
Functional interpretations with imperative features

Thomas Powell

Technische Universität Darmstadt

Workshop on Mathematical Logic: Proof Theory,
Constructive Mathematics

Mathematisches Forschungsinstitut Oberwolfach

6 November 2017

Thomas Powell (TU Darmstadt) 6 November 2017 1 / 24

Proof interpretations allow us to give a computational interpretation to
mathematical statements.

If T ` A then S ` ∀xAI(x, tx), where:

AI(x, y) is computationally neutral;

A↔ ∀x∃yAI(x, y);

t is a term of S formally extracted from the proof of A.

The world of proof interpretations includes:

Foundational problems: Con(S)⇒ Con(T).

Proof mining: New quantitative results in numerical analysis, ergodic
theory, convex optimization...

Semantics: New categorical models of linear logic, semantics of classical
logic.

Formal program extraction: Implementation of proof interpretations in
Minlog, Agda...

Thomas Powell (TU Darmstadt) 6 November 2017 2 / 24

Can we use proof interpretations to synthesise verified programs?

Applications of this kind have been less successful, and come with a set of
problems which are less prominent in other areas:

- Algorithmic structure In many cases we still don’t really understand how
programs extracted from proofs ‘work’ i.e. what their algorithmic content is.

- Language Extracted programs are typically expressed as terms in some
abstract lambda calculus, which is quite different from the style in which
‘normal’ programs are written.

- Usefulness Why would a programmer use the functional interpretation to
extract a list reversal program? Proof interpretations are typically powerful
when applied to complex proofs whose computational meaning is not obvious...

Thomas Powell (TU Darmstadt) 6 November 2017 3 / 24

A more concrete illustration of the problem...

Theorem (Higman): For any well quasi-order (X,≤), the set of words
(X∗,≤∗) under the embeddability relation is a well quasi-order.

Proof: Infinite Ramsey’s theorem + Least element principle + dependent
choice / Zorn’s lemma (in the form of open induction).

(P. 2012): The construction of a functional Φ in System T + bar recursion
such that for any sequence of words u,

Φ0u < Φ1u ∧ uΦ0u ≤∗ uΦ1u.

I still don’t really understand how this term works...

Thomas Powell (TU Darmstadt) 6 November 2017 4 / 24

One of my current interests is to understand Gödel’s functional interpretation
of strong classical theories, using concepts from imperative programming such
as

global state;

monadic transformations;

control flow statements;

Hoare logic.

Why?

1. Applications of proof theory in computer science should make use of
programming paradigms which are used in practice.

2. The above concepts provide us with a natural means of understanding the
functional interpretation of non-trivial classical principles.

Thomas Powell (TU Darmstadt) 6 November 2017 5 / 24

A outline of the talk:

First, I will sketch a very small idea:

A functional interpretation with global state.

Possibly this already exists (at least implicitly) somewhere else...

Second, I want to present some more difficult open questions.

Warning: None of this is published!

Thomas Powell (TU Darmstadt) 6 November 2017 6 / 24

What is the computational meaning of the so-called Drinkers paradox?

∃x(P (x)→ ∀yP (y)) P quantifier-free

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle.

However, over classical logic and quantifier free choice we have the following
series of equivalences:

∃x(P (x)→ ∀yP (y)) ⇔ ∃x∀y(P (x)→ P (y))

⇔ ¬∀x∃y¬(P (x)→ P (y))

⇔ ¬∃f∀x¬(P (x)→ P (fx))

⇔ ∀f∃x(P (x)→ P (fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks,
then all people y drink.

Effective reformulation: For any function f there exists an approximate
drinker x such that if x drinks, then person fx drinks.

Thomas Powell (TU Darmstadt) 6 November 2017 7 / 24

Gödel’s functional interpretation (of classical logic) is a systematic way of
doing this:

A 7→ ∀z∃xAI(z, x)

In our example,

A :≡ ∃x(P (x)→ ∀yP (y))

AI(f, x) :≡ P (x)→ P (fx).

Theorem (Gödel 1958):

If PA ` A then System T ` ∀zAI(z, tz)

where t is a term of System T formally extracted from the proof of A.

In our example, we want a term t satisfying

AI(f, tf) ≡ P (tf)→ P (f(tf)) for all f .

Thomas Powell (TU Darmstadt) 6 November 2017 8 / 24

GOAL:

P (tf)→ P (f(tf))

Define tf := case(P (f0), 0, f0).

