
Some applications of monads in proof theory

Thomas Powell

Technische Universität Darmstadt

Oberseminar Mathematische Logik
Ludwig-Maximilians-Universität Munich

12 July 2017

Thomas Powell (TU Darmstadt) 12 July 2017 1 / 36

What is this talk about?

I will present, very informally, two independent projects which both revolve
around the notion of a monad. These are:

1. A denotational complexity semantics for higher type programs.

2. A variant of Gödel’s functional interpretation with state.

I am a proof theorist, so apologies in advance to any

- category theorists

- functional programmers

in the audience.

Thomas Powell (TU Darmstadt) 12 July 2017 2 / 36

What is a monad (in the context of functional programming)?

Imagine that X denotes a type in some lambda calculus or functional
language. A monad (T, η, µ) comprises

- A map T , which to each X associates a new monadic type TX, together
with a lifting of functions f : X → Y to functions Tf : TX → TY between
monadic types.

TX should be viewed as a normal type X enriched with some additional
structure which represents a procedural feature.

- A unit operation ηX : X → TX, which maps any plain x ∈ X to some
‘neutral’ ηX(x) ∈ TX.

- A join operation µX : TTX → TX which combines, or ‘flattens’, two layers
of monadic information.

Thomas Powell (TU Darmstadt) 12 July 2017 3 / 36

Naturally there are a bunch of commuting diagrams, which I won’t draw here.
But a particularly important idea is that an object a ∈ TX can be bound with
a function f : X → TY to produce an object b ∈ TY . This is achieved via a
map

bind : TX → (X → TY)→ TY

which can be defined as

TX
Tf // TTY

µY // TY

What this means is that we can carry out actions in sequence, feeding the
monadic output of each action into the next (often this is referred to as a
‘pipeline’). The composition

X
f // Y

g // Z
h // · · ·

is enriched as

TX
Tf // TTY

µY // TY
Tg // TTZ

µZ // TZ
Th // · · ·

If this all looks a bit mysterious, examples are on the way...

Thomas Powell (TU Darmstadt) 12 July 2017 4 / 36

I. A complexity monad

- TX := N×X, and for f : X → Y we define Tf : N×X → N× Y to be

(n, x) 7→ (n, f(x)).

Objects (n, x) ∈ TX represent a term x ∈ X and a number n which denotes a
‘complexity’ of x.

- The unit ηX : X → N×X is given by

x 7→ (0, x)

i.e. a neutral object has no complexity.

- The join operation µX : N× (N×X)→ N×X is given by

(m, (n, x)) 7→ (m+ n, x)

i.e. the combination of two complexities is their sum.

Thomas Powell (TU Darmstadt) 12 July 2017 5 / 36

How do we bind an object (n, x) ∈ N×X to a function X → N× Y ? The
latter can be visualised as a pair of functions

x 7→ (c(x), f(x))

i.e. that takes some object x and returns a value f(x) together with a
complexity c(x) of f(x).

We bind the pair (n, x) to x 7→ (c(x), f(x)) as follows:

(n, x) 7→ (n, (c(x), f(x))) 7→ (n+ c(x), f(x)).

Thus the binding operation allows us to also takes into account the complexity
of x: We imagine that f(x) is evaluated as follows:

1. evaluate x (complexity = n)

2. apply f to x and evaluate this (complexity = c(x))

So the total complexity of evaluating f(x) is n+ c(x).

Thomas Powell (TU Darmstadt) 12 July 2017 6 / 36

II. The state monad

- TX := S → X × S, and for f : X → Y we define
Tf : (S → X × S)→ S → Y × S to be

a = (a0, a1) 7→ (ρ 7→ (f(a0ρ), a1ρ)).

Objects are functions, which take an initial state and return an output in X
together with a final state.

- The unit ηX : X → S → X × S is given by

x 7→ (ρ 7→ (x, ρ)).

i.e. a neutral object leaves the state unchanged.

- The join operation µX : [S → (S → X × S)× S]→ S → X × S is given by

F 7→ (ρ 7→ (F0ρ)(F1ρ))

i.e. two state functions are combined by feeding one into the other.

