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Motivation

Lots of people study

Proofs 7→ Programs

There are many well known techniques for extracting programs from
proofs e.g.

• Epsilon calculus & substitution method
• Functional intepretation
• Many variants of realizability
• ...

On a small scale, these tools gives us a clear insight into the computational
meaning of proofs.

On a large scale, they produce programs which are usually incomprehensible.
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What is the issue?

Textbook Proof

��

Algorithm?

Formal Proof // Formal Program

OO

Why do we care?

• The programs from proofs paradigm should also work on a high level.
• For certain applications, it would be good know how formally

extracted programs behave.
• Trying to connect proof theoretic techniques with ideas from the

theory of algorithms e.g.
• automata
• flowcharts
• state machines

could lead to new ideas.
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One attempt

Idea behind T.P. A functional interpretation with state (LICS 18):

Textbook Proof

��

Algorithm encoded in state

Enriched Formal Proof // Formal Program with Global State

OO

Some downsides:

• Translation quite complicated
• Still need to fully formalise proof
• State only captures some aspects of underlying algorithm

N. B. There are some upsides too, which I will present next week!
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Another direction

Textbook Proof //

��

Algorithm

Formal Proof // Formal Program

OO

Key idea:

• Use formal proof theoretic techniques as tools...
• ... to be combined with human intuition.
• Program extraction should mimic the style of ordinary mathematics.

Key question: What is an algorithm?
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What is an algorithm?

Description with Pen & Paper

Abstract State Machine

OO

Formal calculus (e.g. System T)

OO



State machines

At its simplest, a state machine consists of

• A set S of states
• A transition relation B ⊆ S × S.

A computation is a sequence s0 B s1 B . . . B sn−1.

- State machines are very good at describing how programs work.

- Our choice of state machine will depend on what we are trying to
describe, and on which level of abstraction.
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A state machine for Π3 formulas

States encode the following structure:

(control, input, oracle query, oracle answer) ∈ C × A × X × (Y + {�})

Among the states we identify
• Initial states (c0, a, x0,�);
• Query states (c, a, x,�) with c ∈ C?;
• End states (c, a, x, y) with c ∈ C!.

Our transition relation comprises
• Normal transitions (c, a, x, y) B (c′, a, x′, y/�);
• Oracle transitions (c, a, x,�) B (c, a, x, y).
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The no-counterexample interpretation

A state machine computes a Π3 formula ∀a ∈ A∃x ∈ X∀y ∈ YP(a, x, y) if

(c0, a, x0,�) B∗ (c ∈ C!, a, x, y) with P(a, x, y)

for any input a and any oracle.

Theorem (Rough statement)
There is a computable functional witnessing the n.c.i. of A :≡ ∀a∃x∀yP(a, x, y) iff
there is a state machine which computes A.

Proof.
⇐: Define Φ(a, f ) := x where

(c0, a, x0,�) B∗ (c, a, x, y)

is a computation on oracle f (there are a few additional details).

⇒: There is an oracle Turing machine, and hence state machine, which
simulates Φ. �

Idea. State machines make certain properties of the functional explicit.
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So how do we extract algorithms from proofs?

Textbook Proof //

��

Abstract State Machine

Formal Proof // Formal Program

OO

We have several options:

• Write down an algorithm directly (works well for easy proofs or clever
people).

• Convert a formally extracted program into a suitable ASM (might still
be difficult to understand).

• Develop some operations on algorithms which reflect key
mathematical lemmas, which allow us to convert simple machines
into more complicated ones.



So how do we extract algorithms from proofs?

Textbook Proof //

��

Abstract State Machine

Formal Proof // Formal Program

OO

We have several options:

• Write down an algorithm directly (works well for easy proofs or clever
people).

• Convert a formally extracted program into a suitable ASM (might still
be difficult to understand).

• Develop some operations on algorithms which reflect key
mathematical lemmas, which allow us to convert simple machines
into more complicated ones.



So how do we extract algorithms from proofs?

Textbook Proof //

��

Abstract State Machine

Formal Proof // Formal Program

OO

We have several options:

• Write down an algorithm directly (works well for easy proofs or clever
people).

• Convert a formally extracted program into a suitable ASM (might still
be difficult to understand).

• Develop some operations on algorithms which reflect key
mathematical lemmas, which allow us to convert simple machines
into more complicated ones.



So how do we extract algorithms from proofs?

Textbook Proof //

��

Abstract State Machine

Formal Proof // Formal Program

OO

We have several options:

• Write down an algorithm directly (works well for easy proofs or clever
people).

