Gödel's functional interpretation and the concept of learning

Thomas Powell

University of Innsbruck

Logic in Computer Science (LICS'16)

Columbia University, New York
United States of America
5 July 2016

What is the computational meaning of classical reasoning?

What is the computational meaning of classical reasoning?
One could consider the 'finitized' version of classical theorems:
$A:$ there exists an ideal object x.
$A_{\text {fin }}:$ there exist finite approximations to x of arbitrary high quality.

What is the computational meaning of classical Reasoning?

One could consider the 'finitized' version of classical theorems:
$A:$ there exists an ideal object x.
$A_{\text {fin }}:$ there exist finite approximations to x of arbitrary high quality.
Over classical logic, $A \leftrightarrow A_{\text {fin }}$.
While ideal objects cannot be effectively constructed, finite approximations to them can.

This talk is about algorithms which compute such approximations.

What is the computational meaning of a Π_{3}-theorem?

$$
A: \equiv \forall x^{X} \exists y^{Y} \forall z^{Z} P(x, y, z)
$$

What is the computational meaning of a Π_{3}-theorem?

$$
A: \equiv \forall x^{X} \exists y^{Y} \forall z^{Z} P(x, y, z)
$$

In general we cannot hope to produce a direct computable witness for $\exists y$. But suppose we double negate and Skolemize:

What is the computational meaning of a Π_{3}-theorem?

$$
A: \equiv \forall x^{X} \exists y^{Y} \forall z^{Z} P(x, y, z)
$$

In general we cannot hope to produce a direct computable witness for $\exists y$. But suppose we double negate and Skolemize:

$$
\begin{aligned}
\neg A & \leftrightarrow \exists x \forall y \exists z \neg P(x, y, z) \\
& \leftrightarrow \exists x, \xi^{Y \rightarrow Z} \forall y \neg P(x, y, \xi(y))
\end{aligned}
$$

What is the computational meaning of a Π_{3}-theorem?

$$
A: \equiv \forall x^{X} \exists y^{Y} \forall z^{Z} P(x, y, z)
$$

In general we cannot hope to produce a direct computable witness for $\exists y$. But suppose we double negate and Skolemize:

$$
\begin{aligned}
\neg A & \leftrightarrow \exists x \forall y \exists z \neg P(x, y, z) \\
& \leftrightarrow \exists x, \xi^{Y \rightarrow Z} \forall y \neg P(x, y, \xi(y)) \\
\neg \neg A & \leftrightarrow \forall x, \xi \exists y \neg \neg P(x, y, \xi(y)) \\
& \leftrightarrow \forall x, \xi \exists y P(x, y, \xi(y))
\end{aligned}
$$

What is the computational meaning of a Π_{3}-theorem?

$$
A: \equiv \forall x^{X} \exists y^{Y} \forall z^{Z} P(x, y, z)
$$

In general we cannot hope to produce a direct computable witness for $\exists y$. But suppose we double negate and Skolemize:

$$
\begin{aligned}
\neg A & \leftrightarrow \exists x \forall y \exists z \neg P(x, y, z) \\
& \leftrightarrow \exists x, \xi^{Y \rightarrow Z} \forall y \neg P(x, y, \xi(y)) \\
\neg \neg A & \leftrightarrow \forall x, \xi \exists y \neg \neg P(x, y, \xi(y)) \\
& \leftrightarrow \forall x, \xi \exists y P(x, y, \xi(y))
\end{aligned}
$$

Over classical logic

$$
\underbrace{\forall x \exists y \forall z P(x, y, z)}_{y \text { ideal (for all } z \text {) }} \leftrightarrow \underbrace{\forall x, \xi \exists y P(x, y, \xi(y))}_{y \text { approximate relative to } \xi}
$$

but we can realize the R.H.S.