Thomas Powell (TU Darmstadt) 12 July 2017 7 / 36

How do we bind an object a : S → X × S to a function f : X → S → Y × S to
obtain an object of type S → Y × S?

The composition of Tf with the join operation µY is given by

a 7→ (ρ 7→ (f(a0ρ), a1ρ)) 7→ (ρ 7→ f(a0ρ)(a1ρ)).

So the binding operation takes the output state of TX and gives it to
X → TY . We imagine the overall computation as follows:

1. take some initial state ρ and feed it into a ∈ TX to obtain a value a0ρ ∈ X
and a new state ρ1 := a1ρ.

2. apply f to a0ρ and feed in the intermediate state ρ1 to obtain a final value
f(a0ρ)(ρ1)0 together with a final state ρ2 := f(a0ρ)(ρ1)1.

Thomas Powell (TU Darmstadt) 12 July 2017 8 / 36

PART 1

A denotational complexity semantics for higher type programs

Thomas Powell (TU Darmstadt) 12 July 2017 9 / 36

This work has been in the pipeline for some time, and grew out of the
following simple question:

What is the complexity of a higher order functional?

Complexity is a vast subject, but surprisingly little of it concerns higher order
objects. In fact, even when studying the complexity of a higher-order
programming language, often the focus is only on type 1 programs and so the
issue of higher-order complexity is circumvented (usually in a rather clever
way).

But there are a number of very interesting semantics of higher-order
programming languages which do provide a definition of complexity for all
finite types. These are typically (implicitly or explicitly) based on the
complexity monad we have just seen.

My interest is in generalising these semantics and setting them in a uniform
framework.

Thomas Powell (TU Darmstadt) 12 July 2017 10 / 36

For simplicity, imagine we are working with a simple call-by-value functional
language. The main ideas could be adapted to other contexts.

Let e : nat be some closed expression such that e→∗ n.

Normally we interpret e as the natural number represented by the numeral n:

JeK = n.

But what if we also want information on the cost of evaluating e? Suppose
that e→k n.

Then we could interpret e as a pair, corresponding to a cost and a value i.e.

[e] = (k, n).

Thomas Powell (TU Darmstadt) 12 July 2017 11 / 36

Now suppose that t : nat→ nat is a closed expression and t→∗ λx.s(x).

Normally we interpret t as a function f : JnatK→ JnatK such that if e→∗ n
and s(n)→∗ m then f(n) = m i.e.

JteK = JtKJeK = f(n) = m.

But what about the complexity of t? Suppose that t→l λx.s(x). Then we
could define [t] = (l, f).

But we also want information about the complexity of s. Suppose that
s(n)→c(n) m. Then we could define

[t] = (l, λn.(1 + c(n), f(n))︸ ︷︷ ︸
‘size’

)

In particular, this definition is compositional i.e. we can compute [te] from [t]
and [e] = (k, n):

[te] = [t] ? [e] = [t] ? (k, n) = (k + l + 1 + c(n), f(n)) = (k + l + 1 + c(n),m).

Thomas Powell (TU Darmstadt) 12 July 2017 12 / 36

What is the complexity of a higher-order functional? Let’s work with a
concrete example map : (nat→ nat)× nat∗ → nat∗ defined by

map(h, [])→ [] map(h, x :: a)→ h(x) :: map(h, a)

The term map is already in normal form, so [map] = (0,). What is the ‘size’
of map?

Suppose map takes as arguments a value v : nat→ nat of size (c, f) and a list
of numerals [a1, . . . , aj]. Then

map(v, [a1, . . . , aj])→
1+j+

∑
i≤j c(ai) [f(a1), . . . f(aj)].

So we could define

[map] = (0, λ(c, f), a.(1 + |a|+
∑

c(ai), [f(a1), . . . , f(an)]))

and we would have [map(t, e)] = [map] ? ([t] , [e]).

Thomas Powell (TU Darmstadt) 12 July 2017 13 / 36

Underlying all of this is the notion of a monadic translation. Define [−] on
types as

[D] := C × JDK︸︷︷︸
s(D)

[X → Y] := C × (s(X)→ [Y]︸ ︷︷ ︸
s(X→Y)

)

For all types we have [X] = C × s(X), the idea being that the C is some
structure which contains intensional information about objects t : X, while
s(X) represents a ‘size’ or potential (at ground types the usual denotation).

