Ideal objects and abstract machines

Thomas Powell

Technische Universitit Darmstadt

WORKSHOP: PROOFS AND COMPUTATION
PART OF THE TRIMESTER: TYPES, SETS AND CONSTRUCTIONS

Hausdorff Research Institute for Mathematics, Bonn
5 July 2018

Outline

1. The problem.
2. A brief sketch of some ideas from the last few months.

3. Open problems

Outline

1. The problem.
2. A brief sketch of some ideas from the last few months.

3. Open problems (which include the original problem).

Motivation

Lots of people study
PROOFS — PROGRAMS

There are many well known techniques for extracting programs from
proofs e.g.

« Epsilon calculus & substitution method
- Functional intepretation

« Many variants of realizability

Motivation

Lots of people study
PROOFS — PROGRAMS

There are many well known techniques for extracting programs from
proofs e.g.

« Epsilon calculus & substitution method
- Functional intepretation
« Many variants of realizability

On a small scale, these tools gives us a clear insight into the computational
meaning of proofs.

On alarge scale, they produce programs which are usually incomprehensible.

What is the issue?

Textbook Proof Algorithm?
A

Formal Proof | —— ’ Formal Program ‘

What is the issue?

Textbook Proof Algorithm?
A

Formal Proof | —— ’ Formal Program ‘

Why do we care?

What is the issue?

Textbook Proof Algorithm?
A

Formal Proof | —— ’ Formal Program ‘

Why do we care?

« The programs from proofs paradigm should also work on a high level.

What is the issue?

Textbook Proof Algorithm?
A

Formal Proof | —— ’ Formal Program ‘

Why do we care?

« The programs from proofs paradigm should also work on a high level.

- For certain applications, it would be good know how formally
extracted programs behave.

What is the issue?

Textbook Proof Algorithm?
A

Formal Proof | —— ’ Formal Program ‘

Why do we care?

« The programs from proofs paradigm should also work on a high level.
- For certain applications, it would be good know how formally
extracted programs behave.

« Trying to connect proof theoretic techniques with ideas from the
theory of algorithms e.g.
e automata
- flowcharts
- state machines

could lead to new ideas.

One attempt

Idea behind T.P. A functional interpretation with state (LICS 18):

Textbook Proof ’ Algorithm encoded in state ‘

| |

’ Enriched Formal Proof ‘ — ’ Formal Program with Global State ‘

One attempt

Idea behind T.P. A functional interpretation with state (LICS 18):

Textbook Proof ’ Algorithm encoded in state ‘

| |

’ Enriched Formal Proof ‘ — ’ Formal Program with Global State ‘

Some downsides:
« Translation quite complicated
- Still need to fully formalise proof

- State only captures some aspects of underlying algorithm

One attempt

Idea behind T.P. A functional interpretation with state (LICS 18):

Textbook Proof ’ Algorithm encoded in state ‘

| |

’ Enriched Formal Proof ‘ — ’ Formal Program with Global State ‘

Some downsides:

« Translation quite complicated
- Still need to fully formalise proof

- State only captures some aspects of underlying algorithm

N. B. There are some upsides too, which I will present next week!

Another direction

Textbook Proof | ————| Algorithm

3 |

Formal Proof | —— ’ Formal Program ‘

Another direction

Textbook Proof | ————| Algorithm

3 |

Formal Proof | —— ’ Formal Program ‘

Key idea:
« Use formal proof theoretic techniques as tools...
+ ... to be combined with human intuition.

« Program extraction should mimic the style of ordinary mathematics.

Another direction

Textbook Proof | ————| Algorithm

3 |

Formal Proof | —— ’ Formal Program ‘

Key idea:

« Use formal proof theoretic techniques as tools...
« ... to be combined with human intuition.

« Program extraction should mimic the style of ordinary mathematics.

Key question: What is an algorithm?

What is an algorithm?

’ Description with Pen & Paper

Abstract State Machine

Formal calculus (e.g. System T)

State machines

At its simplest, a state machine consists of

- Aset S of states
- Atransition velationt> C S X S.

A computation is a sequence so I> §; > ... I> §,_1.

State machines

At its simplest, a state machine consists of

- Aset S of states
- Atransition velationt> C S X S.

A computation is a sequence so I> §; > ... I> §,_1.

- State machines are very good at describing how programs work.

