
A functional interpretation with state

Thomas Powell

Technische Universität Darmstadt

Logic in Computer Science (LICS 18)

University of Oxford
12 July 2018

Background: Proof Interpretations

Proof interpretations allow us to give a computational interpretation to
mathematical statements.

IfT ` A thenS ` ∀xAI(x, tx), where:

• AI(x, y) is computationally neutral;
• A↔ ∀x∃yAI(x, y);
• t is a term ofS formally extracted from the proof of A.

You may have seen proof interpretations in the following contexts:

• Foundational problems: Con(S)⇒ Con(T).
• Proof mining: New quantitative results in numerical analysis, ergodic

theory, convex optimization...
• Category theory: Dialectica categories as models of linear logic etc.
• Formal program extraction: Implementation of proof interpretations

in Minlog, Agda Coq...

Background: Proof Interpretations

Proof interpretations allow us to give a computational interpretation to
mathematical statements.

IfT ` A thenS ` ∀xAI(x, tx), where:

• AI(x, y) is computationally neutral;
• A↔ ∀x∃yAI(x, y);
• t is a term ofS formally extracted from the proof of A.

You may have seen proof interpretations in the following contexts:

• Foundational problems: Con(S)⇒ Con(T).
• Proof mining: New quantitative results in numerical analysis, ergodic

theory, convex optimization...
• Category theory: Dialectica categories as models of linear logic etc.
• Formal program extraction: Implementation of proof interpretations

in Minlog, Agda Coq...

Background: Proof Interpretations

Proof interpretations allow us to give a computational interpretation to
mathematical statements.

IfT ` A thenS ` ∀xAI(x, tx), where:

• AI(x, y) is computationally neutral;
• A↔ ∀x∃yAI(x, y);
• t is a term ofS formally extracted from the proof of A.

You may have seen proof interpretations in the following contexts:

• Foundational problems: Con(S)⇒ Con(T).
• Proof mining: New quantitative results in numerical analysis, ergodic

theory, convex optimization...
• Category theory: Dialectica categories as models of linear logic etc.
• Formal program extraction: Implementation of proof interpretations

in Minlog, Agda Coq...

Background: Proof Interpretations

Proof interpretations allow us to give a computational interpretation to
mathematical statements.

IfT ` A thenS ` ∀xAI(x, tx), where:

• AI(x, y) is computationally neutral;
• A↔ ∀x∃yAI(x, y);
• t is a term ofS formally extracted from the proof of A.

You may have seen proof interpretations in the following contexts:

• Foundational problems: Con(S)⇒ Con(T).
• Proof mining: New quantitative results in numerical analysis, ergodic

theory, convex optimization...
• Category theory: Dialectica categories as models of linear logic etc.
• Formal program extraction: Implementation of proof interpretations

in Minlog, Agda Coq...

Motivation

One of my current interests is to understand Gödel’s functional
interpretation of strong classical theories, using concepts from imperative
programming such as

• global state;
• monadic transformations;
• abstract machines;
• Hoare logic.

Why?

1. Applications of proof interpretations in computer science should make
use of programming paradigms which are used in practice.

2. The above concepts provide us with a natural means of understanding
the functional interpretation of non-trivial classical principles.

3. Combining techniques from two different areas always leads to new
ideas!

Motivation

One of my current interests is to understand Gödel’s functional
interpretation of strong classical theories, using concepts from imperative
programming such as

• global state;
• monadic transformations;
• abstract machines;
• Hoare logic.

Why?

1. Applications of proof interpretations in computer science should make
use of programming paradigms which are used in practice.

2. The above concepts provide us with a natural means of understanding
the functional interpretation of non-trivial classical principles.

3. Combining techniques from two different areas always leads to new
ideas!

The drinkers paradox: ∃x(P(x)→ ∀yP(y))

In any pub there is a person such that if they are drinking, then everyone
is drinking

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle. The classical functional interpretation carries
out the following steps:

∃x(P(x)→ ∀yP(y)) ⇔ ∃x∀y(P(x)→ P(y))

⇔ ¬∀x∃y¬(P(x)→ P(y))
⇔ ¬∃f∀x¬(P(x)→ P(fx))

⇔ ∀f∃x(P(x)→ P(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks, then
all people y drink.