In a traditional denotational semantics, we would have (at base types):

Whenever e→∗ n then JeK = n.

Our denotational semantics aims to capture something more, for example:

Whenever e→k n then [e] = (k, n).

Thomas Powell (TU Darmstadt) 12 July 2017 14 / 36

Example I. A strict semantics.

C := {1,⊥}, and [t] is given by

[x] ρ := (1, ρ(x))

[0] ρ := (1, 0)

[s] ρ := (1, λn.(1, n+ 1))

[λx.t] ρ := (1, λa. [t] ρax)

[ts] ρ := (AND([t]0 , [s]0 , ([t]1 [s]1)0), ([t]1 [s]1)1)

[fx] ρ := [r] ρ

for recursive functions fx→ r.

The intensional part captures termination: If e→∗ n then [e] = (1, n) and vice
versa.

Thomas Powell (TU Darmstadt) 12 July 2017 15 / 36

Example IIa. An exact cost semantics.

C := N⊥, and [t] is given by

[x] ρ := (0, ρ(x))

[0] ρ := (0, 0)

[s] ρ := (0, λn.(0, n+ 1))

[λx.t] ρ := (0, λa. [t]+ ρ
a
x)

[ts] ρ := ([t]0 + [s]0 + ([t]1 [s]1)0, ([t]1 [s]1)1)

[fx] ρ := [r]+ ρ

for recursive functions fx→ r.

The intensional part captures cost: If e→k n then [e] = (k, n) and vice versa.

Thomas Powell (TU Darmstadt) 12 July 2017 16 / 36

Example IIb. A bounded cost semantics.

C := N⊥, and [t] is given by

[x] ρ := (0, ρ(x))

[0] ρ := (0, 0)

[s] ρ := (0, λn.(0, n+ 1))

[λx.t] ρ := (0, λa. [t]+ ρ
a
x)

[ts] ρ := ([t]0 + [s]0 + ([t]1 [s]1)0, ([t]1 [s]1)1)

[fx] ρ :=
∨

[r]+ ρ

for recursive functions fx→ r.

The intensional part bounds the cost: If e→k n then [e] = (l, n) with k ≤ l
and vice versa.

Thomas Powell (TU Darmstadt) 12 July 2017 17 / 36

I pick these three because they have each been studied by different people and
in different contexts.

Strict semantics: If [e]0 = 1 then [e] can be reduced to a normal form -
adequacy results of this kind are proven by Berger (2005) and are used to
establish strong normalisation of λ-calculi extended with bar recursion
operators.

Exact costs: Denotational cost semantics first explored by Sands (1990) among
others, generalised and lifted to a categorical setting by Van Stone (2003).

Bounded costs: A cost semantics which is sound w.r.t. a higher-type bounding
relation v is studied for variants of system T by Danner et al. (2012 & 2015).
Extended to call-by-name PCF by Kim (2016).

Thomas Powell (TU Darmstadt) 12 July 2017 18 / 36

Problem. In general, soundness and particularly adequacy seem to be
difficult to prove: The more complex the relationship between t : X and the
component [t]0 ∈ C, the more intricate and messy the resulting induction
tends to be.

Can we give a uniform framework and adequacy proof which captures a wide
range of monadic translations, including those which bound the cost of
programs?

Proofs of this kind typically have

an important combinatorial part - does the translation work for the
building blocks of our language?

a quite technical but rather uniform domain-theoretic part verifying that
it works for arbitrary terms.

Therefore it makes sense to seperate these parts if possible.

Adequacy proof = Combinatorial part︸ ︷︷ ︸
easy to check

+ Domain-theoretic part︸ ︷︷ ︸
uniform

Thomas Powell (TU Darmstadt) 12 July 2017 19 / 36

Recall that
[D] := C × JDK︸︷︷︸

s(D)

[X → Y] := C × (s(X)→ [Y]︸ ︷︷ ︸
s(X→Y)

)

Suppose that

IX(e, c) is an arbitrary ‘cost’ relation between closed terms e : X and
total objects of c ∈ C while

SD(v, s) is a ‘size’ relation between values of type D and s ∈ JDK defined
at all ground types.