- Our choice of state machine will depend on what we are trying to
describe, and on which level of abstraction.

A state machine for I'l; formulas

States encode the following structure:

(control, input, oracle query, oracle answer) € C X A X X X (Y + {O0})

A state machine for I'l; formulas

States encode the following structure:
(control, input, oracle query, oracle answer) € C X A X X X (Y + {O0})

Among the states we identify
« Initial states (co, a, %o, O);
- Query states (¢, a,x,0) with ¢ € C’;
- End states (c,a,x,y) with c € C'.

A state machine for I'l; formulas

States encode the following structure:
(control, input, oracle query, oracle answer) € C X A X X X (Y + {O0})

Among the states we identify
« Initial states (co, a, %o, O);
- Query states (¢, a,x,0) with ¢ € C’;
- End states (c,a,x,y) with c € C'.

Our transition relation comprises
- Normal transitions (c, a,x,y) > (¢, a,x,y/0);

« Oracle transitions (c, 4, x, O) &> (¢, a, X, y).

The no-counterexample interpretation

A state machine computes a I'T; formula Ya € Adx € XVy € YP(a, x,) if
(CO/ a, Xo, D) > (C € C!/ a, x/y) Wlth P(ll, x/y)

for any input a and any oracle.

The no-counterexample interpretation

A state machine computes a I'T; formula Ya € Adx € XVy € YP(a, x,) if
(CO/ a, Xo, D) > (C € C!/ a, x/y) Wlth P(ul x/y)

for any input a and any oracle.

Theorem (Rough statement)

There is a computable functional witnessing the n.c.i. of A := Ya3xVyP(a, x,) iff
there is a state machine which computes A.

The no-counterexample interpretation

A state machine computes a I'T; formula Ya € Adx € XVy € YP(a, x,) if
(CO/ a, Xo, D) > (C € C!/ a, x/y) Wlth P(ul x/y)

for any input a and any oracle.

Theorem (Rough statement)

There is a computable functional witnessing the n.c.i. of A := Ya3xVyP(a, x,) iff
there is a state machine which computes A.

Proof.
&: Define ®(a, f) := x where

(CO/ a,Xo, D) [>* (Cl a, x/y)

is a computation on oracle f (there are a few additional details).

=: There is an oracle Turing machine, and hence state machine, which
simulates . O

The no-counterexample interpretation

A state machine computes a I'T; formula Ya € Adx € XVy € YP(a, x,) if
(CO/ a, Xo, D) > (C € C!/ a, x/y) Wlth P(ul x/y)

for any input a and any oracle.

Theorem (Rough statement)

There is a computable functional witnessing the n.c.i. of A := Ya3xVyP(a, x,) iff
there is a state machine which computes A.

Proof.
&: Define ®(a, f) := x where

(CO/ a,Xo, D) [>* (Cl a, x/y)

is a computation on oracle f (there are a few additional details).

=: There is an oracle Turing machine, and hence state machine, which
simulates . O

Idea. State machines make certain properties of the functional explicit.

So how do we extract algorithms from proofs?

’ Textbook Proof ‘ ’ Abstract State Machine ‘

| |

Formal Proof | —— ’ Formal Program ‘

So how do we extract algorithms from proofs?

’ Textbook Proof ‘ ’ Abstract State Machine ‘

| |

Formal Proof | —— ’ Formal Program ‘

We have several options:

+ Write down an algorithm directly (works well for easy proofs or clever
people).

So how do we extract algorithms from proofs?

’ Textbook Proof ‘ ’ Abstract State Machine ‘

| |

Formal Proof | —— ’ Formal Program ‘

We have several options:

+ Write down an algorithm directly (works well for easy proofs or clever
people).

« Convert a formally extracted program into a suitable ASM (might still
be difficult to understand).

So how do we extract algorithms from proofs?

’ Textbook Proof ‘ ’ Abstract State Machine ‘

| |

Formal Proof | —— ’ Formal Program ‘

We have several options:

+ Write down an algorithm directly (works well for easy proofs or clever
people).

« Convert a formally extracted program into a suitable ASM (might still
be difficult to understand).

- Develop some operations on algorithms which reflect key
mathematical lemmas, which allow us to convert simple machines
into more complicated ones.

A machine based interpretation of dependent choice

Suppose we have a machine (S, >) with S C C X X* X X X Y5 which computes

Va e X*dx € XVy € Y P(a,x,).

