fix(T).

This result even holds in uniformly convex Banach spaces.

Theorem (Beauzamy)
Let X be a uniformly convex Banach space, C ⊆ X closed and T : C→ C nonexpansive. If
the fixed point set Fix(T) has nonempty interior, then the Picard iterates converge to a point of
Fix(T).



Uniform convexity

A Banach space is uniformly convex if for any 0 < ε ≤ 2 there is some δ > 0 such
that for any ‖x‖ = ‖y‖ = 1,

1
2‖x + y‖ ≥ 1− δ ⇒ ‖x − y‖ ≤ ε

Intuitively: the center of a line segment inside the unit ball must lie deep inside the
unit ball unless the segment is short.

Examples of uniformly convex spaces include
• all Hilbert spaces
• Lp spaces for 1 < p <∞



How uniform convexity is used in this talk

Let Br[x] denote the closed ball of radius r centred around r, and Bo
r [x] the

corresponding open ball.

The following crucial fact was discovered independently by Edelstein and Steckin:

Lemma
Suppose that X is uniformly convex. Then for any d > 0 and c, c′ ∈ X satisfying
0 < ‖c− c′‖ = hd < d where 0 < h < 1 we have

lim
δ→∞

diam(Bd−hd+δ[c] ∩ (X\Bo
d[c
′])) = 0

where the convergence is uniform in c, c′.



A result of Kirk and Sims

We carry out a quantitative analysis of the following fixed point theorem of Kirk
and Sims.

Theorem ([Kirk and Sims, 1999])
Suppose that C is a closed subset of a uniformly convex Banach space and T : C→ C is a
continuous mapping with Int(Fix(T)) 6= ∅, which satisfies the condition

lim
n→∞

‖Tnx − q‖ = inf
n∈N
‖Tnx − q‖

for all q ∈ Fix(T). Then for each x ∈ C, the Picard iterates (Tnx)n∈N converge to a fixed
point of T.



Instances of Theorem KS

The condition
lim

n→∞
‖Tnx − q‖ = inf

n∈N
‖Tnx − q‖

for q ∈ Fix(T) is satisfied in particular when
• T is nonexpansive
• T is asymptotically nonexpansive, which means there exists some µn → 1 such

that
‖Tnx − Tny‖ ≤ µn‖x − y‖

for all x, y ∈ C.

Thus, Theorem KS constitutes a very general fixed point theorem in the context of
uniformly convex Banach spaces.



Proof in the case T nonexpansive

Suppose that Br[p] ∈ Fix(T) for p ∈ Fix(T) and r > 0, and define

d := inf
n∈N
‖Tnx − p‖

Assume w.l.o.g. d ≥ r, and choose 0 < h < 1 so that hd < r. For each n ∈ N choose
qn ∈ seg[p, Tnx] so that

‖qn − p‖ = hd and thus ‖Tnx − qn‖ = ‖Tnx − p‖ − hd

Then inf n∈N ‖Tnx − qn‖ = d− hd and so for any δ > 0 there exists some N such that

‖TNx − qN‖ ≤ d− hd + δ



Proof cont.

But for all i ≥ N we have

‖Tix − qN‖ ≤ ‖TNx − qN‖ ≤ d− hd + δ

i.e. Tix ∈ Bd−hd+δ[qN].

Since ‖Tix − p‖ ≥ d have Tix ∈ X\Bo
d[p]. Thus i ≥ N implies

Tix ∈ Bd−hd+δ[qN] ∩ (X\Bo
d[p])

But by the Lemma, for any ε > 0 can find δ(ε) > 0 such that

diam(Bd−hd+δ(ε)[q] ∩ (X\Bo
d[p]) < ε

for any q with ‖q− p‖ = hd. In particular, setting q := qN for δ(ε), we have i, j ≥ N
implies

‖Tix − Tjx‖ ≤ diam(Bd−hd+δ(ε)[q] ∩ (X\Bo
d[p]) < ε

and thus (Tnx)n∈N is Cauchy.



Structure of the theorem

We are given T : C→ C for C ⊆ X, and some x ∈ C.

Our assumptions are

• X uniformly convex
• Int(Fix(T)) 6= ∅
• limn→∞ ‖Tnx − q‖ = inf n∈N ‖Tnx − q‖ for all q ∈ Fix(T)

Our conclusion is
• (Tnx)n∈N converges.