Define the relation PX(e, α) between closed terms e : X and α ∈ [X] as follows:

PD(e, α) := α0 6= ⊥ ⇒ ∃v(e→∗ v ∧ ID(e, α0) ∧ SD(v, α1))

PX→Y (e, α) := α0 6= ⊥ ⇒ ∃v

e→∗ v ∧ IX→Y (e, α0)

∧∀w, β(SX(w, β)⇒ PY (vw, α1β))︸ ︷︷ ︸
SX→Y (v,α1)

Thomas Powell (TU Darmstadt) 12 July 2017 20 / 36

All previous translations are simple instances of this. In particular:

Strict semantics:

C = {1,⊥}
IX(e,1) always true,

Snat(n,m) := (n = m)

PX(e, α)⇔ (α0 = 1⇒ ∃v(e→∗ v ∧ α1 ≈ JvK))

where α1 ≈ JvK can be read as α1 is ‘strictly denoted’ by JvK.

Bounded costs:

C = N⊥
IX(e, k) := ∀e′(e→i e′ → i ≤ k)

Snat(n,m) := (n ≤ m)

PX(e, α)⇔ (α0 6= ⊥ ⇒ ∃v(e→k v ∧ k ≤ α0 ∧ v v α1))

where v is a essentially the bounding relation of Danner et al. (2012 & 2015).

Thomas Powell (TU Darmstadt) 12 July 2017 21 / 36

Aim. A general semantics of the form

[x] ρ := (cx, ρ(x))

[0] ρ := (c0, 0)

[s] ρ := (cs, λn.(c
′
s, n+ 1))

[λx.t] ρ := (cλx.t, λa.Φt([t] ρ
a
x))

[ts] ρ := (m([t]0 , [s]0 , ([t]1 [s]1)0), ([t]1 [s]1)1)

[fx] ρ := Ψf ([r] ρ)

for recursive functions fx→ r, where

cx, c0, cs and cλx.t are elements of a ‘cost domain’ C;

m : C × C × C → C is a continuous function;

Φt and Ψf are continuous functions [X]→ [X], where r, t : X.

We want a set of conditions on these components in terms of IX and Snat such
that:

Theorem. For all closed terms e : X we have PX(e, [e]).

Thomas Powell (TU Darmstadt) 12 July 2017 22 / 36

The difficultly in proving a theorem of this kind for arbitrary terms lies in the
fact that we allow arbitrary (potentially non-terminating) recursive functions.
However, we can initially avoid this by looking at finitary systems with
bounded recursion (via bounded fixpoints fixn or stratified rewrite systems
fnx→ r(n−1)).

Let e(n) denote e with all function symbols replaced by fn.

Lemma (combinatorial part) For all closed terms e(n) : X we have

PX(e(n),
[
e(n)

]
).

Proof. Induction on n and typing of e - it’s here that we do the important
work.

Lemma (domain-theoretic part) Suppose that [e]0 6= ⊥. Then there is
some n such that

[
e(n)

]
0

= [e]0 and
[
e(n)

]
1
v [e]1.

Proof. Standard.

Theorem. For all closed terms e : X we have PX(e, [e]).

Thomas Powell (TU Darmstadt) 12 July 2017 23 / 36

Some results (from the drawer)

Extension of existing cost semantics. In particular we can generalise
bounding relation of Danner et al. to a standard call-by-value higher
order language with arbitrary recursion.

Provide a uniform framework in which a variety of cost semantics can be
understood.

Enable one to obtain new monadic denotational semantics for which
soundness and adequacy can be easily verified.

This is all work in progress! However the main goal for the future would be to
utilise the translations to analyse programs. For example:

Can we automatically solve the extracted recursive equations which e.g.
characterise cost of a program?

Can we give a set of conditions which guarantee that this cost functional
can be defined in a weak system?

