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Background to talk

A long time ago in 2012 I wrote a paper for CL&C called

Applying Gödel’s Dialectica Interpretation to Obtain a Constructive Proof of
Higman’s Lemma

Unfortunately the extracted program was completely incomprehensible (to
me, at least). This is because the classical proof of Higman’s lemma uses a
non-trivial form of Zorn’s lemma, and the usual interpretation via bar
recursion was both indirect and highly complex. There must be a better way!

In January 2016 I attended a Dagstuhl Seminar on Well-Quasi Orderings in
Computer Science, which prompted me to revisit this paper.

Purpose of short talk

1. A brief discussion on Zorn’s lemma and its functional interpretation.

2. Some conjectures and open questions (the most important part!)
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First some undergraduate logic...

Let (X,@) be a partially ordered set.

Zorn’s lemma. If every chain in X has an upper bound in X, then X
contains a maximal element.

“The axiom of choice is is obviously true, the well-ordering theorem
is obviously false, and who can tell about Zorn’s lemma?”

Zorn’s lemma is typically required when

we are trying to build a structure in stages

but there is no obvious way of completing the construction.
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What is the computational meaning of an instance of Zorn’s lemma?

We can often replace statements which assert the existence of an ideal object
with an equivalent ‘finitized’, or ‘hard’ version which asserts the existence of
finite approximations to this object.

Finitary Zorn’s lemma (rough version): If X is a (approximately) chain
complete poset, then X contains approximations to a maximal element of
arbitrarily high quality.

Moreover, we would expect that

we can build an approximately maximal element in stages, which reflect
the non-constructive stages of the original statement,

the construction eventually terminates.

Gödel’s functional interpretation provides an opportunity to make
some of this precise.
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Example: Σ0
1 comprehension over numbers

Suppose that we have a sequence of Σ0
1-predicates ∃xP (n, x). Then there

exists a choice function f : D → N with D ⊆ N satisfying

(∗) ∀n([n ∈ D → P (n, f(n))] ∧ [n /∈ D → ∀x¬P (n, x)]).

Proof. Take X to be the poset of partial choice functions

{g : D → N | ∀n[n ∈ D → P (n, g(n))]}

ordered by function extension. Then X is chain complete and so has a
maximal element f , which must satisfy (∗).

If not, then there exist some n /∈ D and x such that P (n, x). Then

f ∪ {n 7→ x}

belongs to X and extends f , a contradiction.
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The functional interpretation of (∗) states that for any counterexample
functionals ϕ, ξ : (N⇀ N)→ N there exists an approximation f : D → X to a
choice function satisfying

(†) [ϕ(f) ∈ D → P (ϕ(f), f(ϕ(f)))] ∧ [ϕ(f) /∈ D → ¬P (ϕ(f), ξ(f))].

Moreover we can construct such an f explicitly. Define the sequence
fi : Di → N recursively as follows:

1. f0 is the empty partial function, and

2. if ϕ(fi) /∈ Di and P (ϕ(fi), ξ(fi)) then

fi+1 := fi ∪ {ϕ(fi) 7→ ξ(fi)}.

For each i, the approximation fi+1 A fi is an ‘improvement’ of the
approximation fi. Whenever ϕ, ξ are continuous, we eventually reach a
sufficiently good approximation fI satisfying (†).
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... however, traditionally bar recursion is used to realize the functional
interpretation of comprehension, and the resulting program is much less
natural. This is a general problem:

Key question: Is there a useful form of Zorn’s lemma to which we can give a
direct computational interpretation? We want extracted programs which
reflect the idea that Zorn’s lemma allows us to build objects in stages.

axiom of choice
P //

��

Zorn’s lemma
Q //

indirect interpretation

���
�
�
�
�
�

theorem

���
�
�
�
�
�

bar recursor Φ
tP

// tP(Φ)
sQ

// sQ(tP(Φ))
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Let (X,<) be a well-founded partial order, and consider the partial order
(N→ X, <lex ), where

f <lex g := ∃n(f̄n = ḡn ∧ f(n) < g(n))

where f̄n = [f(0), . . . , f(n− 1)].

A predicate on N→ X is piecewise if it is of the form ∀n B(f̄n). Consider

Y := {f : N→ X | ∀n B(f̄n)}

Then whenever Y is non-empty, it is chain-complete w.r.t. <lex (in the
downward direction), and therefore by Zorn’s lemma it has a maximal (in this
case minimal) element.

We can write this as an axiom schema

ZLlex : ∃fA(f)→ ∃f(A(f) ∧ ∀g <lex f¬A(g)).

where A(f) ≡ ∀nB(f̄n) ranges over piecewise formulas.
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Why is ZLlex so useful?

It is a weak form of Zorn’s lemma (equivalent to dependent choice) which
subsumes many instances of Zorn’s lemma used in everyday mathematics.

Let X = Y ∪ ⊥ with x < y iff x defined and y undefined. Then <lex

contains the extension relation on partial functions N→ Y , and in
particular ZLlex implies arithmetical comprehension.

If X = B and x < y iff x = 1 and x = 0, and we view objects of type
N→ B as characteristic functions for subsets of N, then <lex contains
the subset relation ⊂ and ZLlex can be used to prove standard properties
of countable algebraic structures e.g. every countable (nonzero) ring has a
maximal ideal.