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary function.
Infinitary. For any $x \in \mathbb{N}$ there exists some $y \geq x$ such that

$$
\forall z[z \geq x \rightarrow f(y) \leq f(z)] .
$$

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary function.
Infinitary. For any $x \in \mathbb{N}$ there exists some $y \geq x$ such that

$$
\forall z[z \geq x \rightarrow f(y) \leq f(z)] .
$$

Finitary. For any $x \in \mathbb{N}$ and $\xi: \mathbb{N} \rightarrow \mathbb{N}$ there exists some $y \geq x$ such that

$$
\xi(y) \geq y \rightarrow f(y) \leq f(\xi(y)) .
$$

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary function.
Infinitary. For any $x \in \mathbb{N}$ there exists some $y \geq x$ such that

$$
\forall z[z \geq x \rightarrow f(y) \leq f(z)] .
$$

Finitary. For any $x \in \mathbb{N}$ and $\xi: \mathbb{N} \rightarrow \mathbb{N}$ there exists some $y \geq x$ such that

$$
\xi(y) \geq y \rightarrow f(y) \leq f(\xi(y)) .
$$

We can compute y by learning, as follows:

$$
y:= \begin{cases}x & \text { if } \xi(x) \geq x \rightarrow f(x) \leq f(\xi(x)) \\ \xi(x) & \text { if } \xi^{(2)}(x) \geq \xi(x) \rightarrow f(\xi(x)) \leq f\left(\xi^{(2)}(x)\right) \\ \xi^{(2)}(x) & \text { if } \xi^{(3)}(x) \geq \xi^{(2)}(x) \rightarrow f\left(\xi^{(2)}(x)\right) \leq f\left(\xi^{(3)}(x)\right) \\ \cdots & \cdots\end{cases}
$$

Terminates since otherwise we'd have $f(x)>f(\xi(x))>f\left(\xi^{(2)}(x)\right)>\ldots$

A more interesting example: Cauchy convergence of a monotone sequence $\left(a_{i}\right) \in[0,1]^{\omega}$

Infinitary. For any x there exists y such that $i, j \geq y$ implies $\left|a_{i}-a_{j}\right|<2^{-x}$.
Finitary (T. Tao). For any x and $\xi: \mathbb{N} \rightarrow \mathbb{N}$ there exists Y such that any $0 \leq a_{0} \leq \ldots \leq a_{Y} \leq 1$ there exists y with $0 \leq y<y+\xi(y) \leq Y$ such that $\left|a_{i}-a_{j}\right|<2^{-x}$ for all $y \leq i, j \leq \xi(y)$.

Moreover, we can show that $Y \leq(\lambda i . i+\xi(i))^{\left(2^{x}\right)}(0)$.

The general problem of constructing a realizer for a finitary formulation of a classical theorem is highly non-trivial. We can appeal to Gödel's functional interpretation (more precisely his ND interpretation):

$$
A \rightsquigarrow A\urcorner\urcorner \rightsquigarrow \exists x \forall y \mid A\urcorner\urcorner\left.\right|_{y} ^{x}
$$

which allows us to extract from a proof \mathcal{P} of A a term t satisfying $\forall y \mid A\urcorner\left.\neg\right|_{y} ^{t}$

The general problem of constructing a realizer for a finitary formulation of a classical theorem is highly non-trivial. We can appeal to Gödel's functional interpretation (more precisely his ND interpretation):

$$
A \rightsquigarrow A\urcorner\urcorner \rightsquigarrow \exists x \forall y \mid A\urcorner\urcorner\left.\right|_{y} ^{x}
$$

which allows us to extract from a proof \mathcal{P} of A a term t satisfying $\forall y \mid A\urcorner\urcorner\left.\right|_{y} ^{t}$
However, a brute force extraction can yield terms which are highly inefficient and difficult to understand.

The general problem of constructing a realizer for a finitary formulation of a classical theorem is highly non-trivial. We can appeal to Gödel's functional interpretation (more precisely his ND interpretation):

$$
A \rightsquigarrow A\urcorner\urcorner \rightsquigarrow \exists x \forall y \mid A\urcorner\urcorner\left.\right|_{y} ^{x}
$$

which allows us to extract from a proof \mathcal{P} of A a term t satisfying $\forall y \mid A\urcorner\left.\neg\right|_{y} ^{t}$
However, a brute force extraction can yield terms which are highly inefficient and difficult to understand.

Given the wide range of applications of the functional interpretation in modern proof theory, it can be extremely useful to devise refinements of the functional interpretation which help us extract better terms.

The general problem of constructing a realizer for a finitary formulation of a classical theorem is highly non-trivial. We can appeal to Gödel's functional interpretation (more precisely his ND interpretation):

$$
A \rightsquigarrow A\urcorner\urcorner \rightsquigarrow \exists x \forall y \mid A\urcorner\urcorner\left.\right|_{y} ^{x}
$$

which allows us to extract from a proof \mathcal{P} of A a term t satisfying $\forall y \mid A\urcorner\left.\neg\right|_{y} ^{t}$
However, a brute force extraction can yield terms which are highly inefficient and difficult to understand.