Effective reformulation: For any function f there exists an approximate drinker x
such that if x drinks, then person fx drinks.

The drinkers paradox: ∃x(P(x)→ ∀yP(y))

In any pub there is a person such that if they are drinking, then everyone
is drinking

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle. The classical functional interpretation carries
out the following steps:

∃x(P(x)→ ∀yP(y))

⇔ ∃x∀y(P(x)→ P(y))

⇔ ¬∀x∃y¬(P(x)→ P(y))
⇔ ¬∃f∀x¬(P(x)→ P(fx))

⇔ ∀f∃x(P(x)→ P(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks, then
all people y drink.

Effective reformulation: For any function f there exists an approximate drinker x
such that if x drinks, then person fx drinks.

The drinkers paradox: ∃x(P(x)→ ∀yP(y))

In any pub there is a person such that if they are drinking, then everyone
is drinking

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle. The classical functional interpretation carries
out the following steps:

∃x(P(x)→ ∀yP(y)) ⇔ ∃x∀y(P(x)→ P(y))

⇔ ¬∀x∃y¬(P(x)→ P(y))
⇔ ¬∃f∀x¬(P(x)→ P(fx))

⇔ ∀f∃x(P(x)→ P(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks, then
all people y drink.

Effective reformulation: For any function f there exists an approximate drinker x
such that if x drinks, then person fx drinks.

The drinkers paradox: ∃x(P(x)→ ∀yP(y))

In any pub there is a person such that if they are drinking, then everyone
is drinking

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle. The classical functional interpretation carries
out the following steps:

∃x(P(x)→ ∀yP(y)) ⇔ ∃x∀y(P(x)→ P(y))

⇔ ¬∀x∃y¬(P(x)→ P(y))

⇔ ¬∃f∀x¬(P(x)→ P(fx))

⇔ ∀f∃x(P(x)→ P(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks, then
all people y drink.

Effective reformulation: For any function f there exists an approximate drinker x
such that if x drinks, then person fx drinks.

The drinkers paradox: ∃x(P(x)→ ∀yP(y))

In any pub there is a person such that if they are drinking, then everyone
is drinking

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle. The classical functional interpretation carries
out the following steps:

∃x(P(x)→ ∀yP(y)) ⇔ ∃x∀y(P(x)→ P(y))

⇔ ¬∀x∃y¬(P(x)→ P(y))
⇔ ¬∃f∀x¬(P(x)→ P(fx))

⇔ ∀f∃x(P(x)→ P(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks, then
all people y drink.

Effective reformulation: For any function f there exists an approximate drinker x
such that if x drinks, then person fx drinks.

The drinkers paradox: ∃x(P(x)→ ∀yP(y))

In any pub there is a person such that if they are drinking, then everyone
is drinking

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle. The classical functional interpretation carries
out the following steps:

∃x(P(x)→ ∀yP(y)) ⇔ ∃x∀y(P(x)→ P(y))

⇔ ¬∀x∃y¬(P(x)→ P(y))
⇔ ¬∃f∀x¬(P(x)→ P(fx))

⇔ ∀f∃x(P(x)→ P(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks, then
all people y drink.

Effective reformulation: For any function f there exists an approximate drinker x
such that if x drinks, then person fx drinks.

The drinkers paradox: ∃x(P(x)→ ∀yP(y))

In any pub there is a person such that if they are drinking, then everyone
is drinking

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle. The classical functional interpretation carries
out the following steps:

∃x(P(x)→ ∀yP(y)) ⇔ ∃x∀y(P(x)→ P(y))

⇔ ¬∀x∃y¬(P(x)→ P(y))
⇔ ¬∃f∀x¬(P(x)→ P(fx))

⇔ ∀f∃x(P(x)→ P(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks, then
all people y drink.

Effective reformulation: For any function f there exists an approximate drinker x
such that if x drinks, then person fx drinks.

The drinkers paradox: ∃x(P(x)→ ∀yP(y))

In any pub there is a person such that if they are drinking, then everyone
is drinking

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle. The classical functional interpretation carries
out the following steps:

∃x(P(x)→ ∀yP(y)) ⇔ ∃x∀y(P(x)→ P(y))

⇔ ¬∀x∃y¬(P(x)→ P(y))
⇔ ¬∃f∀x¬(P(x)→ P(fx))

⇔ ∀f∃x(P(x)→ P(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks, then
all people y drink.