Thomas Powell (TU Darmstadt) 12 July 2017 24 / 36

PART 2

A variant of Gödel’s functional interpretation with state

Thomas Powell (TU Darmstadt) 12 July 2017 25 / 36

This work is slightly more recent, and arises from the following simple
question:

What is the computational meaning of a non-constructive proof?

Many answers to this question are centered around the notion of ‘learning’.

The epsilon calculus

Coquand’s semantics of evidence

Avigad’s update procedures

Aschieri and Berardi’s learning realizability.

I have always wanted to relate my favourite proof interpretation - Gödel’s
functional intepretation - to those above, and in particular highlight that
underneath its syntax, the functional interpretation conceals an extremely
elegant semantics based on learning.

Thomas Powell (TU Darmstadt) 12 July 2017 26 / 36

My favourite simple example: The drinkers paradox

What is the computational meaning of the following classical statement?

∃x∀y(P (x)→ P (y))

Don’t worry if you have never seen the functional interpretation - it’s actually
quite intuitive!

We first double negate and then use the functional interpretation to Skolemise:

¬¬∃x∀y(P (x)→ P (y))

 ¬∃f∀x¬(P (x)→ P (fx))

 ∀f∃x(P (x)→ P (fx)).

In other words, while we cannot compute an ‘ideal’ witness for ∃x which is
valid for all y, we can compute an ‘approximate’ witness for ∃x which is valid
relative to some function f .

Thomas Powell (TU Darmstadt) 12 July 2017 27 / 36

Such an approximation can be computed by the following simple program:

Xf := case(P (f0), 0, f0).

There are two possibilities:

1. P (f0) is true, in which case

Xf ↓ 0 and P (0)→ P (f0),

2. P (f0) is false, in which case

Xf ↓ f0 and P (f0)→ P (f(f0)).

However, our program is only executable if the predicate P (x) is decidable.
This is a well-known problem with the original variant of the functional
interpretation, which has since been circumvented in various ways.

I propose a new solution.

Thomas Powell (TU Darmstadt) 12 July 2017 28 / 36

While we’re at it, I should list together some other issues with the original
functional interpretation which have been highlighted in various places:

As already mentioned, computationally neutral formulas need to be
decidable - this is not the case for e.g. predicate logic, set theory,
nonstandard analysis.

Definition by case functionals are difficult to interpret categorically.

Extracted programs can be highly inefficient, and end up checking the
same cases repeatedly.

The meaning of an extracted program typically lies in how it interacts
with the ‘mathematical environment’ via case distinctions, but with the
traditional presentation this is difficult to visualise.

The first two problems are traditionally solved by the Diller-Nahm
interpretation, which collects a finite list of potential witnesses.

Alternative solution: Keep case distinctions, but in the form of
interactions with a global state which represents the mathematical
environment.

Thomas Powell (TU Darmstadt) 12 July 2017 29 / 36

Back to our simple example... Suppose that we have a global state S which at
any one time contains a finite list of atomic formulas, and that definition by
case constants are replaced by a query to the global state, governed by some
mapping σ : Environment→ {true, false}. Let

Xf [π] := queryπ(P (f0), 0, f0).

There are three possibilities.

1. P (f0) /∈ dom(π) and the state accepts P (f0) i.e. σ(P (f0)) = true:

〈π | Xf〉 ↓ 〈π :: P (f0) | 0〉 and π ∧ P (f0)→ (P (0)→ P (f0)).

2. P (f0) /∈ dom(π) and the state rejects P (f0) i.e. σ(P (f0)) = false:

〈π | Xf〉 ↓ 〈π :: ¬P (f0) | f0〉 and π ∧ ¬P (f0)→ (P (f0)→ P (ff0)).

3. P (f0) ∈ dom(π) and the state uses its existing knowledge:

〈π | Xf〉 ↓ 〈π | x〉 and π → (P (x)→ P (fx))

where x = 0 or f0 depending on π.
Thomas Powell (TU Darmstadt) 12 July 2017 30 / 36

A more general idea:

Traditionally, if
T ` ∀x∃yA(x, y)

then we can extract a function f : X → Y such that

T ` ∀xA(x, f(x)).

We develop a new soundness proof so that instead we extract a program
f : X → S → Y × S (i.e. X → TY for state monad T) satisfying

T `σ ∀x, π(f(x)[π]1 → A(x, f(x)[π]0)),

which is valid for any state function σ.