Given the wide range of applications of the functional interpretation in modern proof theory, it can be extremely useful to devise refinements of the functional interpretation which help us extract better terms.

My paper presents one such refinement, which enriches the usual interpreting system of higher type recursors with learning algorithms that produce realizing terms which are more efficient and intuitive.

The intuition behind Learning Algorithms

Suppose we have a decidable predicate G on X, and we want to find some $x \in X$ satisfying $\mathrm{G}(x)$.

The intuition behind learning algorithms

Suppose we have a decidable predicate G on X, and we want to find some $x \in X$ satisfying $\mathrm{G}(x)$.

Let's take some arbitrary x_{0}. If $\mathrm{G}\left(x_{0}\right)$ holds then we're done. On the other hand, if $\neg \mathrm{G}\left(x_{0}\right)$ and we fail we often learn a useful piece of constructive information $\xi\left(x_{0}\right)$.

The intuition behind learning algorithms

Suppose we have a decidable predicate G on X, and we want to find some $x \in X$ satisfying $\mathrm{G}(x)$.

Let's take some arbitrary x_{0}. If $\mathrm{G}\left(x_{0}\right)$ holds then we're done. On the other hand, if $\neg \mathrm{G}\left(x_{0}\right)$ and we fail we often learn a useful piece of constructive information $\xi\left(x_{0}\right)$.

We can then use this to update our original guess with a better one $x_{1}:=x_{0} \oplus \xi\left(x_{0}\right)$, and continue:

The intuition behind learning algorithms

Suppose we have a decidable predicate G on X, and we want to find some $x \in X$ satisfying $\mathrm{G}(x)$.

Let's take some arbitrary x_{0}. If $\mathrm{G}\left(x_{0}\right)$ holds then we're done. On the other hand, if $\neg \mathrm{G}\left(x_{0}\right)$ and we fail we often learn a useful piece of constructive information $\xi\left(x_{0}\right)$.

We can then use this to update our original guess with a better one $x_{1}:=x_{0} \oplus \xi\left(x_{0}\right)$, and continue:

$$
x:= \begin{cases}x_{0} & \text { if } \mathrm{G}\left(x_{0}\right) \\ x_{1}:=x_{0} \oplus \xi\left(x_{0}\right) & \text { if } \mathrm{G}\left(x_{1}\right) \\ x_{2}:=x_{1} \oplus \xi\left(x_{1}\right) & \text { if } \mathrm{G}\left(x_{2}\right) \\ \cdots & \ldots\end{cases}
$$

The idea is that we eventually reach some x_{k} satisfying $\mathrm{G}\left(x_{k}\right)$.

LEARNING ALGORITHMS - A FORMAL DEFINITION

A learning algorithm of type X, L is a tuple $\mathcal{L}=(\mathrm{G}, \xi, \oplus)$ where

- $\mathrm{G}: X \rightarrow \mathbb{B}$ is a decidable predicate which tests whether an element $x \in X$ is 'good';
- $\xi: X \rightarrow L$ and $\oplus: X \times L \rightarrow X$ are responsible for learning, and will be used to map bad objects $x \in X$ to improvements $x \oplus \xi(x)$;

LEARNING ALGORITHMS - A FORMAL DEFINITION

A learning algorithm of type X, L is a tuple $\mathcal{L}=(\mathrm{G}, \xi, \oplus)$ where

- $\mathrm{G}: X \rightarrow \mathbb{B}$ is a decidable predicate which tests whether an element $x \in X$ is 'good';
- $\xi: X \rightarrow L$ and $\oplus: X \times L \rightarrow X$ are responsible for learning, and will be used to map bad objects $x \in X$ to improvements $x \oplus \xi(x)$;

The learning procedure $\mathcal{L}[x]$ starting at $x \in X$ is a sequence $\left(x_{i}\right) \in X^{\mathbb{N}}$ defined by

$$
x_{0}:=x \quad \text { and } \quad x_{i+1}:= \begin{cases}x_{i} & \text { if } \mathrm{G}\left(x_{i}\right) \\ x_{i} \oplus \xi\left(x_{i}\right) & \text { if } \neg \mathrm{G}\left(x_{i}\right)\end{cases}
$$

