Ideal objects and abstract machines

Thomas Powell
Technische Universität Darmstadt

Workshop: Proofs and Computation part of the Trimester: Types, Sets and Constructions

Hausdorff Research Institute for Mathematics, Bonn
5 July 2018

Outline

1. The problem.
2. A brief sketch of some ideas from the last few months.
3. Open problems

Outline

1. The problem.
2. A brief sketch of some ideas from the last few months.
3. Open problems (which include the original problem).

Motivation

Lots of people study

Proofs \mapsto Programs

There are many well known techniques for extracting programs from proofs e.g.

- Epsilon calculus \& substitution method
- Functional intepretation
- Many variants of realizability
- ...

Motivation

Lots of people study

Proofs \mapsto Programs

There are many well known techniques for extracting programs from proofs e.g.

- Epsilon calculus \& substitution method
- Functional intepretation
- Many variants of realizability
- ...

On a small scale, these tools gives us a clear insight into the computational meaning of proofs.
On a large scale, they produce programs which are usually incomprehensible.

What is the issue?

What is the issue?

Why do we care?

What is the issue?

Why do we care?

- The programs from proofs paradigm should also work on a high level.

What is the issue?

Why do we care?

- The programs from proofs paradigm should also work on a high level.
- For certain applications, it would be good know how formally extracted programs behave.

What is the issue?

Why do we care?

- The programs from proofs paradigm should also work on a high level.
- For certain applications, it would be good know how formally extracted programs behave.
- Trying to connect proof theoretic techniques with ideas from the theory of algorithms e.g.
- automata
- flowcharts
- state machines
could lead to new ideas.

One attempt

Idea behind T.P. A functional interpretation with state (LICS 18):

One attempt

Idea behind T.P. A functional interpretation with state (LICS 18):

Some downsides:

- Translation quite complicated
- Still need to fully formalise proof
- State only captures some aspects of underlying algorithm

One attempt

Idea behind T.P. A functional interpretation with state (LICS 18):

Some downsides:

- Translation quite complicated
- Still need to fully formalise proof
- State only captures some aspects of underlying algorithm
N. B. There are some upsides too, which I will present next week!

Another direction

Another direction

Key idea:

- Use formal proof theoretic techniques as tools...
- ... to be combined with human intuition.
- Program extraction should mimic the style of ordinary mathematics.

Another direction

Key idea:

- Use formal proof theoretic techniques as tools...
- ... to be combined with human intuition.
- Program extraction should mimic the style of ordinary mathematics.

Key question: What is an algorithm?

What is an algorithm?

State machines

At its simplest, a state machine consists of

- A set S of states
- A transition relation $\triangleright \subseteq S \times S$.

A computation is a sequence $s_{0} \triangleright s_{1} \triangleright \ldots \triangleright s_{n-1}$.

State machines

At its simplest, a state machine consists of

- A set S of states
- A transition relation $\triangleright \subseteq S \times S$.

A computation is a sequence $s_{0} \triangleright s_{1} \triangleright \ldots \triangleright s_{n-1}$.

- State machines are very good at describing how programs work.
- Our choice of state machine will depend on what we are trying to describe, and on which level of abstraction.

A state machine for Π_{3} formulas

States encode the following structure: (control, input, oracle query, oracle answer) $\in C \times A \times X \times(Y+\{\square\})$

A state machine for Π_{3} formulas

States encode the following structure:
(control, input, oracle query, oracle answer) $\in C \times A \times X \times(Y+\{\square\})$
Among the states we identify

- Initial states (c_{0}, a, x_{0}, \square);
- Query states (c, a, x, \square) with $c \in C^{\text {? }}$;
- End states (c, a, x, y) with $c \in C^{!}$.

A state machine for Π_{3} formulas

States encode the following structure:
(control, input, oracle query, oracle answer) $\in C \times A \times X \times(Y+\{\square\})$
Among the states we identify

- Initial states (c_{0}, a, x_{0}, \square);
- Query states (c, a, x, \square) with $c \in C^{\text {? }}$;
- End states (c, a, x, y) with $c \in C^{!}$.

Our transition relation comprises

- Normal transitions $(c, a, x, y) \triangleright\left(c^{\prime}, a, x^{\prime}, y / \square\right)$;
- Oracle transitions $(c, a, x, \square) \triangleright(c, a, x, y)$.