If P (f0) is true:

tf = case(P (f0), 0, f0)→ 0

and(P (0︸︷︷︸
tf

)→ P (f(0︸︷︷︸
tf

)) X

If P (f0) is false:

tf = case(P (f0), 0, f0)→ f0

and(P (f0︸︷︷︸
tf

)→ P (f(f0︸︷︷︸
tf

)) X

Thomas Powell (TU Darmstadt) 6 November 2017 9 / 24

Case distinctions are a fundamental feature of programs extracted using the
functional interpretation. Formally, they are required to interpret contraction

A ∧A→ B

A→ B

Therefore in practice, if A is a mathematical theorem, then a program t
satisfying ∀zA∗(z, tz) will a complex term with numerous case distinctions,
representing each instance of contraction in the formal proof.

Why do we care about this?

One can think of case distinctions as being

‘interactions with the mathematical environment’

which give us a high-level description of how our extracted program behaves.

Thomas Powell (TU Darmstadt) 6 November 2017 10 / 24

Suppose that we extend our lambda calculus with a new type S, which
represents a global state.

For our purposes, this global state contains knowledge about our
‘environment’, and is something that we define. For example:

Mathematical Context Elements of state

A finite list s si ≤ sj
A sequence (xn)n∈N of rationals in [0, 1] xn ∈ [p, q]

A first order logic P (x1, . . . , xn)

Objects π ∈ S are finite list of elements or their negations e.g.

π = [(a1 ≤ a2),¬(a3 ≤ a5), (a1 ≤ a4)]

Thomas Powell (TU Darmstadt) 6 November 2017 11 / 24

Previously we had: case(P, s, t)→ s if P true case(P, s, t)→ t if P false

IDEA: Rather than use case distinctions, extracted programs access and
collect information via the global state.

At a given point in time, our global state will be a finite list of ‘accepted’
elements π := [P1, . . . , Pk]. We can interact with the state via the function

[π | askstate(P, s, t)]→

[π | s] if P ∈ π
[π | t] if ¬P ∈ π
[π :: P | s] or [π :: ¬P | t] otherwise

where we leave open for now how the ‘or’ is interpreted. For example:

If elements of the state are decidable, we could simulate case distinction
by choosing whichever of P or ¬P is true.

We could introduce a ‘state function’ σ : State elements→ {0, 1}.
We could choose at random.

Thomas Powell (TU Darmstadt) 6 November 2017 12 / 24

Back to our running example:

P (tf)→ P (f(tf))

Define tf := askstate(P (f0), 0, f0).

P (f0) ∈ π then [π | tf]→ [π | 0] and
∧
π → (P (0)→ P (f0))

¬P (f0) ∈ π then [π | tf]→ [π | f0] and
∧
π → (P (f0)→ P (f(f0)))

Otherwise, either [π | tf]→ [π :: P (f0) | 0] and∧
π ∧ P (f0)→ (P (0)→ P (f0))

or alternatively [π | tf]→ [π :: ¬P (f0) | f0] and∧
π ∧ ¬P (f0)→ (P (f0)→ P (f(f0)))

Thomas Powell (TU Darmstadt) 6 November 2017 13 / 24

So how would this generalise?

Traditional soundness

If T ` A then we can extract a term t : X → Y such that

S ` ∀xAI(x, tx).

New soundness (much simplified...)

If T ` A then we can extract a state sensitive term t : X → S → S × Y such
that

S ` ∀x, π
(∧

t0xπ → AI(x, t1xπ)
)
.

where

π is the input state;

t0xπ is the output state which contains additional information;

λx.t1xπ is our state sensitive realizing function.

Thomas Powell (TU Darmstadt) 6 November 2017 14 / 24

Example: Ramsey’s theorem for pairs

Classical statement: For any colouring c : N× N→ {0, 1}, there exists an
infinite set X ⊆ N that is pairwise monochromatic.

Finitized statement: For any colouring c : N× N→ {0, 1} and functional
ε : P(N)→ B, there exists a finite approximation Xε ⊆ N to a monochromatic
set, which is valid up to the point ε(Xε).

From the classical proof of Ramsey’s theorem, we would extract a program
Xε : S → P(N)× S, which from an initial empty state π0 would result in a
computation

[π0 | ∅]→ [π1 | X1]→ . . .→ [πn | Xn]

where πn → ‘Xn a sufficiently good approximation’. Here,

the Xi are finite subsets of N;

the πi is the current state, which contains atomic formulas of the form
c(m,n) = b (or their negations).

Thomas Powell (TU Darmstadt) 6 November 2017 15 / 24

This is actually a generalisation of the usual functional interpretation: If all
state elements are decidable, we just add true formulas to our state. Then
setting π = [] we have

S ` ∀x
∧
t0x[] and S ` ∀x

(∧
t0x[]→ AI(x, t1x[])

)
and so S ` ∀xAI(x, t1x[]).

