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“Proof Theory as Mathesis Universalis”

Proof theory is often unfairly perceived to be a discipline concerned only with
metamathematics, occupying a world different from that of ‘real’ science.

However, proof theory is about more than just formalism - it’s a powerful way
of thinking which can lead to genuine insights and applications in ordinary
mathematics and computer science.

For this reason, it is important that proof theory is flexible, and that formal
systems and techniques evolve to reflect developments in science.
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The historical context of this talk

1930s Gödel develops his functional interpretation to prove (relative)
consistency of Peano arithmetic.

1960s Kreisel demonstrates that proof interpretations can be used to ‘unwind’
witnesses from proof of existential statements.

1990s- Kohlenbach develops Kreisel’s idea into the proof mining program,
leading to new quantitative results in approximation theory, functional
analysis, ergodic theory...

2000s- Applications in computer science begin to emerge, including

The complexity analysis of termination techniques (Buchholz, Steila et
al., P.),

The formal extraction of verified programs (Berger, Schwichtenberg, ...)
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My aim is to briefly introduce a new variant of Gödel’s functional
interpretation, based on several concepts from the theory of programming
languages, namely:

a global state;

imperative programs;

monadic tranformations.

It is also inspired by research on the semantics of classical logic, including:

Hilbert’s epsilon calculus;

Coquand’s semantics of evidence;

Aschieri’s learning based realizability interpretations.

Two caveats

1. Rather than being an end in itself, it’s just a first step towards more
interesting applications (sketched in the last slides!)

2. None of this has been published!
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Gödel’s functional interpretation (a survey in seven slides)
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What is the computational meaning of the so-called Drinkers paradox?

∃x(D(x)→ ∀yD(y)) D quantifier-free

There is no effective way to find a witness for x, as its existence depends on
the law of excluded-middle.

However, over classical logic and quantifier free choice we have the following
series of equivalences:

∃x(D(x)→ ∀yD(y)) ⇔ ∃x∀y(D(x)→ D(y))

⇔ ¬∀x∃y¬(D(x)→ D(y))

⇔ ¬∃f∀x¬(D(x)→ D(fx))

⇔ ∀f∃x(D(x)→ D(fx)) .

Ineffective statement: There exists some ideal drinker x such that if x drinks,
then all people y drink.

Effective reformulation: For any function f there exists an approximate
drinker x such that if x drinks, then person fx drinks.
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Gödel’s functional interpretation is a systematic way of transforming
ineffective statements into effective ones (a proof interpretation):

A 7→ ∀z∃xA∗(z, x)

such that

1. A⇔ ∀z∃xA∗(z, x) over classical logic and quantifier-free choice, and

2. A∗(z, x) is ‘computationally neutral’ (usually quantifier-free, but not
always...).

In our example, A :≡ ∃x(D(x)→ ∀yD(y)) and A∗(f, x) :≡ D(x)→ D(fx).

Theorem (Gödel 1958). If A is provable in Peano arithmetic, then from
the proof of A we can extract a term t of system T such that ∀zA∗(z, tz).

In our example, we want a term t satisfying

∀f(D(tf)→ D(f(tf)))...
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GOAL:

∀f(D(tf)→ D(f(tf)))

Define tf := case(D(f0), 0, f0).

If D(f0) is true:

tf = case(D(f0), 0, f0)→ case(true, 0, f0)→ 0

and(D( 0︸︷︷︸
tf

)→ D(f( 0︸︷︷︸
tf

)) X

If D(f0) is false:

tf = case(D(f0), 0, f0)→ case(false, 0, f0)→ f0

and(D( f0︸︷︷︸
tf

)→ D(f( f0︸︷︷︸
tf

)) X
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Case distinctions are a fundamental feature of programs extracted using the
functional interpretation. Formally, they are required to interpret contraction

A ∧A→ B

A→ B

Therefore in practise, if A is a mathematical theorem, then a program t
satisfying ∀zA∗(z, tz) will a complex term with numerous case distinctions,
representing each instance of contraction in the formal proof.

One can think of case distinctions as being ‘interactions with the
mathematical environment’.

In our example, the mathematical environment consists of some predicate
D(x), and our program t comprises exactly one interaction with the
environment, namely

is D(f0) true or false?
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A real example: Ramsey’s theorem for pairs

Classical statement: For any colouring c : N× N→ {0, 1}, there exists an
infinite set X ⊆ N that is pairwise monochromatic.

Interpreted statement (roughly): For any colouring c : N× N→ {0, 1}
and functional ε : P(N)→ B, there exists a finite approximation X ⊆ N to a
monochromatic set, which is valid up to the point ε(X).

From the classical proof of Ramsey’s theorem, we would extract a program

t : (P(N)→ B)→ P(N)

which for any ε produces an approximation tε which works up to point ε(tε).