We will now examine each of these in turn from a quantitative point of view.
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Cauchy convergence of (Tnx)n∈N

Our aim is to produce a quantitative version of the Cauchy convergence of the
Picard iterates:

∀ε > 0∃n∀i, j ≥ n(‖Tix − Tjx‖ ≤ ε)

Our first question: Can we hope to extract a direct rate of convergence i.e. a function
φ(ε) such that

∀ε > 0∃n ≤ φ(ε)∀i, j ≥ n(‖Tix − Tjx‖ ≤ ε)

Theorem ([Neumann, 2015, Kohlenbach, 2019])
Already for X = R there exists a nonexpansive mapping T : [0, 1]→ [0, 1] (which can easily
be extended to one with Int(Fix(T)) 6= ∅) such that (Tn0)n∈N has no computable rate of
convergence.



A metastable formulation of convergence

The combination of negative translation and functional interpretation, when
applied to the statement that (Tnx)n∈N is Cauchy convergent, yields:

∀ε > 0, g : N→ N∃n∀i, j ∈ [n, n + g(n)](‖Tix − Tjx‖ ≤ ε).

Our aim will be to produce a rate of metastability for the Picard iterates i.e. a
functional Ω(ε, g) such that

∀ε > 0, g : N→ N∃n ≤ Ω(ε, g)∀i, j ∈ [n, n + g(n)](‖Tix − Tjx‖ ≤ ε).

In addition to ε and g, Ω will also dependent on quantitative data from each of our
assumptions.
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Moduli of uniform convexity

Recall the definition of uniform convexity:

∀ε ∈ (0, 2]∃δ > 0∀x, y ∈ B1[0]( 1
2‖x + y‖ ≥ 1− δ → ‖x − y‖ ≤ ε).

This can be given a quantitative form by considering a modulus of uniform convexity:
This is a function Φ : (0, 2]→ (0, 1] satisfying

∀ε ∈ (0, 2] ∀x, y ∈ B1[0]
( 1

2‖x + y‖ ≥ 1− Φ(ε)→ ‖x − y‖ ≤ ε
)
. (1)

Moduli of uniform convexity are widely used in proof mining, see
[Kohlenbach, 2008, Chapter 17] for a more detailed discussion.

Example
For X = Lp with 2 ≤ p <∞, a modulus of uniform convexity is given by

Φ(ε) :=
εp

p2p



A syntactical version of Edelstein/Steckin

We use uniform convexity in a very specific form:

Lemma
Suppose that X is uniformly convex. Then for any d > 0 and c, c′ ∈ X satisfying
0 < ‖c− c′‖ = hd < d where 0 < h < 1 we have

lim
δ→∞

diam(Bd−hd+δ[c] ∩ (X\Bo
d[c
′])) = 0

where the convergence is uniform in c, c′.

Actually, we identify the following syntactic, normalized version of the above:

∀ε > 0, ∀h ∈ (0, 1
2 )∃δ∀y ∈ B1[0], u ∈ X

(‖u− hy‖ ≤ 1− h + δ ∧ ‖u‖ ≥ 1⇒ ‖u− y‖ ≤ ε)



A computational interpretation of Edelstein/Steckin

Lemma
Suppose that Φ : (0, 2]→ (0, 1] is a modulus of uniform convexity for X, and define the
functional Ψ : (0, 1

2 )× (0, 4]→ (0, 1] by

Ψ(h, ε) := min{ ε2 , 2hΦ( ε2 )}.

Then we have

∀ε > 0, ∀h ∈ (0, 1
2 ), y ∈ B1[0], u ∈ X

(‖u− hy‖ ≤ 1− h + Ψ(h, ε) ∧ ‖u‖ ≥ 1⇒ ‖u− y‖ ≤ ε)

Example
For X = Lp with 2 ≤ p <∞we would have

Ψ(h, ε) = min
{
ε

2
, 2h

εp

p2p

}
=

hεp

p2p−1

for ε ∈ (0, 1).
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Not all assumptions are complicated!

Int(Fix(T)) 6= ∅ if there exists some p ∈ Fix(T) and r > 0 such that Bo
r [p] ⊆ Fix(T)

i.e.
∀x ∈ X(‖x − p‖ <R r︸ ︷︷ ︸

Σ0
1

→ ‖Tx − x‖ =R 0︸ ︷︷ ︸
Π0

1

)

The above is a universal statement, and thus has no computational content.

To summarise, we just need p ∈ Fix(T) and r > 0 with Bo
r [p] ⊆ Fix(T).
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Sequences converging to their infimum

Unlike uniform convexity, our third assumption doesn’t have a direct precedent in
proof mining, and neither can we (in general) give it a direct computational
interpretation.