• Convert a formally extracted program into a suitable ASM (might still
be difficult to understand).

• Develop some operations on algorithms which reflect key
mathematical lemmas, which allow us to convert simple machines
into more complicated ones.



A machine based interpretation of dependent choice

Suppose we have a machine (S,B) with S ⊆ C×X∗ ×X× Y� which computes

∀a ∈ X∗∃x ∈ X∀y ∈ Y P(a, x, y).

We want to convert this to a machine (S?,I) which computes

∃fN→X
∀n, yP(f̄ n, f (n), y).

States S? have the form

( σ︸︷︷︸
control

, a | b︸︷︷︸
query

, n, y︸︷︷︸
answers

) ⊆ C∗ × (X∗ × X∗�) × (N� × Y�)

- The main object being computed is a pair of finite sequences a | b which
represent the choice sequence a :: b :: 0, 0, . . .. We view b as the current
‘completion’ of a.

- We now have two oracles, which take the approximation a | b and return
the desired length and depth respectively, which eventually need to be
satisfied by our approximation.
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You don’t need to understand this!

If (c, a, x,�) a query state then

- (σ :: c, a :: x | �,�,�) I (σ :: c, a :: x | �, n,�) check length

- If n < |a| then (σ :: c, a :: x | �, n,�) I (σ :: c, a :: x | [], n,�) length good

- If n ≥ |a| then (σ :: c, a :: x | �, n,�) I (σ :: c :: c0, a :: x :: x0 | �,�,�)
length bad

- (σ :: c, a :: x | [], n,�) I (σ :: c, a :: x | [], n, y) check depth

If (c, a, x, y) B (c′, a, x′, y/�) then

- (σ :: c, a :: x | b, n, y) I (σ :: c′, a :: x′ | b/�, n/�, y/�) compute element

If (c, a, x, y) an end state then

- (σ :: c, a :: x | b, n, y) I (σ, a | x :: b, n, y) element computed
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The following are quite easy to prove

Theorem (Rough statement)
We have

([], [] | �,�,�) I∗ ([], [] | b, n, y)

with
• n < |b|;
• ∀m < |b| P(b̄m, b(m), y).

Corollary
The machine (S?,I) with start state ([], [] | �,�,�) computes

∃f∀n, y P(f̄ n, f (n), y).
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A real example

Theorem
Let R be a commutative ring with 0 , 1. Suppose that r lies in the intersection of all
prime ideals of R. Then r is nilpotent i.e. ∃e > 0(re = 0).

Proof.
Suppose that r is not nilpotent. Define

Σ := {I ⊂ R | I is an ideal satisfying ∀e > 0(re < I)}.

Then {0} ∈ Σ (by our assumption), and Σ is chain-complete w.r.t. inclusion,
so by Zorn’s lemma it has a maximal element M.

We show that M is prime: If m, n < M then M + (m) and M + (n) are proper
extensions of M, so by maximality there exist e1, e2 > 0 such that
re1 ∈ M + (m) and re2 ∈ M + (n). Therefore
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A state machine which computes maximal ideals

For countable commutative rings R := {rn : n ∈N} (with w.l.o.g. r0 = 0),
this proof can be formalised using DC via a standard trick in reverse math.

There is a corresponding state machine:

(σ, a | b︸︷︷︸
maximal M ∈ Σ

, n, 〈[y1, . . . , yk, y], e〉︸                ︷︷                ︸
m1y1+...+mkyk+rny=re

) with a(i) = 〈 χ(i)︸︷︷︸
B

, ~y(i)︸︷︷︸
R∗

, e(i)︸︷︷︸
N>0

〉

• Either χ(i) = 1 and ri ∈ M, or χ(i) = 0 and ri < M, in which case
〈~y(i), e(i)〉 act as evidence for the exclusion of ri i.e.

m1y(i)1 + . . . + mky(i)k + riy(i) = re(i)

• Oracle queries provide evidence that for a given M encoded by a | b, we
have

r ∈ M ∨ M not a prime ideal

which is converted into evidence for excluding rn for some n ∈N.



A state machine which computes maximal ideals

For countable commutative rings R := {rn : n ∈N} (with w.l.o.g. r0 = 0),
this proof can be formalised using DC via a standard trick in reverse math.