Effective reformulation: For any function f there exists an approximate drinker x
such that if x drinks, then person fx drinks.

The interpreted drinkers paradox: ∀f∃x(P(x)→ P(fx))

How do we compute a witness for x? There are two widely seen methods:

• The original functional interpretations extracts an exact witness, but
requires decidability of quantifier-free formulas:

Φ(f) :=

0 if P(f 0)
f 0 if ¬P(f 0)

Used for applications in discrete mathematics.
• Diller-Nahm or Herbrand variants of the functional interpretation

extract a finite sequence of witnesses. No longer require decidability.

Φ(f) := [0, f 0]

Used for theories with non-decidable atomic formulas (e.g.
nonstandard analysis) and for applications in category theory.

The interpreted drinkers paradox: ∀f∃x(P(x)→ P(fx))

How do we compute a witness for x? There are two widely seen methods:

• The original functional interpretations extracts an exact witness, but
requires decidability of quantifier-free formulas:

Φ(f) :=

0 if P(f 0)
f 0 if ¬P(f 0)

Used for applications in discrete mathematics.

• Diller-Nahm or Herbrand variants of the functional interpretation
extract a finite sequence of witnesses. No longer require decidability.

Φ(f) := [0, f 0]

Used for theories with non-decidable atomic formulas (e.g.
nonstandard analysis) and for applications in category theory.

The interpreted drinkers paradox: ∀f∃x(P(x)→ P(fx))

How do we compute a witness for x? There are two widely seen methods:

• The original functional interpretations extracts an exact witness, but
requires decidability of quantifier-free formulas:

Φ(f) :=

0 if P(f 0)
f 0 if ¬P(f 0)

Used for applications in discrete mathematics.
• Diller-Nahm or Herbrand variants of the functional interpretation

extract a finite sequence of witnesses. No longer require decidability.

Φ(f) := [0, f 0]

Used for theories with non-decidable atomic formulas (e.g.
nonstandard analysis) and for applications in category theory.

The interpreted drinkers paradox: ∀f∃x(P(x)→ P(fx))

In the paper, a new variant of the functional interpretation is developed,
which combines these two approaches: We store assumptions about our
realizer in a global state.

There are two possible realizers for the drinkers paradox

• ΦL(f , π) := 〈0, π :: P(f 0)〉

• ΦR(f , π) := 〈f 0, π :: ¬P(f 0)〉

Here, π is a global state of assumptions, which is updated to include new
assumptions made during the computation.

Both realizers are correct relative to the state.

This is a very simple case instance of a much more general framework
developed in the paper.

The interpreted drinkers paradox: ∀f∃x(P(x)→ P(fx))

In the paper, a new variant of the functional interpretation is developed,
which combines these two approaches: We store assumptions about our
realizer in a global state.

There are two possible realizers for the drinkers paradox

• ΦL(f , π) := 〈0, π :: P(f 0)〉

• ΦR(f , π) := 〈f 0, π :: ¬P(f 0)〉

Here, π is a global state of assumptions, which is updated to include new
assumptions made during the computation.

Both realizers are correct relative to the state.

This is a very simple case instance of a much more general framework
developed in the paper.

The interpreted drinkers paradox: ∀f∃x(P(x)→ P(fx))

In the paper, a new variant of the functional interpretation is developed,
which combines these two approaches: We store assumptions about our
realizer in a global state.

There are two possible realizers for the drinkers paradox

• ΦL(f , π) := 〈0, π :: P(f 0)〉

• ΦR(f , π) := 〈f 0, π :: ¬P(f 0)〉

Here, π is a global state of assumptions, which is updated to include new
assumptions made during the computation.

Both realizers are correct relative to the state.

This is a very simple case instance of a much more general framework
developed in the paper.

A real world example: Ramsey’s theorem for pairs

Theorem
For any colouring c :N ×N→ {0, 1}, there exists an infinite set X ⊆N that is
pairwise monochromatic.

Theorem (Finitized version)
For any colouring c :N×N→ {0, 1} and functional ε : P(N)→N, there exists
a finite approximation Xε ⊆N to a monochromatic set, which is valid up to the
point ε(Xε).