We want to convert this to a machine (S*, ») which computes

N, yP(fn, £ (), y).

A machine based interpretation of dependent choice

Suppose we have a machine (S, >) with S € C X X* X X X Y5 which computes

Va e X*dx € XVy € Y P(a,x,).

We want to convert this to a machine (S*, ») which computes
ANTXYn, yP(Fn, f(n),).

States S* have the form

(o ,alb, ny)CC XX xX;)X(INgXYpg)
S~ ——— ——
control query answers

A machine based interpretation of dependent choice

Suppose we have a machine (S, >) with S € C X X* X X X Y5 which computes

Va e X*dx € XVy € Y P(a,x,).

We want to convert this to a machine (S*, ») which computes
ANTXYn, yP(Fn, f(n),).
States S* have the form

(o ,alb, ny)CC XX xX;)X(INgXYpg)
S~ ——— ——
control query answers

- The main object being computed is a pair of finite sequences a | b which
represent the choice sequencea :: b :: 0,0, We view b as the current
‘completion’ of a.

A machine based interpretation of dependent choice

Suppose we have a machine (S, >) with S € C X X* X X X Y5 which computes

Va e X*dx € XVy € Y P(a,x,).

We want to convert this to a machine (S*, ») which computes
ANTXYn, yP(Fn, f(n),).
States S* have the form

(o ,alb, ny)CC XX xX;)X(INgXYpg)
S~ ——— ——
control query answers

- The main object being computed is a pair of finite sequences a | b which
represent the choice sequencea :: b :: 0,0, We view b as the current
‘completion’ of a.

- We now have two oracles, which take the approximation a | b and return
the desired length and depth respectively, which eventually need to be
satisfied by our approximation.

You don’t need to understand this!

If (¢, a, x,0) a query state then

You don’t need to understand this!

If (¢, a, x,0) a query state then

-(oucazx|O,00) » (0:cazx|On0)| check length

You don’t need to understand this!

If (¢, a, x,0) a query state then

-(oucazx|O,00) » (0:cazx|On0)| check length
-Ifn <lalthen (0 ::c,a x| O,n,0)» (0::¢a:x]|[],n0)|length good

You don’t need to understand this!

If (¢, a, x,0) a query state then

-(oucazx|O,00) » (0:cazx|On0)| check length
-Ifn <lalthen (0 ::c,a x| O,n,0)» (0::¢a:x]|[],n0)|length good

-Ifn>|althen(o::¢cax|O,n0)» (0:cico,aix::x | 0,00)

You don’t need to understand this!

If (¢, a, x,0) a query state then

-(oucazx|O,00) » (0:cazx|On0)| check length
-Ifn <lalthen (0 ::c,a x| O,n,0)» (0::¢a:x]|[],n0)|length good

-Ifn>|althen(o::¢cax|O,n0)» (0:cico,aix::x | 0,00)

length bad
-(oucazx|[],nO)» (0:ca:xx]|[],ny)| checkdepth

You don’t need to understand this!

If (¢, a, x,0) a query state then

-(oucazx|O,00) » (0:cazx|On0)| check length
-Ifn <lalthen (0 ::c,a x| O,n,0)» (0::¢a:x]|[],n0)|length good

-Ifn>|althen(o::¢cax|O,n0)» (0:cico,aix::x | 0,00)

length bad
-(oucazx|[],nO)» (0:ca:xx]|[],ny)| checkdepth

If (c,a,x,y) > (¢, a,x',y/0) then

You don’t need to understand this!

If (¢, a, x,0) a query state then

-(oucazx|O,00) » (0:cazx|On0)| check length
-Ifn <lalthen (0 ::c,a x| O,n,0)» (0::¢a:x]|[],n0)|length good

-Ifn>|althen(o::¢cax|O,n0)» (0:cico,aix::x | 0,00)

length bad
-(oucazx|[],nO)» (0:ca:xx]|[],ny)| checkdepth

If (c,a,x,y) > (¢, a,x',y/0) then

-(cucazx|bny)»(cud,anx| b/l:l,n/l:l,y/l])’ compute element

You don’t need to understand this!