On the other hand, for a fixed proof we are able to compute a finite sequence
of witnesses by restricting ourselves to a finite set E of relevant state elements
and considering 2|E| state functions E → {0, 1}, from which we obtain
(assuming S admits some excluded-middle):

S ` ∀x
∨∧

ti0x[] and S ` ∀x
(∧

ti0[]x→ AI(x, ti1[]x)
)

for i = 1, . . . , 2|E|, and therefore S ` ∀x∃y ∈ [t11x[], . . . , t2
|E|

1 x[]]AI(x, y).

In our running example, E = {P (f0)}, t11f [] = 0 and t21f [] = f0 and in
particular

∃x ∈ [0, f0](P (x)→ P (f(x))).

Thomas Powell (TU Darmstadt) 6 November 2017 16 / 24

But unifying functional interpretations is not the main goal here...

The state helps isolate the algorithm underlying the extracted program,
which can then be analysed. For a program on lists, we could choose the
state so that it lists the comparisons si ≤ sj which took place. We might
have f1sπ = g1sπ but

|f0sπ| < |g0sπ|,

and so f would be more efficient than g.

The setting allows us to refine the functional interpretation. We can avoid
repeated case distinctions by first checking whether or not P is in the
domain of π. We can also impose logical relations on the state e.g.

if (si ≤ sj), (sj ≤ sk) ∈ π then infer (si ≤ sk)

By writing extracted programs in a calculus with a state, we move a step
closer to producing programs in the kind of language that programmers
actually use.

Thomas Powell (TU Darmstadt) 6 November 2017 17 / 24

Further thoughts and open questions...

Thomas Powell (TU Darmstadt) 6 November 2017 18 / 24

Everything earlier was greatly simplified - in particular reasoning about a
state at higher types is a bit more complicated...

One well-known way of formalising interactions with a state is via the state
monad:

X 7→ TX := S → S ×X.

For Π2-formulas A :≡ ∀x∃yA0(x, y)

We would normally extract a term t : X → Y satisfying A0(x, tx).

We now extract a term t : X → TY satisfying

∀π
(∧

t0xπ → A0(x, t1xπ)
)

︸ ︷︷ ︸
AT (x,tx)

Thomas Powell (TU Darmstadt) 6 November 2017 19 / 24

More generally, we are applying to a monadic translation to types, given by

[D] := D for base types, and [X → Y] := [X]→ T [Y]

and this results in a corresponding monadic functional interpretation

A 7→ AT (x̄, tx̄)

where now t : [X]→ T [Y], and

AT (x̄[X], ȳ[Y]) represents AI(xX , yY) plus an additional monadic constraint

QUESTION: Is there a clean, abstract presentation of the above?

QUESTION: Are there other, concrete instances of T which are of interest to
us (complexity, perhaps)?

QUESTION: How does this functional interpretation with state compare to

1. Other abstract treatments of functional interpretations (both syntactic
and semantic);

2. Other ‘learning based’ computational interpretations e.g. interactive
realizability of Aschieri-Berardi, epsilon calculus (!)

Thomas Powell (TU Darmstadt) 6 November 2017 20 / 24

QUESTION: Can we extend this simple interpretation with state to a fully
fledged imperative functional interpretation? Is this a more natural language
for expressing the computational content of classical principles?

Logic + Principles ` A⇒ Functional calculus ` AI(x, tx)

where t is naturally expressed as some functional program.

Logic ∼ λ-calculus

Induction ∼ Primitive recursion

Choice ∼ Bar recursion

Over classical logic, one can look at this slightly differently as

Logic ∼ Basic operations

Least element principles ∼Wellfounded loops

Zorn’s lemma ∼ Self-referential loops

This is made more precise in (P. 2016) and (P. 2017).

Thomas Powell (TU Darmstadt) 6 November 2017 21 / 24

QUESTION: Is something like the following possible?

T ` A⇒ Hoare logic ` {P, i := x} C {Q, i := x, j := y,AI(i, j)}

We would need a suitable higher-order variant of Hoare logic, which
would include special while-rules for dealing with non-terminating loops
which replace bar recursion.

Programs would be written in an imperative style, and would return not
just a realizer, but a final state which records interesting information
about how the program was evaluated.

Does not need to replace the usual interpretation - could combine it to
extract programs in a hybrid language with both functional and
imperative features.

Thomas Powell (TU Darmstadt) 6 November 2017 22 / 24

To summarise:

QUESTION: How do extracted programs behave? What algorithm does my
extracted program implement?

This is important for two reasons in particular:

1. When I want to synthesise a simple program (e.g. sorting a list), and want
to formalise a claim that it carries out an efficient algorithm.

2. When I extract a complicated program I want to understand what it does!

Thomas Powell (TU Darmstadt) 6 November 2017 23 / 24

Thank you!

Thomas Powell (TU Darmstadt) 6 November 2017 24 / 24