Let’s forget mappings in Banach spaces for now, and just consider sequences
(xn)n∈N of nonnegative reals.

Our first step is to establish a syntactic criterion which is equivalent to the statement

lim
n→∞

xn = inf
n∈N

xn.

This statement clearly holds if (xn)n∈N is monotonically decreasing, but the converse
is not true.



Asymptotically decreasing sequences

We will say that a sequence is asymptotically decreasing if it satisfies

∀ε > 0,N∃n∀i ≥ n(xi ≤ xN + ε).

This generalises the notion of (xn) being monotonically decreasing.

Theorem
Let (xn)n∈N be a sequence of nonnegative reals. Then (xn)n∈N converges to its infimum iff it is
asymptotically decreasing.

Proof.
A short exercise in elementary analysis!



A quantitative form of asymptotic decreasingness

We now consider a metastable formulation of the notion of being asymptotically
decreasing

∀ε > 0,N∃n∀i ≥ n(xi ≤ xN + ε).

which corresponds to its classical functional interpretation:

∀ε > 0,N, g : N→ N∃n∀i ∈ [n, n + g(n)](xi ≤ xN + ε).

We call Γ(ε, g,N) a metastable rate of asymptotic decreasingness if

∀ε > 0,N, g : N→ N∃n ≤ Γ(ε, g,N)∀i ∈ [n, n + g(n)](xi ≤ xN + ε).

For (xn)n∈N decreasing, Γ(ε, g,N) := N works.



An interesting aside

We claimed that

(xn)n∈N asymptotically decreasing⇒ (xn)n∈N converges

The following is a computational interpretation of this result.

Theorem (P.)
Let (xn)n∈N be a sequence of nonnegative reals bounded above by K, with a metastable rate of
asymptotic decreasingness Γ. Define

Ω(ε, g) := Γ∗( ε2 , g, f d2K/εe(0))

where
• f (j) := Γ∗( ε2 , g, j) + g∗(Γ∗( ε2 , g, j))
• g∗(j) := maxi≤j{j, g(i)} and Γ∗( ε2 , g, j) := maxi≤j{j,Γ( ε2 , g, i)}.

Then Ω is a rate of metastability for (xn)n∈N i.e.

∀ε > 0, g : N→ N∃n ≤ Ω(ε, g)∀i, j ∈ [n, n + g(n)](|xi − xj| ≤ ε).



A quantitative version of our third assumption

We are now ready to give a quantitative formulation to the statement

lim
n→∞

‖Tnx − q‖ = inf
n∈N
‖Tnx − q‖ for all q ∈ Fix(T)

In addition, we now demand a uniformity assumption.

Let p ∈ X and r > 0 with Br[p] ∈ Fix(T), and suppose that ‖x − p‖ ≤ K.

We call Γ(K, r, ε, g,N) a uniform metastable rate of asymptotic decreasingness for
(‖Tnx − q‖)n∈N if

∀ε > 0, g : N→ N,N∃n ≤ Γ(K, r, ε, g,N)∀i ∈ [n, n + g(n)]

(‖Tix − q‖ ≤ ‖TNx − q‖+ ε)

for all q ∈ Br[p].
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Main result

Theorem (P.)
Let X be a Banach space, T : C→ C a mapping and x ∈ C. Suppose that

• Br[p] ⊆ Fix(T) for p ∈ X with ‖x − p‖ ≤ K and r > 0;
• Φ is a modulus of uniform convexity for X;
• Γ is a metastable rate of asymptotic decreasingness for (‖Tnx − q‖)n∈N uniform for

q ∈ Br[p].

Then

∀ε > 0, g : N→ N∃n ≤ Ω(Φ,Γ,K, r, ε, g)∀i, j ∈ [n, n + g(n)](‖Tix − Tjx‖ ≤ ε)

for Ω defined as follows:
• Ω(Φ,Γ,K, r, ε, g) := Γ∗(K, r, η, g, f (dK/ηe)(0));
• f (j) := Γ∗(K, r, η, g, j) + g∗(Γ∗(K, r, η, g, j));
• η := r

4 ·min{1,Ψ(min{ 1
4 ,

r
K},

ε
2K )};

• Ψ(h, ε′) := min{ ε
′

2 , 2hΦ( ε
′

2 )}.