The no-counterexample interpretation

A state machine computes a Π_{3} formula $\forall a \in A \exists x \in X \forall y \in Y P(a, x, y)$ if

$$
\left(c_{0}, a, x_{0}, \square\right) \triangleright^{*}\left(c \in C^{!}, a, x, y\right) \text { with } P(a, x, y)
$$

for any input a and any oracle.

The no-counterexample interpretation

A state machine computes a Π_{3} formula $\forall a \in A \exists x \in X \forall y \in Y P(a, x, y)$ if

$$
\left(c_{0}, a, x_{0}, \square\right) \triangleright^{*}\left(c \in C^{!}, a, x, y\right) \text { with } P(a, x, y)
$$

for any input a and any oracle.
Theorem (Rough statement)
There is a computable functional witnessing the n.c.i. of $A: \equiv \forall a \exists x \forall y P(a, x, y)$ iff there is a state machine which computes A.

The no-counterexample interpretation

A state machine computes a Π_{3} formula $\forall a \in A \exists x \in X \forall y \in Y P(a, x, y)$ if

$$
\left(c_{0}, a, x_{0}, \square\right) \triangleright^{*}\left(c \in C^{!}, a, x, y\right) \text { with } P(a, x, y)
$$

for any input a and any oracle.

Theorem (Rough statement)

There is a computable functional witnessing the n.c.i. of $A: \equiv \forall a \exists x \forall y P(a, x, y)$ iff there is a state machine which computes A.

Proof.

$\Leftarrow:$ Define $\Phi(a, f):=x$ where

$$
\left(c_{0}, a, x_{0}, \square\right) \triangleright^{*}(c, a, x, y)
$$

is a computation on oracle f (there are a few additional details).
\Rightarrow : There is an oracle Turing machine, and hence state machine, which simulates Φ.

The no-counterexample interpretation

A state machine computes a Π_{3} formula $\forall a \in A \exists x \in X \forall y \in Y P(a, x, y)$ if

$$
\left(c_{0}, a, x_{0}, \square\right) \triangleright^{*}\left(c \in C^{!}, a, x, y\right) \text { with } P(a, x, y)
$$

for any input a and any oracle.

Theorem (Rough statement)

There is a computable functional witnessing the n.c.i. of $A: \equiv \forall a \exists x \forall y P(a, x, y)$ iff there is a state machine which computes A.

Proof.

$\Leftarrow:$ Define $\Phi(a, f):=x$ where

$$
\left(c_{0}, a, x_{0}, \square\right) \triangleright^{*}(c, a, x, y)
$$

is a computation on oracle f (there are a few additional details).
\Rightarrow : There is an oracle Turing machine, and hence state machine, which simulates Φ.
Idea. State machines make certain properties of the functional explicit.

So how do we extract algorithms from proofs?

So how do we extract algorithms from proofs?

We have several options:

- Write down an algorithm directly (works well for easy proofs or clever people).

So how do we extract algorithms from proofs?

We have several options:

- Write down an algorithm directly (works well for easy proofs or clever people).
- Convert a formally extracted program into a suitable ASM (might still be difficult to understand).

So how do we extract algorithms from proofs?

We have several options:

- Write down an algorithm directly (works well for easy proofs or clever people).
- Convert a formally extracted program into a suitable ASM (might still be difficult to understand).
- Develop some operations on algorithms which reflect key mathematical lemmas, which allow us to convert simple machines into more complicated ones.

A machine based interpretation of dependent choice

Suppose we have a machine (S, \triangleright) with $S \subseteq C \times X^{*} \times X \times Y_{\square}$ which computes

$$
\forall a \in X^{*} \exists x \in X \forall y \in Y P(a, x, y) .
$$

We want to convert this to a machine ($S^{\star}, \triangleright$) which computes

$$
\exists f^{\mathbb{N} \rightarrow X} \forall n, y P(\bar{f} n, f(n), y) .
$$

A machine based interpretation of dependent choice

Suppose we have a machine (S, \triangleright) with $S \subseteq C \times X^{*} \times X \times Y_{\square}$ which computes

$$
\forall a \in X^{*} \exists x \in X \forall y \in Y P(a, x, y) .
$$

We want to convert this to a machine ($S^{\star}, \triangleright$) which computes

$$
\exists f^{\mathbb{N} \rightarrow X} \forall n, y P(\bar{f} n, f(n), y) .
$$

States S^{\star} have the form

$$
(\underbrace{\sigma}_{\text {control }}, \underbrace{a \mid b}_{\text {query }}, \underbrace{n, y}_{\text {answers }}) \subseteq C^{*} \times\left(X^{*} \times X_{\square}^{*}\right) \times\left(\mathbb{N}_{\square} \times Y_{\square}\right)
$$