The program would typically involve a vast number of case distinctions of the
form

is c(m,n) = b true or false?
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Two old problems with case definitions:

1. Programs extracted by the functional interpretation are only computable in
settings where computationally neutral formulas are decidable. This is not the
case for e.g.

Predicate logic (Gerhardy/Kohlenbach 2005),

Set theory (Burr 2000),

Nonstandard analysis (van den Berg et al. 2012).

2. It is notoriously difficult to establish an elegant categorical semantics of the
functional interpretation (de Paiva 1991), due to the fact that case distinctions
are fundamentally asymmetric (this is an extreme oversimplification!).

Both of these problems can be addressed by replacing the functional
interpretation with the Diller-Nahm interpretation, which avoids interaction
with the environment by collecting finite sequences of potential witnesses.
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However, I am a big fan of Gödel’s original interpretation, and propose an
alternative solution:

Rather than avoiding case distinction, enrich the functional interpretation with
ideas from imperative programming languages, allowing extracted programs to
access a global state which is responsible for interaction with the environment.

I claim that we can address both of the preceding problems, but have the
following additional benefits:

We equip the functional interpretation with a clean and elegant semantics
in terms of learning;

We improve the efficiency of extracted programs so that individual case
distinctions are only ever checked once;

We extract programs with procedural features, taking a step towards the
formal extraction of verified imperative programs.
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A functional interpretation with state
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Traditionally, proof interpretations extract programs in some variant of
Gödel’s system T, which are typically conceived as purely functional programs.

In a purely functional language, the order in which we carry out computations
has no effect on their output. For example, consider the program:

add(x, 0)→ x add(x, sy)→ s(add(x, y)).

Let n := s(n)(0). Then we would have

1. QUERY : add(2, 5) RETURN : 7

2. QUERY : add(3, 1) RETURN : 4

Changing the order of computation makes no difference:

1. QUERY : add(3, 1) RETURN : 4

2. QUERY : add(2, 5) RETURN : 7
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Suppose we enrich our language with a simple global state consisting of a
single global variable i. At any moment in a computation, i is assigned some
value n, which we write as [i := n].

Now functions can both change and access the value stored in the global
variable i. For example

〈[i := n] | add′(x, 0)〉 → 〈[i := 0] | x〉
〈[i := n] | add′(x, sy)〉 → 〈[i := n] | s(add′(x, y))〉.

In our original pure language the function add carried out addition:

QUERY : add(a, b) RETURN : a+ b

In our extended language, add′ carries out the additional task of resetting the
state to [i := 0] i.e.

QUERY : 〈[i := n] | add′(a, b)〉 RETURN : 〈[i := 0] | a+ b〉
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We can also define functions which access the state:

〈[i := n] | addstate(x)〉 → 〈[i := n] | add(x, n)〉.

But the presence of a global state means that the order of computation
matters!

Suppose we begin by setting [i := 1]. Then we have

1. QUERY : 〈[i := 1] | addstate(3)〉 RETURN : 〈[i := 1] | 4〉
2. QUERY : 〈[i := 1] | add′(2, 5)〉 RETURN : 〈[i := 0] | 7〉

but

1. QUERY : 〈[i := 1] | add′(2, 5)〉 RETURN : 〈[i := 0] | 7〉
2. QUERY : 〈[i := 0] | addstate(3)〉 RETURN : 〈[i := 0] | 3〉
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So what could all this have to do with the functional interpretation?

Previously we had: case(P, s, t)→ s if P true case(P, s, t)→ t if P false

IDEA: Rather than use case distinctions, allow extracted programs to access
and collect information in a global state, which is resposible for deciding
whether a predicate should be ‘accepted’ or not via a function

σ : F → {true, false}

At a given point in time, our global state will be a finite list of ‘accepted’
formulas π := [P1, . . . , Pk] from the class F . We can interact with the state via
the function

〈π | askstate(P, s, t)〉 →


〈π | s〉 if P ∈ π
〈π | t〉 if ¬P ∈ π
〈π :: P | s〉 if σ(P ) = true

〈π :: ¬P | s〉 if σ(P ) = false
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Back to our previous example:

∀f(D(tf)→ D(f(tf)))

Define tf := askstate(D(f0), 0, f0).

D(f0) ∈ π then 〈π | tf〉 → 〈π | 0〉 and
∧
π → (D(0)→ D(f0))

¬D(f0) ∈ π then 〈π | tf〉 → 〈π | f0〉 and
∧
π → (D(f0)→ D(f(f0)))

Otherwise, if σ(D(f0)) = true then 〈π | tf〉 → 〈π :: D(f0) | 0〉 and∧
π ∧D(f0)→ (D(0)→ D(f0))

σ(D(f0)) = false then 〈π | tf〉 → 〈π :: ¬D(f0) | f0〉 and∧
π ∧ ¬D(f0)→ (D(f0)→ D(f(f0)))

Thomas Powell (TU Darmstadt) 25 July 2017 18 / 28



Back to our previous example:

∀f(D(tf)→ D(f(tf)))

Define tf := askstate(D(f0), 0, f0).