From the classical proof of Ramsey’s theorem, we would extract a program

Φ : S→ (P(N)→N)→ P(N) × S,

which from an ε and initial state π0 would return a pair Φ(ε, πI) = 〈X, πO〉

• X is a finite approximation to a monochromatic set;
• the πO is the output state, which contains atomic formulas of the form

c(m, n) = b listing ‘interactions with the environment’ which occured
during the computation of X.

A real world example: Ramsey’s theorem for pairs

Theorem
For any colouring c :N ×N→ {0, 1}, there exists an infinite set X ⊆N that is
pairwise monochromatic.

Theorem (Finitized version)
For any colouring c :N×N→ {0, 1} and functional ε : P(N)→N, there exists
a finite approximation Xε ⊆N to a monochromatic set, which is valid up to the
point ε(Xε).

From the classical proof of Ramsey’s theorem, we would extract a program

Φ : S→ (P(N)→N)→ P(N) × S,

which from an ε and initial state π0 would return a pair Φ(ε, πI) = 〈X, πO〉

• X is a finite approximation to a monochromatic set;
• the πO is the output state, which contains atomic formulas of the form

c(m, n) = b listing ‘interactions with the environment’ which occured
during the computation of X.

A real world example: Ramsey’s theorem for pairs

Theorem
For any colouring c :N ×N→ {0, 1}, there exists an infinite set X ⊆N that is
pairwise monochromatic.

Theorem (Finitized version)
For any colouring c :N×N→ {0, 1} and functional ε : P(N)→N, there exists
a finite approximation Xε ⊆N to a monochromatic set, which is valid up to the
point ε(Xε).

From the classical proof of Ramsey’s theorem, we would extract a program

Φ : S→ (P(N)→N)→ P(N) × S,

which from an ε and initial state π0 would return a pair Φ(ε, πI) = 〈X, πO〉

• X is a finite approximation to a monochromatic set;
• the πO is the output state, which contains atomic formulas of the form

c(m, n) = b listing ‘interactions with the environment’ which occured
during the computation of X.

A real world example: Ramsey’s theorem for pairs

Theorem
For any colouring c :N ×N→ {0, 1}, there exists an infinite set X ⊆N that is
pairwise monochromatic.

Theorem (Finitized version)
For any colouring c :N×N→ {0, 1} and functional ε : P(N)→N, there exists
a finite approximation Xε ⊆N to a monochromatic set, which is valid up to the
point ε(Xε).

From the classical proof of Ramsey’s theorem, we would extract a program

Φ : S→ (P(N)→N)→ P(N) × S,

which from an ε and initial state π0 would return a pair Φ(ε, πI) = 〈X, πO〉

• X is a finite approximation to a monochromatic set;
• the πO is the output state, which contains atomic formulas of the form

c(m, n) = b listing ‘interactions with the environment’ which occured
during the computation of X.

A real world example: Ramsey’s theorem for pairs

Theorem
For any colouring c :N ×N→ {0, 1}, there exists an infinite set X ⊆N that is
pairwise monochromatic.

Theorem (Finitized version)
For any colouring c :N×N→ {0, 1} and functional ε : P(N)→N, there exists
a finite approximation Xε ⊆N to a monochromatic set, which is valid up to the
point ε(Xε).

From the classical proof of Ramsey’s theorem, we would extract a program

Φ : S→ (P(N)→N)→ P(N) × S,

which from an ε and initial state π0 would return a pair Φ(ε, πI) = 〈X, πO〉

• X is a finite approximation to a monochromatic set;
• the πO is the output state, which contains atomic formulas of the form

c(m, n) = b listing ‘interactions with the environment’ which occured
during the computation of X.

The main result

Theorem
Suppose that HA+

` A(~b). Then for any collection of approximationsϕP satisfying
χP ≈0→0 ϕP, there is a corresponding sequence of state-sensitive terms~t satisfying

E-HAωS ` ∀~v ∈ ∆~τ, π

(∥∥∥∥A(~b)
∥∥∥∥~t~b
~v
π→

{
A(~b)

}~t~b
~v
π

)
which can be formally extracted from the proof of A(~b).