A machine based interpretation of dependent choice

Suppose we have a machine (S, \triangleright) with $S \subseteq C \times X^{*} \times X \times Y_{\square}$ which computes

$$
\forall a \in X^{*} \exists x \in X \forall y \in Y P(a, x, y) .
$$

We want to convert this to a machine ($S^{\star}, \triangleright$) which computes

$$
\exists f^{\mathbb{N} \rightarrow X} \forall n, y P(\bar{f} n, f(n), y) .
$$

States S^{\star} have the form

- The main object being computed is a pair of finite sequences $a \mid b$ which represent the choice sequence $a:: b:: 0,0, \ldots$ We view b as the current 'completion' of a.

A machine based interpretation of dependent choice

Suppose we have a machine (S, \triangleright) with $S \subseteq C \times X^{*} \times X \times Y_{\square}$ which computes

$$
\forall a \in X^{*} \exists x \in X \forall y \in Y P(a, x, y) .
$$

We want to convert this to a machine ($S^{\star}, \triangleright$) which computes

$$
\exists f^{\mathbb{N} \rightarrow X} \forall n, y P(\bar{f} n, f(n), y) .
$$

States S^{\star} have the form

$$
(\underbrace{\sigma}_{\text {control }}, \underbrace{a \mid b}_{\text {query }}, \underbrace{n, y}_{\text {answers }}) \subseteq C^{*} \times\left(X^{*} \times X_{\square}^{*}\right) \times\left(\mathbb{N}_{\square} \times Y_{\square}\right)
$$

- The main object being computed is a pair of finite sequences $a \mid b$ which represent the choice sequence $a:: b:: 0,0, \ldots$. We view b as the current 'completion' of a.
- We now have two oracles, which take the approximation $a \mid b$ and return the desired length and depth respectively, which eventually need to be satisfied by our approximation.

You don't need to understand this!

If (c, a, x, \square) a query state then

You don't need to understand this!

If (c, a, x, \square) a query state then

$$
\text { - (} \sigma:: c, a:: x \mid \square, \square, \square) \vee(\sigma:: c, a:: x \mid \square, n, \square) \text { check length }
$$

You don't need to understand this!

If (c, a, x, \square) a query state then

- ($\sigma:: c, a:: x \mid \square, \square, \square)-(\sigma:: c, a:: x \mid \square, n, \square)$ check length
- If $n<|a|$ then $(\sigma:: c, a:: x \mid \square, n, \square) \downarrow(\sigma:: c, a:: x \mid[], n, \square)$ length good

You don't need to understand this!

If (c, a, x, \square) a query state then

- ($\sigma:: c, a:: x \mid \square, \square, \square)-(\sigma:: c, a:: x \mid \square, n, \square)$ check length
- If $n<|a|$ then $(\sigma:: c, a:: x \mid \square, n, \square)>(\sigma:: c, a:: x \mid[], n, \square)$ length good
-If $n \geq|a|$ then $(\sigma:: c, a:: x \mid \square, n, \square) \downarrow\left(\sigma:: c:: c_{0}, a:: x:: x_{0} \mid \square, \square, \square\right)$
length bad

You don't need to understand this!

If (c, a, x, \square) a query state then

$$
\text { - (} \sigma:: c, a:: x \mid \square, \square, \square) \vee(\sigma:: c, a:: x \mid \square, n, \square) \text { check length }
$$

$$
\text { - If } n<|a| \text { then }(\sigma:: c, a:: x \mid \square, n, \square) \vee(\sigma:: c, a:: x \mid[], n, \square) \text { length good }
$$

$$
\text { -If } n \geq|a| \text { then }(\sigma:: c, a:: x \mid \square, n, \square) \vee\left(\sigma:: c:: c_{0}, a:: x:: x_{0} \mid \square, \square, \square\right)
$$

length bad

$$
-(\sigma:: c, a:: x \mid[], n, \square)>(\sigma:: c, a:: x \mid[], n, y) \text { check depth }
$$

You don't need to understand this!