D(f0) ∈ π then 〈π | tf〉 → 〈π | 0〉 and
∧
π → (D(0)→ D(f0))

¬D(f0) ∈ π then 〈π | tf〉 → 〈π | f0〉 and
∧
π → (D(f0)→ D(f(f0)))

Otherwise, if σ(D(f0)) = true then 〈π | tf〉 → 〈π :: D(f0) | 0〉 and∧
π ∧D(f0)→ (D(0)→ D(f0))

σ(D(f0)) = false then 〈π | tf〉 → 〈π :: ¬D(f0) | f0〉 and∧
π ∧ ¬D(f0)→ (D(f0)→ D(f(f0)))

Thomas Powell (TU Darmstadt) 25 July 2017 18 / 28



Back to our previous example:

∀f(D(tf)→ D(f(tf)))

Define tf := askstate(D(f0), 0, f0).

D(f0) ∈ π then 〈π | tf〉 → 〈π | 0〉 and
∧
π → (D(0)→ D(f0))

¬D(f0) ∈ π then 〈π | tf〉 → 〈π | f0〉 and
∧
π → (D(f0)→ D(f(f0)))

Otherwise, if σ(D(f0)) = true then 〈π | tf〉 → 〈π :: D(f0) | 0〉 and∧
π ∧D(f0)→ (D(0)→ D(f0))

σ(D(f0)) = false then 〈π | tf〉 → 〈π :: ¬D(f0) | f0〉 and∧
π ∧ ¬D(f0)→ (D(f0)→ D(f(f0)))

Thomas Powell (TU Darmstadt) 25 July 2017 18 / 28



Back to our previous example:

∀f(D(tf)→ D(f(tf)))

Define tf := askstate(D(f0), 0, f0).

D(f0) ∈ π then 〈π | tf〉 → 〈π | 0〉 and
∧
π → (D(0)→ D(f0))

¬D(f0) ∈ π then 〈π | tf〉 → 〈π | f0〉 and
∧
π → (D(f0)→ D(f(f0)))

Otherwise, if σ(D(f0)) = true then 〈π | tf〉 → 〈π :: D(f0) | 0〉 and∧
π ∧D(f0)→ (D(0)→ D(f0))

σ(D(f0)) = false then 〈π | tf〉 → 〈π :: ¬D(f0) | f0〉 and∧
π ∧ ¬D(f0)→ (D(f0)→ D(f(f0)))

Thomas Powell (TU Darmstadt) 25 July 2017 18 / 28



Back to our previous example:

∀f(D(tf)→ D(f(tf)))

Define tf := askstate(D(f0), 0, f0).

D(f0) ∈ π then 〈π | tf〉 → 〈π | 0〉 and
∧
π → (D(0)→ D(f0))

¬D(f0) ∈ π then 〈π | tf〉 → 〈π | f0〉 and
∧
π → (D(f0)→ D(f(f0)))

Otherwise, if σ(D(f0)) = true then 〈π | tf〉 → 〈π :: D(f0) | 0〉 and∧
π ∧D(f0)→ (D(0)→ D(f0))

σ(D(f0)) = false then 〈π | tf〉 → 〈π :: ¬D(f0) | f0〉 and∧
π ∧ ¬D(f0)→ (D(f0)→ D(f(f0)))

Thomas Powell (TU Darmstadt) 25 July 2017 18 / 28



Recall that the functional interpretation is given by A 7→ ∀z∃xA∗(z, x).

Traditional soundness

If T ` A then we can extract a pure term t such that for any z we have

A∗(z, tz).

New soundness

If T ` A then we can extract a state sensitive term t such that for any z and
input state πI we have ∧

πO → A∗(z, tz).
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First advantage: We no longer require neutral formulas to be decidable, as
the state function σ can be completely arbitrary!

Silly example

Let R ∈ F where R is the Riemann hypothesis. Then we can compute a
realizer for

∃b ∈ {0, 1}(b = 0↔ R)

by setting b := askstate(R, 0, 1). Depending on the value of σ(R) we end up
with

either R→ (0 = 0↔ R) or ¬R→ (1 = 0↔ R).

However, in the case the all formulas in F are decidable we can just set
σ(P ) := χ(P ). Then for arbitrary z, setting πI := [] we would have

`
∧
π0 and `

∧
π0 → A∗(z, tz)

and therefore we reobtain ` ∀zA∗(z, tz) i.e. the original functional
interpretation.

Thomas Powell (TU Darmstadt) 25 July 2017 20 / 28



First advantage: We no longer require neutral formulas to be decidable, as
the state function σ can be completely arbitrary!