If (¢, a, x,0) a query state then

-(oucazx|O,00) » (0:cazx|On0)| check length
-Ifn <lalthen (0 ::c,a x| O,n,0)» (0::¢a:x]|[],n0)|length good

-Ifn>|althen(o::¢cax|O,n0)» (0:cico,aix::x | 0,00)

length bad
-(oucazx|[],nO)» (0:ca:xx]|[],ny)| checkdepth

If (c,a,x,y) > (¢, a,x',y/0) then

-(cucazx|bny)»(cud,anx| b/l:l,n/l:l,y/l])’ compute element

If (c, a,x,y) an end state then

You don’t need to understand this!

If (¢, a, x,0) a query state then

-(oucazx|O,00) » (0:cazx|On0)| check length
-Ifn <lalthen (0 ::c,a x| O,n,0)» (0::¢a:x]|[],n0)|length good

-Ifn>|althen(o::¢cax|O,n0)» (0:cico,aix::x | 0,00)

length bad
-(oucazx|[],nO)» (0:ca:xx]|[],ny)| checkdepth

If (c,a,x,y) > (¢, a,x',y/0) then

-(cucazx|bny)»(cud,anx| b/l:l,n/l:l,y/l])’ compute element

If (c, a,x,y) an end state then

-(cucazx|bmny)»(o,alx:b, n,y)’ element computed ‘

The following are quite easy to prove

Theorem (Rough statement)
We have
(LI1o,go» {L01bny)
with
« n<|bf;
« ¥m < [b| P(bm, b(m),).

The following are quite easy to prove

Theorem (Rough statement)
We have
(LI1o,go» {L01bny)
with
« n<|bf;
« ¥m < [b| P(bm, b(m),).

Corollary
The machine (S*, ») with start state ([1, [] | O, 0, O) computes

I Vn,y P(fn,f(n),).

A real example

Theorem
Let R be a commutative ring with O # 1. Suppose that r lies in the intersection of all
prime ideals of R. Then v is nilpotent i.e. Je > O(r* = 0).

A real example

Theorem
Let R be a commutative ring with O # 1. Suppose that r lies in the intersection of all
prime ideals of R. Then v is nilpotent i.e. de > O(r* = 0).

Proof.

Suppose that r is not nilpotent. Define
Y :={I C R|Iisanideal satisfying Ve > O(r* ¢ I)}.

Then {0} € Z (by our assumption), and X is chain-complete w.r.t. inclusion,
so by Zorn’s lemma it has a maximal element M.

A real example

Theorem
Let R be a commutative ring with O # 1. Suppose that r lies in the intersection of all
prime ideals of R. Then v is nilpotent i.e. de > O(r* = 0).

Proof.
Suppose that r is not nilpotent. Define
Y :={I C R|Iisanideal satisfying Ve > O(r* ¢ I)}.
Then {0} € Z (by our assumption), and X is chain-complete w.r.t. inclusion,
so by Zorn’s lemma it has a maximal element M.

We show that M is prime: If m, n ¢ M then M + (m) and M + (n) are proper
extensions of M, so by maximality there exist e;, e, > 0 such that
r1 € M+ (m) and r> € M + (n). Therefore

¥t € M + (mn)

and so M + (mn) ¢ X, which means that mn ¢ M. Since ! ¢ M, r cannot lie
in the intersection of all prime ideals. O

A state machine which computes maximal ideals

For countable commutative rings R := {r,, : n € IN} (withw.Lo.g. v, = 0),
this proof can be formalised using DC via a standard trick in reverse math.

A state machine which computes maximal ideals

For countable commutative rings R := {r,, : n € IN} (withw.Lo.g. v, = 0),
this proof can be formalised using DC via a standard trick in reverse math.

There is a corresponding state machine:

(0, alb ,nl ... yeyle)witha() = x() , J0) , e@))
N—— —— —— ~——
maximalM € & myi+..+mp+r,y=r° B R* Nso

A state machine which computes maximal ideals

For countable commutative rings R := {r,, : n € IN} (withw.Lo.g. v, = 0),
this proof can be formalised using DC via a standard trick in reverse math.

There is a corresponding state machine:

(0, alb ,nl ... yeyle)witha() = x() , J0) , e@))
N—— —— —— ~——
maximalM € & myi+..+mp+r,y=r° B R* Nso

« Either x(i) =1andr; € M, or x(i) = Oand »; ¢ M, in which case
(i), e(i)) act as evidence for the exclusion of 7; i.e.

my(i); + ...+ mpy@) + ry() = 0

A state machine which computes maximal ideals
For countable commutative rings R := {r,, : n € IN} (withw.Lo.g. v, = 0),
this proof can be formalised using DC via a standard trick in reverse math.