If (c, a, x, \square) a query state then

- ($\sigma:: c, a:: x \mid \square, \square, \square)$ ($\sigma:: c, a:: x \mid \square, n, \square)$ check length
- If $n<|a|$ then $(\sigma:: c, a:: x \mid \square, n, \square)>(\sigma:: c, a:: x \mid[], n, \square)$ length good
-If $n \geq|a|$ then $(\sigma:: c, a:: x \mid \square, n, \square) \downarrow\left(\sigma:: c:: c_{0}, a:: x:: x_{0} \mid \square, \square, \square\right)$
length bad
- ($\sigma:: c, a:: x \mid[], n, \square)$ - $(\sigma:: c, a:: x \mid[], n, y)$ check depth

If $(c, a, x, y) \triangleright\left(c^{\prime}, a, x^{\prime}, y / \square\right)$ then

You don't need to understand this!

If (c, a, x, \square) a query state then

$$
\text { - (} \sigma:: c, a:: x \mid \square, \square, \square) \triangleright(\sigma:: c, a:: x \mid \square, n, \square) \text { check length }
$$

$$
\text { - If } n<|a| \text { then }(\sigma:: c, a:: x \mid \square, n, \square)>(\sigma:: c, a:: x \mid[], n, \square) \text { length good }
$$

$$
\text { -If } n \geq|a| \text { then }(\sigma:: c, a:: x \mid \square, n, \square) \vee\left(\sigma:: c:: c_{0}, a:: x:: x_{0} \mid \square, \square, \square\right)
$$

length bad

$$
-(\sigma:: c, a:: x \mid[], n, \square)>(\sigma:: c, a:: x \mid[], n, y) \text { check depth }
$$

If $(c, a, x, y) \triangleright\left(c^{\prime}, a, x^{\prime}, y / \square\right)$ then
$-(\sigma:: c, a:: x \mid b, n, y) \triangleright\left(\sigma:: c^{\prime}, a:: x^{\prime} \mid b / \square, n / \square, y / \square\right)$ compute element

You don't need to understand this!

If (c, a, x, \square) a query state then
$-(\sigma:: c, a:: x \mid \square, \square, \square)-(\sigma:: c, a:: x \mid \square, n, \square)$ check length

- If $n<|a|$ then $(\sigma:: c, a:: x \mid \square, n, \square) \downarrow(\sigma:: c, a:: x \mid[], n, \square)$ length good
-If $n \geq|a|$ then $(\sigma:: c, a:: x \mid \square, n, \square) \downarrow\left(\sigma:: c:: c_{0}, a:: x:: x_{0} \mid \square, \square, \square\right)$
length bad
- ($\sigma:: c, a:: x \mid[], n, \square)-(\sigma:: c, a:: x \mid[], n, y)$ check depth

If $(c, a, x, y) \triangleright\left(c^{\prime}, a, x^{\prime}, y / \square\right)$ then

- $(\sigma:: c, a:: x \mid b, n, y)>\left(\sigma:: c^{\prime}, a:: x^{\prime} \mid b / \square, n / \square, y / \square\right)$ compute element

If (c, a, x, y) an end state then

You don't need to understand this!

If (c, a, x, \square) a query state then
$-(\sigma:: c, a:: x \mid \square, \square, \square)-(\sigma:: c, a:: x \mid \square, n, \square)$ check length

- If $n<|a|$ then $(\sigma:: c, a:: x \mid \square, n, \square) \downarrow(\sigma:: c, a:: x \mid[], n, \square)$ length good
-If $n \geq|a|$ then $(\sigma:: c, a:: x \mid \square, n, \square) \downarrow\left(\sigma:: c:: c_{0}, a:: x:: x_{0} \mid \square, \square, \square\right)$
length bad
$-(\sigma:: c, a:: x \mid[], n, \square)-(\sigma:: c, a:: x \mid[], n, y)$ check depth
If $(c, a, x, y) \triangleright\left(c^{\prime}, a, x^{\prime}, y / \square\right)$ then
- $(\sigma:: c, a:: x \mid b, n, y)>\left(\sigma:: c^{\prime}, a:: x^{\prime} \mid b / \square, n / \square, y / \square\right)$ compute element

If (c, a, x, y) an end state then

$$
\text { - (} \sigma:: c, a:: x \mid b, n, y)>(\sigma, a \mid x:: b, n, y) \text { element computed }
$$

The following are quite easy to prove

Theorem (Rough statement)
We have
([],[]| व, व, व) •* ([],[]|b,n,y)
with

- $n<|b|$;
- $\forall m<|b| P(\bar{b} m, b(m), y)$.