Silly example

Let R ∈ F where R is the Riemann hypothesis. Then we can compute a
realizer for

∃b ∈ {0, 1}(b = 0↔ R)

by setting b := askstate(R, 0, 1). Depending on the value of σ(R) we end up
with

either R→ (0 = 0↔ R) or ¬R→ (1 = 0↔ R).

However, in the case the all formulas in F are decidable we can just set
σ(P ) := χ(P ). Then for arbitrary z, setting πI := [] we would have

`
∧
π0 and `

∧
π0 → A∗(z, tz)

and therefore we reobtain ` ∀zA∗(z, tz) i.e. the original functional
interpretation.

Thomas Powell (TU Darmstadt) 25 July 2017 20 / 28



On the other hand, we are able to compute a finite sequence of witnesses by
restricting ourselves to a finite set F of state formulas, and letting σ range
over all possible functions F → {true, false}: We then have∧

πi
O → A∗(z, tz)

for i = 1, . . . , n where n = 2|F|, and therefore

A∗(z, t1z) ∨ . . . ∨A∗(z, tnz).

In our running example, F = {D(f0)} and so we obtain

(D(t1f)→ D(f(t1f))) ∨ (D(t2f)→ D(f(t2f)))

where t1f = 0 and t2f = f0.
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A categorical aside. It is well known that programs which interact with a
global state can be very elegantly captured using the concept of a monad.

The state monad T maps each type X in our programming language to the
type

TX := S → X × S

where S is our global state. I.e., instead of a pure term t : X we have a
function

πI 7→ (t, πO).

The state monad is extremely convenient in allowing us to formalise
everything above.

However, it may also allow for a more elegant categorical model of the
functional interpretation, but this is just a conjecture!
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Two further advantages:

1. In contrast to case-distinction, the global state remembers which formulas it
has checked, and does not repeatedly query the same formula:

We never have 〈π | t〉 →∗ 〈π :: P | t′〉 →∗ 〈π :: P :: P | t′′〉 → . . .

because queries to the state always check whether or not we already have an
answer. This could lead to more efficient extracted programs.

2. The global state makes explicit the elegant learning semantics which is
implicit in the original functional interpretation. An extracted program now
returns:

A realizer (as before);

A final state, containing everything the program has learned about the
mathematical environment.
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Our real example revisited: Ramsey’s theorem for pairs

Classical statement: For any colouring c : N× N→ {0, 1}, there exists an
infinite set X ⊆ N that is pairwise monochromatic.

Interpreted statement (roughly): For any colouring c : N× N→ {0, 1}
and functional ε : P(N)→ B, there exists a finite approximation X ⊆ N to a
monochromatic set, which is valid up to the point ε(X).

From the classical proof of Ramsey’s theorem, we would extract a program

πI , ε 7→ πO, tε

which for any ε and initial state πI produces an approximation tε which works
up to point ε(tε), together with a final state πO.

The final state would be a sequence of the form

πO := [c(m1, n1) = b1, . . . , c(mN , nN ) = bN ]

for some (probably very large) N , containing information we have learned
about our colouring.
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This is only a small idea!
But there are bigger goals for the future...
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The notion of a state is central to imperative languages:

i := 0

while(i < n)

print(i)

i := i+ 1

Can we use the functional interpretation to extract efficient, verified
imperative programs?

Simple example: T ` ∀n∃p(p > n ∧ prime(p))

Extract a verified program in some imperative language which takes as input a
natural number n and returns a prime number p greater than n.

There is some precedent here e.g.

Extracting Imperative Programs from Proofs: In-place Quicksort. Berger,
Seisenberger, Woods, 2014.

Thomas Powell (TU Darmstadt) 25 July 2017 26 / 28



The notion of a state is central to imperative languages:

i := 0

while(i < n)

print(i)

i := i+ 1

Can we use the functional interpretation to extract efficient, verified
imperative programs?

Simple example: T ` ∀n∃p(p > n ∧ prime(p))

Extract a verified program in some imperative language which takes as input a
natural number n and returns a prime number p greater than n.

There is some precedent here e.g.

Extracting Imperative Programs from Proofs: In-place Quicksort. Berger,
Seisenberger, Woods, 2014.

Thomas Powell (TU Darmstadt) 25 July 2017 26 / 28



Programs extracted using functional interpretations are usually verified to be
correct in some variant of Heyting arithmetic.

But there are other logics designed to reason about programs with state e.g.
Hoare logic.

Can we adapt the functional interpretation so that it not only returns
imperative programs, but verifies them using Hoare logic?

A truly imperative functional interpretation

If T ` A then we can extract a program P such that for any z and input state
πI we have

{πI , [x := 0]} P {πO, [x := n], A∗(z, n)}.

Could obtain new consistency proofs in terms of Hoare logic...
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Thank you
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