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Background: Proof Interpretations

Proof interpretations allow us to give a computational interpretation to
mathematical statements.

IfT ` A thenS ` ∀xAI(x, tx), where:

• AI(x, y) is computationally neutral;
• A↔ ∀x∃yAI(x, y);
• t is a term ofS formally extracted from the proof of A.

You may have seen proof interpretations in the following contexts:

• Foundational problems: Con(S)⇒ Con(T ).
• Proof mining: New quantitative results in numerical analysis, ergodic

theory, convex optimization...
• Category theory: Dialectica categories as models of linear logic etc.
• Formal program extraction: Implementation of proof interpretations

in Minlog, Agda Coq...
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Motivation

One of my current interests is to understand Gödel’s functional
interpretation of strong classical theories, using concepts from imperative
programming such as

• global state;
• monadic transformations;
• abstract machines;
• Hoare logic.

Why?

1. Applications of proof interpretations in computer science should make
use of programming paradigms which are used in practice.

2. The above concepts provide us with a natural means of understanding
the functional interpretation of non-trivial classical principles.

3. Combining techniques from two different areas always leads to new
ideas!
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The drinkers paradox: ∃x(P(x)→ ∀yP(y))

In any pub there is a person such that if they are drinking, then everyone
is drinking

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle. The classical functional interpretation carries
out the following steps:

∃x(P(x)→ ∀yP(y)) ⇔ ∃x∀y(P(x)→ P(y))

⇔ ¬∀x∃y¬(P(x)→ P(y))
⇔ ¬∃f∀x¬(P(x)→ P(fx))

⇔ ∀f∃x(P(x)→ P(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks, then
all people y drink.

Effective reformulation: For any function f there exists an approximate drinker x
such that if x drinks, then person fx drinks.
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The interpreted drinkers paradox: ∀f∃x(P(x)→ P(fx))

How do we compute a witness for x? There are two widely seen methods:

• The original functional interpretations extracts an exact witness, but
requires decidability of quantifier-free formulas:

Φ(f ) :=

0 if P(f 0)
f 0 if ¬P(f 0)

Used for applications in discrete mathematics.
• Diller-Nahm or Herbrand variants of the functional interpretation

extract a finite sequence of witnesses. No longer require decidability.

Φ(f ) := [0, f 0]

Used for theories with non-decidable atomic formulas (e.g.
nonstandard analysis) and for applications in category theory.
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The interpreted drinkers paradox: ∀f∃x(P(x)→ P(fx))

In the paper, a new variant of the functional interpretation is developed,
which combines these two approaches: We store assumptions about our
realizer in a global state.

There are two possible realizers for the drinkers paradox

• ΦL(f , π) := 〈0, π :: P(f 0)〉

• ΦR(f , π) := 〈f 0, π :: ¬P(f 0)〉

Here, π is a global state of assumptions, which is updated to include new
assumptions made during the computation.

Both realizers are correct relative to the state.

This is a very simple case instance of a much more general framework
developed in the paper.
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A real world example: Ramsey’s theorem for pairs

Theorem
For any colouring c :N ×N→ {0, 1}, there exists an infinite set X ⊆N that is
pairwise monochromatic.

Theorem (Finitized version)
For any colouring c :N×N→ {0, 1} and functional ε : P(N)→N, there exists
a finite approximation Xε ⊆N to a monochromatic set, which is valid up to the
point ε(Xε).

From the classical proof of Ramsey’s theorem, we would extract a program

Φ : S→ (P(N)→N)→ P(N) × S,

which from an ε and initial state π0 would return a pair Φ(ε, πI) = 〈X, πO〉

• X is a finite approximation to a monochromatic set;
• the πO is the output state, which contains atomic formulas of the form

c(m, n) = b listing ‘interactions with the environment’ which occured
during the computation of X.
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The main result

Theorem
Suppose that HA+

` A(~b). Then for any collection of approximationsϕP satisfying
χP ≈0→0 ϕP, there is a corresponding sequence of state-sensitive terms~t satisfying

E-HAωS ` ∀~v ∈ ∆~τ, π

(∥∥∥∥A(~b)
∥∥∥∥~t~b
~v
π→

{
A(~b)

}~t~b
~v
π

)
which can be formally extracted from the proof of A(~b).

Comments

•
{
A(~b)

}~t~b
~v
π is an analogue of the usual functional interpretations.

•
∥∥∥∥A(~b)

∥∥∥∥~t~b
~v
π is a new special state component.

• χP is the characteristic function of P andϕP is its approximation
relative to the state.

• The proof involves the state monad and a logical relation on all types.
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Application: Herbrand’s theorem

Our state based functional interpretation gives us a new proof of
Herbrand’s theorem. Suppose that

PL ` ∃xA(x)

Then for any given state function, starting with the empty state we obtain a
term t such that

P1 ∧ . . . ∧ Pk︸        ︷︷        ︸
final state

→ A(t)

The final state represents a branch in the underlying Herbrand tree. By
quantifying over all relevant states we obtain terms t1, . . . , tn s.t.

A(t1) ∨ . . . ∨ A(tn).
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Application: Learning semantics

Suppose that we have a collection P(n, i) of primitive recursive formulas.
We use the state to record witnesses for ∃iP(n, i) i.e. is an approximation to
a Skolem functions for Σ1 formulas. Suppose that

PA ` ∀x∃yA(x, y).

Then we define our state function to add only true assumptions to the state,
and we extract a program t : 0→ S→ 0 × S such that

• t takes an argument x and a state π representing an approximation to
Skolem function;

• t returns a realizer txπ0 together with a final state txπ1 w π
representing a better approximation to Skolem function, containing
what we have learned from computing our realizer.
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Suppose that we have a collection P(n, i) of primitive recursive formulas.
We use the state to record witnesses for ∃iP(n, i) i.e. is an approximation to
a Skolem functions for Σ1 formulas. Suppose that

PA ` ∀x∃yA(x, y).

Then we define our state function to add only true assumptions to the state,
and we extract a program t : 0→ S→ 0 × S such that

• t takes an argument x and a state π representing an approximation to
Skolem function;

• t returns a realizer txπ0 together with a final state txπ1 w π
representing a better approximation to Skolem function, containing
what we have learned from computing our realizer.



Application: Efficient program synthesis

Our state is not just for storing information: We can interact with it as well.

One application might be to improve the efficiency of extracted programs
by e.g. avoiding repeated computations. For example:

Φ(f , π) :=


〈0, π〉 if P(f 0) ∈ π
〈f 0, π〉 if ¬P(f 0) ∈ π
〈0, π :: P(f 0)〉 if P(f 0)
〈f 0, π :: ¬P(f 0)〉 if ¬P(f 0)

Naturally, we have more sophisticated things in mind!
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Future research

We now want explore the applications.

• We presented everything in a standard equational calculus and use the
state monad. It would be nice to instead use a real programming
language with state.

• Formalise the interpretation! (Minlog or Adga might make good
candidates... )

• Can the state provide us with insight into the meaning of programs
extracted from complicated proofs? Can we extend our framework to
include the axiom of choice/bar recursion?

• This is a first step in the development of a fledged imperative
functional interpretation, specifically designed for extracting state
sensitive programs from proofs.

Thank you!
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