The following are quite easy to prove

Theorem (Rough statement)
We have

$$
([],[] \mid \square, \square, \square) \bullet^{*}([],[] \mid b, n, y)
$$

with

- $n<|b| ;$
- $\forall m<|b| P(\bar{b} m, b(m), y)$.

Corollary
The machine ($S^{\star}, \triangleright$) with start state ([]$\left.,[] \mid \square, \square, \square\right)$ computes

$$
\exists f \forall n, y P(\bar{f} n, f(n), y) .
$$

A real example

Theorem
Let R be a commutative ring with $0 \neq 1$. Suppose that r lies in the intersection of all prime ideals of R. Then r is nilpotent i.e. $\exists e>0\left(r^{e}=0\right)$.

A real example

Theorem

Let R be a commutative ring with $0 \neq 1$. Suppose that r lies in the intersection of all prime ideals of R. Then r is nilpotent i.e. $\exists e>O\left(r^{e}=0\right)$.
Proof.
Suppose that r is not nilpotent. Define

$$
\Sigma:=\left\{I \subset R \mid I \text { is an ideal satisfying } \forall e>O\left(r^{e} \notin I\right)\right\} .
$$

Then $\{0\} \in \Sigma$ (by our assumption), and Σ is chain-complete w.r.t. inclusion, so by Zorn's lemma it has a maximal element M.

A real example

Theorem

Let R be a commutative ring with $0 \neq 1$. Suppose that r lies in the intersection of all prime ideals of R. Then r is nilpotent i.e. $\exists e>0\left(r^{e}=0\right)$.
Proof.
Suppose that r is not nilpotent. Define

$$
\Sigma:=\left\{I \subset R \mid I \text { is an ideal satisfying } \forall e>O\left(r^{e} \notin I\right)\right\} .
$$

Then $\{0\} \in \Sigma$ (by our assumption), and Σ is chain-complete w.r.t. inclusion, so by Zorn's lemma it has a maximal element M.

We show that M is prime: If $m, n \notin M$ then $M+(m)$ and $M+(n)$ are proper extensions of M, so by maximality there exist $e_{1}, e_{2}>0$ such that $r^{\ell_{1}} \in M+(m)$ and $r^{e_{2}} \in M+(n)$. Therefore

$$
r^{\varepsilon_{1}+e_{2}} \in M+(m n)
$$

and so $M+(m n) \notin \Sigma$, which means that $m n \notin M$. Since $r^{1} \notin M, r$ cannot lie in the intersection of all prime ideals.

A state machine which computes maximal ideals

For countable commutative rings $R:=\left\{r_{n}: n \in \mathbb{N}\right\}$ (with w.l.o.g. $r_{0}=0$), this proof can be formalised using DC via a standard trick in reverse math.

A state machine which computes maximal ideals

For countable commutative rings $R:=\left\{r_{n}: n \in \mathbb{N}\right\}$ (with w.l.o.g. $r_{0}=0$), this proof can be formalised using DC via a standard trick in reverse math.
There is a corresponding state machine:

A state machine which computes maximal ideals

For countable commutative rings $R:=\left\{r_{n}: n \in \mathbb{N}\right\}$ (with w.l.o.g. $r_{0}=0$), this proof can be formalised using DC via a standard trick in reverse math.

There is a corresponding state machine:

- Either $\chi(i)=1$ and $r_{i} \in M$, or $\chi(i)=0$ and $r_{i} \notin M$, in which case $\langle\vec{y}(i), e(i)\rangle$ act as evidence for the exclusion of r_{i} i.e.

$$
m_{1} y(i)_{1}+\ldots+m_{k} y(i)_{k}+r_{i} y(i)=r^{e(i)}
$$

A state machine which computes maximal ideals

For countable commutative rings $R:=\left\{r_{n}: n \in \mathbb{N}\right\}$ (with w.l.o.g. $r_{0}=0$), this proof can be formalised using DC via a standard trick in reverse math.
There is a corresponding state machine:

- Either $\chi(i)=1$ and $r_{i} \in M$, or $\chi(i)=0$ and $r_{i} \notin M$, in which case $\langle\vec{y}(i), e(i)\rangle$ act as evidence for the exclusion of r_{i} i.e.

$$
m_{1} y(i)_{1}+\ldots+m_{k} y(i)_{k}+r_{i} y(i)=r^{e(i)}
$$

- Oracle queries provide evidence that for a given M encoded by $a \mid b$, we have

$$
r \in M \vee M \text { not a prime ideal }
$$

which is converted into evidence for excluding r_{n} for some $n \in \mathbb{N}$.