Comments

•
{
A(~b)

}~t~b
~v
π is an analogue of the usual functional interpretations.

•
∥∥∥∥A(~b)

∥∥∥∥~t~b
~v
π is a new special state component.

• χP is the characteristic function of P andϕP is its approximation
relative to the state.

• The proof involves the state monad and a logical relation on all types.

The main result

Theorem
Suppose that HA+

` A(~b). Then for any collection of approximationsϕP satisfying
χP ≈0→0 ϕP, there is a corresponding sequence of state-sensitive terms~t satisfying

E-HAωS ` ∀~v ∈ ∆~τ, π

(∥∥∥∥A(~b)
∥∥∥∥~t~b
~v
π→

{
A(~b)

}~t~b
~v
π

)
which can be formally extracted from the proof of A(~b).
Comments

•
{
A(~b)

}~t~b
~v
π is an analogue of the usual functional interpretations.

•
∥∥∥∥A(~b)

∥∥∥∥~t~b
~v
π is a new special state component.

• χP is the characteristic function of P andϕP is its approximation
relative to the state.

• The proof involves the state monad and a logical relation on all types.

The main result

Theorem
Suppose that HA+

` A(~b). Then for any collection of approximationsϕP satisfying
χP ≈0→0 ϕP, there is a corresponding sequence of state-sensitive terms~t satisfying

E-HAωS ` ∀~v ∈ ∆~τ, π

(∥∥∥∥A(~b)
∥∥∥∥~t~b
~v
π→

{
A(~b)

}~t~b
~v
π

)
which can be formally extracted from the proof of A(~b).
Comments

•
{
A(~b)

}~t~b
~v
π is an analogue of the usual functional interpretations.

•
∥∥∥∥A(~b)

∥∥∥∥~t~b
~v
π is a new special state component.

• χP is the characteristic function of P andϕP is its approximation
relative to the state.

• The proof involves the state monad and a logical relation on all types.

The main result

Theorem
Suppose that HA+

` A(~b). Then for any collection of approximationsϕP satisfying
χP ≈0→0 ϕP, there is a corresponding sequence of state-sensitive terms~t satisfying

E-HAωS ` ∀~v ∈ ∆~τ, π

(∥∥∥∥A(~b)
∥∥∥∥~t~b
~v
π→

{
A(~b)

}~t~b
~v
π

)
which can be formally extracted from the proof of A(~b).
Comments

•
{
A(~b)

}~t~b
~v
π is an analogue of the usual functional interpretations.

•
∥∥∥∥A(~b)

∥∥∥∥~t~b
~v
π is a new special state component.

• χP is the characteristic function of P andϕP is its approximation
relative to the state.

• The proof involves the state monad and a logical relation on all types.

The main result

Theorem
Suppose that HA+

` A(~b). Then for any collection of approximationsϕP satisfying
χP ≈0→0 ϕP, there is a corresponding sequence of state-sensitive terms~t satisfying

E-HAωS ` ∀~v ∈ ∆~τ, π

(∥∥∥∥A(~b)
∥∥∥∥~t~b
~v
π→

{
A(~b)

}~t~b
~v
π

)
which can be formally extracted from the proof of A(~b).
Comments

•
{
A(~b)

}~t~b
~v
π is an analogue of the usual functional interpretations.

•
∥∥∥∥A(~b)

∥∥∥∥~t~b
~v
π is a new special state component.

• χP is the characteristic function of P andϕP is its approximation
relative to the state.

• The proof involves the state monad and a logical relation on all types.

The main result

Theorem
Suppose that HA+

` A(~b). Then for any collection of approximationsϕP satisfying
χP ≈0→0 ϕP, there is a corresponding sequence of state-sensitive terms~t satisfying

E-HAωS ` ∀~v ∈ ∆~τ, π

(∥∥∥∥A(~b)
∥∥∥∥~t~b
~v
π→

{
A(~b)

}~t~b
~v
π

)
which can be formally extracted from the proof of A(~b).
Comments

•
{
A(~b)

}~t~b
~v
π is an analogue of the usual functional interpretations.

•
∥∥∥∥A(~b)

∥∥∥∥~t~b
~v
π is a new special state component.

• χP is the characteristic function of P andϕP is its approximation
relative to the state.

• The proof involves the state monad and a logical relation on all types.