In the case where T is nonexpansive

Corollary (P.)
Let X be a Banach space, T : C→ C a nonexpansive mapping and x ∈ C. Suppose that

• Br[p] ⊆ Fix(T) for p ∈ X with ‖x − p‖ ≤ K and r > 0;
• Φ is a modulus of uniform convexity for X;

Then

∀ε > 0, g : N→ N∃n ≤ Ω(Φ,Γ,K, r, ε, g)∀i, j ∈ [n, n + g(n)](‖Tix − Tjx‖ ≤ ε)

for Ω defined as follows:
• Ω(Φ,K, r, ε, g) := f (dK/ηe)(0);
• f (j) := j + g∗(j);
• η := r

4 ·min{1,Ψ(min{ 1
4 ,

r
K},

ε
2K )};

• Ψ(h, ε′) := min{ ε
′

2 , 2hΦ( ε
′

2 )}.



Asymptotic regularity of the Picard iterates

If the Picard iterates converge, then in particular, they must be asymptotically
regular:

∀ε > 0∃n∀i ≥ n(‖Ti+1x − Tix‖ ≤ ε).

In the case that T is nonexpansive, asymptotic regularity is equivalent to the

following ∀∃ statement:

∀ε > 0∃n
(
‖Tn+1x − Tnx‖ ≤ ε

)
.

This would suggest it is possible to extract a direct rate of asymptotic regularity in

our setting i.e. a function f (ε) such that

∀ε > 0, i ≥ f (ε)(‖Ti+1x − Tix‖ ≤ ε).



A rate of asymptotic regularity

Theorem (P.)
Let X be a Banach space, T : C→ C a nonexpansive mapping and x ∈ C. Suppose that

• Br[p] ⊆ Fix(T) for p ∈ X with ‖x − p‖ ≤ K and r > 0;
• Φ is a modulus of uniform convexity for X;

Then
∀ε > 0, i ≥ f (ε)(‖Ti+1x − Tix‖ ≤ ε)

where
• f (ε) := dK/ηe;
• η := r

4 ·min{1,Ψ(min{ 1
4 ,

r
K},

ε
2K )};

• Ψ(h, ε′) := min{ ε
′

2 , 2hΦ( ε
′

2 )}.



A concrete result for Lp spaces

Theorem (P.)
Let T : C→ C be a nonexpansive mapping for C ⊆ Lp and x ∈ C. Suppose that
Br[p′] ⊆ Fix(T) for p′ ∈ X with ‖x − p′‖ ≤ K and r > 0. Then

∀ε > 0, i ≥ f (ε)(‖Ti+1x − Tix‖ ≤ ε)

where

f (ε) :=
⌈p · 23p+1 · Kp+2

εp · r2

⌉
Note that this is a purely mathematical result. There is no mention of proof
interpretations, higher-order functionals, metastability etc.



Asymptotically nonexpansive mappings

Lemma (P.)
Suppose that T : C→ C is asymptotically nonexpansive i.e. there exists some µn → 1 such
that

‖Tnx − Tny‖ ≤ µn‖x − y‖

for all x, y ∈ C.

Suppose, moreover, that (µn)n∈N is decreasing and has a rate of convergence c(δ) i.e.

∀δ > 0(µc(δ) ≤ 1 + δ)

Then

Γ(K, r, ε,N) := N + c
(

ε

µ0(K + r)

)
is a direct rate of asymptotic decreasingness for (‖Tnx − q‖)n∈N uniform for q ∈ Br[p],
where ‖x − p‖ ≤ K.



One final corollary

Theorem (P.)
Let X be a Banach space, T : C→ C an asymptotically nonexpansive mapping relative to
some decreasing (µn)n∈N, and x ∈ C. Suppose that

• c is a rate of convergence of (µn)n∈N

• Br[p] ⊆ Fix(T) for p ∈ X with ‖x − p‖ ≤ K and r > 0;
• Φ is a modulus of uniform convexity for X;

Then

∀ε > 0, g : N→ N∃n ≤ Ω(c,Γ,K, r, ε, g)∀i, j ∈ [n, n + g(n)](‖Tix − Tjx‖ ≤ ε)

for Ω defined as follows:
• Ω(c,Φ,K, r, ε, g) := (fω)(dK/ηe)(0) + ω;
• fω(j) := j + ω + g∗(j + ω);

• ω := c
(

η
µ0(K+r)

)
;

• η := r
4 ·min{1,Ψ(min{ 1

4 ,
r
K},

ε
2K )};

• Ψ(h, ε′) := min{ ε
′

2 , 2hΦ( ε
′

2 )}.
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Thank you!
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