There is a corresponding state machine:

(σ, a | b︸︷︷︸
maximal M ∈ Σ

, n, 〈[y1, . . . , yk, y], e〉︸                ︷︷                ︸
m1y1+...+mkyk+rny=re

) with a(i) = 〈 χ(i)︸︷︷︸
B

, ~y(i)︸︷︷︸
R∗

, e(i)︸︷︷︸
N>0

〉

• Either χ(i) = 1 and ri ∈ M, or χ(i) = 0 and ri < M, in which case
〈~y(i), e(i)〉 act as evidence for the exclusion of ri i.e.

m1y(i)1 + . . . + mky(i)k + riy(i) = re(i)

• Oracle queries provide evidence that for a given M encoded by a | b, we
have

r ∈ M ∨ M not a prime ideal

which is converted into evidence for excluding rn for some n ∈N.



A state machine which computes maximal ideals

For countable commutative rings R := {rn : n ∈N} (with w.l.o.g. r0 = 0),
this proof can be formalised using DC via a standard trick in reverse math.

There is a corresponding state machine:

(σ, a | b︸︷︷︸
maximal M ∈ Σ

, n, 〈[y1, . . . , yk, y], e〉︸                ︷︷                ︸
m1y1+...+mkyk+rny=re

) with a(i) = 〈 χ(i)︸︷︷︸
B

, ~y(i)︸︷︷︸
R∗

, e(i)︸︷︷︸
N>0

〉

• Either χ(i) = 1 and ri ∈ M, or χ(i) = 0 and ri < M, in which case
〈~y(i), e(i)〉 act as evidence for the exclusion of ri i.e.

m1y(i)1 + . . . + mky(i)k + riy(i) = re(i)

• Oracle queries provide evidence that for a given M encoded by a | b, we
have

r ∈ M ∨ M not a prime ideal

which is converted into evidence for excluding rn for some n ∈N.



A state machine which computes maximal ideals

For countable commutative rings R := {rn : n ∈N} (with w.l.o.g. r0 = 0),
this proof can be formalised using DC via a standard trick in reverse math.

There is a corresponding state machine:

(σ, a | b︸︷︷︸
maximal M ∈ Σ

, n, 〈[y1, . . . , yk, y], e〉︸                ︷︷                ︸
m1y1+...+mkyk+rny=re

) with a(i) = 〈 χ(i)︸︷︷︸
B

, ~y(i)︸︷︷︸
R∗

, e(i)︸︷︷︸
N>0

〉

• Either χ(i) = 1 and ri ∈ M, or χ(i) = 0 and ri < M, in which case
〈~y(i), e(i)〉 act as evidence for the exclusion of ri i.e.

m1y(i)1 + . . . + mky(i)k + riy(i) = re(i)

• Oracle queries provide evidence that for a given M encoded by a | b, we
have

r ∈ M ∨ M not a prime ideal

which is converted into evidence for excluding rn for some n ∈N.



A constructive proof

Theorem

([], [] | �︸︷︷︸
M:=R

,�,�) I∗ ([], [] | b︸︷︷︸
M⊂R

, n, 〈[y1, . . . , yk, y], e〉)

where r0 = 0 < M. In other words, b(0) = 〈0, [y0], e(0)〉with e(0) > 0 and

re(0) = r0y0 = 0.

- Classical. There exists a maximal element M ∈ Σ, hence re = 0 for some
e > 0 by contradiction.

- Computational. There exists a machine with which, relative to an oracle
witnessing that r ∈ P for all prime ideals P, builds an approximation to a
maximal M ∈ Σ by starting with R and gradually excluding elements:

R = M0 ⊃ M1 ⊃ M2 ⊃ . . . ⊃ Mk = ‘maximal’

Eventually 0 is excluded, hence we have found some e > 0 with re = 0.
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We can even generate a diagram of the control flow

Input machineM for single elements:

I // Y //
$$

N // E

Output machineM? for whole set:

��
I

��

Y //
##

N

��

E

OO

I :: I

��

I :: Y //
  

I :: N

��

I :: E

OO

N :: I

��

N :: Y //
  

N :: N

��

N :: E

OO
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Open questions

This is work in progress with plenty of open questions. In particular:

• Can we improve traditional techniques by understanding how they act
as algorithms?

• Large scale: Can we better understand computational content of
complicated non-constructive proofs in e.g. WQO theory?

• Small scale: Can we automatically extract machines which implement
e.g. sorting algorithms from proofs?

• We focused on the n.c.i. interpretation. What about the full functional
interpretations i.e. oracle machines in all finite types? What would be
a suitable computational model for types > 2.

• Can we give a formal geometric characterisation of what’s going on via
some kind of graphs?

Thank you!
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