A constructive proof

Theorem

$$
([], \underbrace{[] \mid \square, \square, \square)}_{M:=R} \triangleright^{*}([], \underbrace{[] \mid b}_{M \subset R}, n,\left\langle\left[y_{1}, \ldots, y_{k}, y\right], e\right\rangle)
$$

where $r_{0}=0 \notin M$. In other words, $b(0)=\left\langle 0,\left[y_{0}\right], e(0)\right\rangle$ with $\left.e(0)\right\rangle 0$ and

$$
r^{e(0)}=r_{0} y_{0}=0 .
$$

A constructive proof

Theorem

$$
([], \underbrace{[] \mid \square, \square, \square) \wedge^{*}([], \underbrace{[] \mid b}_{M \subset R}, n,\left\langle\left[y_{1}, \ldots, y_{k}, y\right], e\right\rangle))}_{M:=R}
$$

where $r_{0}=0 \notin M$. In other words, $b(0)=\left\langle 0,\left[y_{0}\right], e(0)\right\rangle$ with $\left.e(0)\right\rangle 0$ and

$$
r^{(0)}=r_{0} y_{0}=0 .
$$

- Classical. There exists a maximal element $M \in \Sigma$, hence $r^{e}=0$ for some $e>0$ by contradiction.

A constructive proof

Theorem

where $r_{0}=0 \notin M$. In other words, $b(0)=\left\langle 0,\left[y_{0}\right], e(0)\right\rangle$ with $\left.e(0)\right\rangle 0$ and

$$
r^{e(0)}=r_{0} y_{0}=0 .
$$

- Classical. There exists a maximal element $M \in \Sigma$, hence $r^{e}=0$ for some $e>0$ by contradiction.
- Computational. There exists a machine with which, relative to an oracle witnessing that $r \in P$ for all prime ideals P, builds an approximation to a maximal $M \in \Sigma$ by starting with R and gradually excluding elements:

$$
R=M_{0} \supset M_{1} \supset M_{2} \supset \ldots \supset M_{k}=\text { 'maximal' }
$$

Eventually 0 is excluded, hence we have found some $e>0$ with $r^{e}=0$.

We can even generate a diagram of the control flow

Input machine \mathcal{M} for single elements:

We can even generate a diagram of the control flow

Input machine \mathcal{M} for single elements:

$$
(I)-(Y)+N-E
$$

Output machine \mathcal{M}^{\star} for whole set:

Open questions

This is work in progress with plenty of open questions. In particular:

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act as algorithms?

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act as algorithms?
- Large scale: Can we better understand computational content of complicated non-constructive proofs in e.g. WQO theory?

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act as algorithms?
- Large scale: Can we better understand computational content of complicated non-constructive proofs in e.g. WQO theory?
- Small scale: Can we automatically extract machines which implement e.g. sorting algorithms from proofs?

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act as algorithms?
- Large scale: Can we better understand computational content of complicated non-constructive proofs in e.g. WQO theory?
- Small scale: Can we automatically extract machines which implement e.g. sorting algorithms from proofs?
- We focused on the n.c.i. interpretation. What about the full functional interpretations i.e. oracle machines in all finite types? What would be a suitable computational model for types >2.

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act as algorithms?
- Large scale: Can we better understand computational content of complicated non-constructive proofs in e.g. WQO theory?
- Small scale: Can we automatically extract machines which implement e.g. sorting algorithms from proofs?
- We focused on the n.c.i. interpretation. What about the full functional interpretations i.e. oracle machines in all finite types? What would be a suitable computational model for types >2.
- Can we give a formal geometric characterisation of what's going on via some kind of graphs?

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act as algorithms?
- Large scale: Can we better understand computational content of complicated non-constructive proofs in e.g. WQO theory?
- Small scale: Can we automatically extract machines which implement e.g. sorting algorithms from proofs?
- We focused on the n.c.i. interpretation. What about the full functional interpretations i.e. oracle machines in all finite types? What would be a suitable computational model for types >2.
- Can we give a formal geometric characterisation of what's going on via some kind of graphs?