Application: Herbrand’s theorem

Our state based functional interpretation gives us a new proof of
Herbrand’s theorem. Suppose that

PL ` ∃xA(x)

Then for any given state function, starting with the empty state we obtain a
term t such that

P1 ∧ . . . ∧ Pk︸ ︷︷ ︸
final state

→ A(t)

The final state represents a branch in the underlying Herbrand tree. By
quantifying over all relevant states we obtain terms t1, . . . , tn s.t.

A(t1) ∨ . . . ∨ A(tn).

Application: Herbrand’s theorem

Our state based functional interpretation gives us a new proof of
Herbrand’s theorem. Suppose that

PL ` ∃xA(x)

Then for any given state function, starting with the empty state we obtain a
term t such that

P1 ∧ . . . ∧ Pk︸ ︷︷ ︸
final state

→ A(t)

The final state represents a branch in the underlying Herbrand tree. By
quantifying over all relevant states we obtain terms t1, . . . , tn s.t.

A(t1) ∨ . . . ∨ A(tn).

Application: Herbrand’s theorem

Our state based functional interpretation gives us a new proof of
Herbrand’s theorem. Suppose that

PL ` ∃xA(x)

Then for any given state function, starting with the empty state we obtain a
term t such that

P1 ∧ . . . ∧ Pk︸ ︷︷ ︸
final state

→ A(t)

The final state represents a branch in the underlying Herbrand tree. By
quantifying over all relevant states we obtain terms t1, . . . , tn s.t.

A(t1) ∨ . . . ∨ A(tn).

Application: Learning semantics

Suppose that we have a collection P(n, i) of primitive recursive formulas.
We use the state to record witnesses for ∃iP(n, i) i.e. is an approximation to
a Skolem functions for Σ1 formulas. Suppose that

PA ` ∀x∃yA(x, y).

Then we define our state function to add only true assumptions to the state,
and we extract a program t : 0→ S→ 0 × S such that

• t takes an argument x and a state π representing an approximation to
Skolem function;

• t returns a realizer txπ0 together with a final state txπ1 w π
representing a better approximation to Skolem function, containing
what we have learned from computing our realizer.

Application: Learning semantics

Suppose that we have a collection P(n, i) of primitive recursive formulas.
We use the state to record witnesses for ∃iP(n, i) i.e. is an approximation to
a Skolem functions for Σ1 formulas. Suppose that

PA ` ∀x∃yA(x, y).

Then we define our state function to add only true assumptions to the state,
and we extract a program t : 0→ S→ 0 × S such that

• t takes an argument x and a state π representing an approximation to
Skolem function;

• t returns a realizer txπ0 together with a final state txπ1 w π
representing a better approximation to Skolem function, containing
what we have learned from computing our realizer.

Application: Learning semantics

Suppose that we have a collection P(n, i) of primitive recursive formulas.
We use the state to record witnesses for ∃iP(n, i) i.e. is an approximation to
a Skolem functions for Σ1 formulas. Suppose that

PA ` ∀x∃yA(x, y).

Then we define our state function to add only true assumptions to the state,
and we extract a program t : 0→ S→ 0 × S such that

• t takes an argument x and a state π representing an approximation to
Skolem function;

• t returns a realizer txπ0 together with a final state txπ1 w π
representing a better approximation to Skolem function, containing
what we have learned from computing our realizer.

Application: Learning semantics

Suppose that we have a collection P(n, i) of primitive recursive formulas.
We use the state to record witnesses for ∃iP(n, i) i.e. is an approximation to
a Skolem functions for Σ1 formulas. Suppose that

PA ` ∀x∃yA(x, y).

Then we define our state function to add only true assumptions to the state,
and we extract a program t : 0→ S→ 0 × S such that

• t takes an argument x and a state π representing an approximation to
Skolem function;

• t returns a realizer txπ0 together with a final state txπ1 w π
representing a better approximation to Skolem function, containing
what we have learned from computing our realizer.

Application: Efficient program synthesis

Our state is not just for storing information: We can interact with it as well.