Thomas Powell (TU Darmstadt) 12 July 2017 31 / 36

This is an extension of the usual functional interpretation:

- If quantifier-free formulas in T are decidable, then we can just define state
queries to accept only true formulas i.e. σ(A) := χA, and then

T `χ ∀x(f(x)[]1 → A(x, f(x)[]0))

and since f(x)[]1 is always true and so we regain the usual functional
interpretation with realizer λx.f(x)[]0 : X → Y .

- More generally, for any fixed theorem we can range over all possible states σ
and come up with a finite sequence of possible realizers (i.e. a Herbrand
disjunction). For example

T `σ0
P (f0)→ (P (0)→ P (f0))

T `σ1 ¬P (f0)→ (P (f0)→ P (f(f0)))

and therefore (P (0)→ P (f0)) ∨ (P (f0)→ P (f(f0))).

Thomas Powell (TU Darmstadt) 12 July 2017 32 / 36

I claim that a functional interpretation with global state addresses all of the
aforementioned problems:

We do not require decidability of quantifier-free formulas: The state is
simply given instructions, and collects a list of formulas which it supposes
to be true. In case we do have decidability, we regain the usual functional
interpretation, and if not, we can produce some variant of Herbrand’s
theorem.

We isolate definition by case functionals as a side-effect, which can be
modelled as a monad. This may lead to an elegant categorical semantics
of the functional interpretation.

Efficiency: A given formulas is only ever checked once. From this point
onwards it is recorded in the state, which is referenced every time there is
a query. Moreover, we can refine how the state works to improve
efficiency e.g. by adding additional rules of inference.

The learning semantics implicit in the functional interpretation is now
presented completely transparently. When a realizer evaluates, it returns
a value together with a final state which contains everything it has
‘learned’ about the mathematical environment during a computation.

Thomas Powell (TU Darmstadt) 12 July 2017 33 / 36

Example A: Ramsey’s theorem for pairs

Classical statement: For any colouring c : N× N→ {0, 1}, there exists an
infinite set X ⊆ N that is pairwise monochromatic.

Finitized statement: For any colouring c : N× N→ {0, 1} and functional
ε : P(N)→ B, there exists a finite approximation Xε ⊆ N to a monochromatic
set, which is valid up to the point ε(Xε).

From the classical proof of Ramsey’s theorem, we would extract a program
Xε : S → P(N)× S, which from an initial empty state [] would result in a
computation

〈[] | ∅〉 → 〈π1 | X1〉 → . . .→ 〈πn | Xn〉

where πn → ‘Xn a sufficiently good approximation’. Here,

the Xi are finite subsets of N;

the πi is the current state, which contains atomic formulas of the form
c(m,n) = b.

Thomas Powell (TU Darmstadt) 12 July 2017 34 / 36

Example B: Bolzano-Weierstrass theorem for rationals

Classical statement: Any sequence (xi) of rationals in the [0, 1] contains a
subsequence (xgi) which converges to some real number α ∈ [0, 1].

Finitized statement: Given some sequence (xi) in [0, 1] and functional
ε : R×NN → N there exists some pair αε ∈ [0, 1] and gε : N→ N such that the
finite subsequence xgε0, . . . , xgεN satisfies |xgεi − αε| < 2i for all i ≤ N , where
N := ε(αε, gε).

From the classical proof of the theorem, we would extract a program
αε, gε : S → R× NN × S, which from an initial empty state [] would result in a
computation

〈[] | 0, id〉 → 〈π1 | α1, g1〉 → . . .→ 〈πn | αn, gn〉

where πn → ‘αn, gn are sufficiently good approximations’. Here,

the αi and gi are (finitely defined) reals and functions respectively;

the πi is the current state, which contains atomic formulas of the form
xn ∈ [q1, q2] for q1, q2 ∈ Q.

Thomas Powell (TU Darmstadt) 12 July 2017 35 / 36

I hope to put all of this into writing at some point... (famous last words)

Thank You!

Thomas Powell (TU Darmstadt) 12 July 2017 36 / 36