We can also give very short proofs of results in WQO theory, such as the
existence of a minimal bad sequence, used to prove Higman’s lemma and
Kruskal’s theorem.
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Because chain-completeness is encoded in the assumption that A(f) is
piecewise, ZLlex is essentially a minimum principle over the non well-founded
order <lex . The usual minimum principle for well-founded decidable relations:

∃xA(x)→ ∃x(A(x)→ ∀y < x¬A(y))

has a functional interpretation which can be solved as long as we have access
to a well-founded recursor of arbitrary finite output type:

RF<(x) = Fx(λy < x . R<(y))

Details are given in Schwichtenberg 2008.

The general idea is that recursion over < is used to construct an
approximation to a minimal element, by guessing a possible candidates and
using any mistakes to improve each guess.
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Can the functional interpretation of ZLlex i.e.

∃fA(f)→ ∃f(A(f) ∧ ∀g <lex f¬A(g))

for piecewise formulas A, be solved using a lexicographic recursor:

ZRFlex(f) = Ff (λn, x < f(n), g . ZRlex(f̄n ∗ x ∗ g))?

This kind of problem was first considered by U. Berger, where the
contrapositive of ZLlex (called open induction) is given a modified realizability
interpretation using ZRlex restricted to base type.

The functional interpretation of ZLlex is unfortunately significantly more
complex. In particular, we need a lexicographic recursor of arbitrary finite
type, in which case ZRlex no longer defines a total continuous functional.

I won’t go into any real detail, but will sketch how one can overcome this
particular difficulty.
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Suppose that G : Y N → N is continuous. Then for any α : Y N there is some
point n such that

G(α, n) < n

where α, n = α(0), . . . , α(n− 1), 0, 0, 0, . . ..

Let NG,α be the least such n. Then α,NG,α is primitive recursively definable
as

α,NG,α = λm.

α(m) if ∀k ≤ m(G(α, k) ≥ k)

0Y if ∃k ≤ m(G(α, k) < k)

Define the lexicographic recursor ẐRlex by

ẐR
F,G

lex (f) = F ([f | λn, x < f(n), g . ẐR
F,G

lex (f̄n ∗ x ∗ g)︸ ︷︷ ︸
α

], NG,α).

Here, F is forced by G to only look at a finite initial segment of its input,

making totality of ẐRlex a piecewise property. Thus ẐRlex defines a total
functional by Zorn’s lemma!
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ẐR
F,G

lex (f) = F ([f | λn, x < f(n), g . ẐR
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lex (f̄n ∗ x ∗ g)︸ ︷︷ ︸
α

], NG,α).

Here, F is forced by G to only look at a finite initial segment of its input,

making totality of ẐRlex a piecewise property. Thus ẐRlex defines a total
functional by Zorn’s lemma!
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Claims

1. There is a term Φ definable in T + ẐRlex which solves the functional
interpretation of ZLlex.

2. The recursor ẐRlex (and hence Φ) is definable from Spector’s bar recursion
over system T, and thus exists (and is S1-S9 computable) in the usual model
Cω of total continuous functionals, and also the strongly majorizable
functionals Mω.

3. The realzing term Φ computes the limit of a learning procedure as defined
in (P. 2016), which can be intuitively seen as computing an approximation to
a lexicographically minimal element via trial and error.

4. In many cases, programs extracted from proofs involving ZLlex will be
shorter, easier to understand and potentially more efficient than those which
would be normally extracted using e.g. bar recursion.
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interpretation of ZLlex.
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2. The recursor ẐRlex (and hence Φ) is definable from Spector’s bar recursion
over system T, and thus exists (and is S1-S9 computable) in the usual model
Cω of total continuous functionals, and also the strongly majorizable
functionals Mω.

3. The realzing term Φ computes the limit of a learning procedure as defined
in (P. 2016), which can be intuitively seen as computing an approximation to
a lexicographically minimal element via trial and error.

4. In many cases, programs extracted from proofs involving ZLlex will be
shorter, easier to understand and potentially more efficient than those which
would be normally extracted using e.g. bar recursion.

Thomas Powell (Innsbruck) 23 June 2016 13 / 15



Can we back up the last claim with some concrete case studies?

Constructive algebra. Plenty of results in this area make use of ZLlex in
some form. The computational content of such results have been studied by
e.g. T. Coquand, H. Lombardi, P. Schuster.

The functional interpretation together with ẐRlex could be well suited to
program extraction in algebra.

Can we establish a relationship between weak instances of ẐRlex and bar
recursion of low type, so that we can obtain e.g. primitive recursive
bounds for witnesses of Π0

2-formulas?

WQO theory. It would be good to extract a short, clean program from the
usual proof of Higman’s lemma (this was the original aim, after all)!

What about Kruskal’s theorem?

In general there is a lot of interest in constructive WQO theory from
computer science, where results like Higman’s lemma are used to prove
termination of programs...
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What is going on more generally? Can we give a functional interpretation to
stronger instances of Zorn’s lemma?

Logic Recursion

least element principle //

��

well-founded recursion

��
ZLlex for ∀n B(f̄n)︸ ︷︷ ︸

piecewise

��

// ẐRlex for continuous parameters︸ ︷︷ ︸
piecewise

��
? // ?
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