One application might be to improve the efficiency of extracted programs
by e.g. avoiding repeated computations. For example:

Φ(f , π) :=


〈0, π〉 if P(f 0) ∈ π
〈f 0, π〉 if ¬P(f 0) ∈ π
〈0, π :: P(f 0)〉 if P(f 0)
〈f 0, π :: ¬P(f 0)〉 if ¬P(f 0)

Naturally, we have more sophisticated things in mind!

Application: Efficient program synthesis

Our state is not just for storing information: We can interact with it as well.

One application might be to improve the efficiency of extracted programs
by e.g. avoiding repeated computations. For example:

Φ(f , π) :=


〈0, π〉 if P(f 0) ∈ π
〈f 0, π〉 if ¬P(f 0) ∈ π
〈0, π :: P(f 0)〉 if P(f 0)
〈f 0, π :: ¬P(f 0)〉 if ¬P(f 0)

Naturally, we have more sophisticated things in mind!

Application: Efficient program synthesis

Our state is not just for storing information: We can interact with it as well.

One application might be to improve the efficiency of extracted programs
by e.g. avoiding repeated computations. For example:

Φ(f , π) :=


〈0, π〉 if P(f 0) ∈ π
〈f 0, π〉 if ¬P(f 0) ∈ π
〈0, π :: P(f 0)〉 if P(f 0)
〈f 0, π :: ¬P(f 0)〉 if ¬P(f 0)

Naturally, we have more sophisticated things in mind!

Future research

We now want explore the applications.

• We presented everything in a standard equational calculus and use the
state monad. It would be nice to instead use a real programming
language with state.

• Formalise the interpretation! (Minlog or Adga might make good
candidates...)

• Can the state provide us with insight into the meaning of programs
extracted from complicated proofs? Can we extend our framework to
include the axiom of choice/bar recursion?

• This is a first step in the development of a fledged imperative
functional interpretation, specifically designed for extracting state
sensitive programs from proofs.

Thank you!

Future research

We now want explore the applications.

• We presented everything in a standard equational calculus and use the
state monad. It would be nice to instead use a real programming
language with state.

• Formalise the interpretation! (Minlog or Adga might make good
candidates...)

• Can the state provide us with insight into the meaning of programs
extracted from complicated proofs? Can we extend our framework to
include the axiom of choice/bar recursion?

• This is a first step in the development of a fledged imperative
functional interpretation, specifically designed for extracting state
sensitive programs from proofs.

Thank you!

Future research

We now want explore the applications.

• We presented everything in a standard equational calculus and use the
state monad. It would be nice to instead use a real programming
language with state.

• Formalise the interpretation! (Minlog or Adga might make good
candidates...)

• Can the state provide us with insight into the meaning of programs
extracted from complicated proofs? Can we extend our framework to
include the axiom of choice/bar recursion?

• This is a first step in the development of a fledged imperative
functional interpretation, specifically designed for extracting state
sensitive programs from proofs.

Thank you!

Future research

We now want explore the applications.

• We presented everything in a standard equational calculus and use the
state monad. It would be nice to instead use a real programming
language with state.

• Formalise the interpretation! (Minlog or Adga might make good
candidates...)

• Can the state provide us with insight into the meaning of programs
extracted from complicated proofs? Can we extend our framework to
include the axiom of choice/bar recursion?

• This is a first step in the development of a fledged imperative
functional interpretation, specifically designed for extracting state
sensitive programs from proofs.

Thank you!

Future research

We now want explore the applications.

• We presented everything in a standard equational calculus and use the
state monad. It would be nice to instead use a real programming
language with state.

• Formalise the interpretation! (Minlog or Adga might make good
candidates...)

• Can the state provide us with insight into the meaning of programs
extracted from complicated proofs? Can we extend our framework to
include the axiom of choice/bar recursion?

• This is a first step in the development of a fledged imperative
functional interpretation, specifically designed for extracting state
sensitive programs from proofs.

Thank you!

Future research

We now want explore the applications.

• We presented everything in a standard equational calculus and use the
state monad. It would be nice to instead use a real programming
language with state.

• Formalise the interpretation! (Minlog or Adga might make good
candidates...)

• Can the state provide us with insight into the meaning of programs
extracted from complicated proofs? Can we extend our framework to
include the axiom of choice/bar recursion?

• This is a first step in the development of a fledged imperative
functional interpretation, specifically designed for extracting state
sensitive programs from proofs.

Thank you!