There is a corresponding state machine:

(0, alb ,nl ... yeyle)witha() = x() , J0) , e@))

N—— —— —— ~——
maximalM € & myi+..+mp+r,y=r° B R* Nso

« Either x(i) =1andr; € M, or x(i) = Oand »; ¢ M, in which case
(i), e(i)) act as evidence for the exclusion of 7; i.e.

my(i); + ...+ mpy@) + ry() = 0

« Oracle queries provide evidence that for a given M encoded by a | b, we

have
r€ MV Mnota prime ideal

which is converted into evidence for excluding , for some n € IN.

A constructive proof

Theorem

([]/ [] | 0,0, D) > ([]/ [] | b ,n,<[)’1/~ .,yk,y],e))
—_——

——
M:=R MCR

wherero = 0 ¢ M. In other words, b(0) = (O, [yo], e(0)) with e(0) > 0 and

Ve(o) = Voyo =0.

A constructive proof

Theorem

([]/ [] | 0,0, D) > ([]/ [] | b ,n,<[)’1/~ .,yk,y],e))
—_——

——
M:=R MCR

wherero = 0 ¢ M. In other words, b(0) = (O, [yo], e(0)) with e(0) > 0 and

Ve(o) = Voyo =0.

- Classical. There exists a maximal element M € ¥, hence r¢ = O for some
e > 0 by contradiction.

A constructive proof

Theorem

(L Olg,oo» L 01b,n30yl e)
——

——
M:=R MCR

wherero = 0 ¢ M. In other words, b(0) = (O, [yo], e(0)) with e(0) > 0 and

Ve(o) = Toyo =0.

- Classical. There exists a maximal element M € ¥, hence r¢ = O for some
e > 0 by contradiction.

- Computational. There exists a machine with which, relative to an oracle
witnessing that v € P for all prime ideals P, builds an approximation to a
maximal M € X by starting with R and gradually excluding elements:

R=MoDM; DM, D...D M, = ‘maximal’

Eventually 0 is excluded, hence we have found some ¢ > O with 7 = 0.

We can even generate a diagram of the control flow

Input machine M for single elements:

@ - @

We can even generate a diagram of the control flow

Input machine M for single elements:

@ - @

Output machine M* for whole set:

) (— C
O O— O O O—

Open questions

This is work in progress with plenty of open questions. In particular:

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act
as algorithms?

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act
as algorithms?

« Large scale: Can we better understand computational content of
complicated non-constructive proofs in e.g. WQO theory?

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act
as algorithms?

« Large scale: Can we better understand computational content of
complicated non-constructive proofs in e.g. WQO theory?

- Small scale: Can we automatically extract machines which implement
e.g. sorting algorithms from proofs?

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act
as algorithms?

« Large scale: Can we better understand computational content of
complicated non-constructive proofs in e.g. WQO theory?

- Small scale: Can we automatically extract machines which implement
e.g. sorting algorithms from proofs?

« We focused on the n.c.i. interpretation. What about the full functional
interpretations i.e. oracle machines in all finite types? What would be
a suitable computational model for types > 2.

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act
as algorithms?

« Large scale: Can we better understand computational content of
complicated non-constructive proofs in e.g. WQO theory?

- Small scale: Can we automatically extract machines which implement
e.g. sorting algorithms from proofs?

« We focused on the n.c.i. interpretation. What about the full functional
interpretations i.e. oracle machines in all finite types? What would be
a suitable computational model for types > 2.

- Can we give a formal geometric characterisation of what’s going on via
some kind of graphs?

Open questions

This is work in progress with plenty of open questions. In particular:

- Can we improve traditional techniques by understanding how they act
as algorithms?

« Large scale: Can we better understand computational content of
complicated non-constructive proofs in e.g. WQO theory?

- Small scale: Can we automatically extract machines which implement
e.g. sorting algorithms from proofs?

« We focused on the n.c.i. interpretation. What about the full functional
interpretations i.e. oracle machines in all finite types? What would be
a suitable computational model for types > 2.

- Can we give a formal geometric characterisation of what’s going on via
some kind of graphs?

THANK YOU!