LEARNING ALGORITHMS - A FORMAL DEFINITION

A learning algorithm of type X, L is a tuple $\mathcal{L}=(\mathrm{G}, \xi, \oplus)$ where

- $\mathrm{G}: X \rightarrow \mathbb{B}$ is a decidable predicate which tests whether an element $x \in X$ is 'good';
- $\xi: X \rightarrow L$ and $\oplus: X \times L \rightarrow X$ are responsible for learning, and will be used to map bad objects $x \in X$ to improvements $x \oplus \xi(x)$;

The learning procedure $\mathcal{L}[x]$ starting at $x \in X$ is a sequence $\left(x_{i}\right) \in X^{\mathbb{N}}$ defined by

$$
x_{0}:=x \quad \text { and } \quad x_{i+1}:= \begin{cases}x_{i} & \text { if } \mathrm{G}\left(x_{i}\right) \\ x_{i} \oplus \xi\left(x_{i}\right) & \text { if } \neg \mathrm{G}\left(x_{i}\right)\end{cases}
$$

The limit of $\mathcal{L}[x]$ is defined as

$$
\lim \mathcal{L}[x]:=x_{k}
$$

where x_{k} is the least point satisfying $\mathrm{G}\left(x_{k}\right)$ (whenever it exists).

Rough idea. Suppose that $\exists x A(x)$ is a classical theorem, and

$$
\forall \xi \exists x A_{\xi}^{\prime}(x, \xi)
$$

a finitization of A. Then x can be computed in the limit of a learning procedure parametrised by ξ :

$$
x:=F\left(\lim \mathcal{L}_{\xi}\left[x_{0}\right]\right)
$$

for some x_{0}.

Rough idea. Suppose that $\exists x A(x)$ is a classical theorem, and

$$
\forall \xi \exists x A_{\xi}^{\prime}(x, \xi)
$$

a finitization of A. Then x can be computed in the limit of a learning procedure parametrised by ξ :

$$
x:=F\left(\lim \mathcal{L}_{\xi}\left[x_{0}\right]\right)
$$

for some x_{0}.

This idea is made precise in the paper, where a collection of concrete results of this kind are given, relating Gödel's functional interpretation of induction and comprehension principles to learning procedures.

In the remainder of the talk, however, I will simply give some illustrations.

Example 1: The quantifier-free minimum principle
QFMin : $\exists x P(x) \rightarrow \exists y(P(y) \wedge \forall z \prec y \neg P(z))$.

Example 1: The quantifier-free minimum principle

$$
\text { QFMin : } \exists x P(x) \rightarrow \exists y(P(y) \wedge \forall z \prec y \neg P(z)) \text {. }
$$

This has an ND interpretation given by

$$
\text { (*) } \forall x, \xi \exists y(P(x) \rightarrow P(y) \wedge(\xi(y) \prec y \rightarrow \neg P(\xi(y))))
$$

"For all x, ξ there exists some y such that whenever $P(x)$ holds then $P(y)$ holds and y is approximately minimal with respect to $\xi(y)$ "

Example 1: The quantifier-free minimum principle

$$
\text { QFMin : } \exists x P(x) \rightarrow \exists y(P(y) \wedge \forall z \prec y \neg P(z)) \text {. }
$$

This has an ND interpretation given by

$$
(*) \forall x, \xi \exists y(P(x) \rightarrow P(y) \wedge(\xi(y) \prec y \rightarrow \neg P(\xi(y))))
$$

"For all x, ξ there exists some y such that whenever $P(x)$ holds then $P(y)$ holds and y is approximately minimal with respect to $\xi(y)$ "

We can compute y in x and ξ using the following idea

$$
y:= \begin{cases}x & \text { if } \xi(x) \prec x \rightarrow \neg P(\xi(x)) \\ \xi(x) & \text { if } \xi^{(2)}(x) \prec \xi(x) \rightarrow \neg P\left(\xi^{(2)}(x)\right) \\ \xi^{(2)}(x) & \text { if } \ldots \\ \cdots & \cdots\end{cases}
$$

Theorem. Define $\mathcal{L}_{\xi}:=\left(\mathrm{G}_{\xi}, \xi, \pi_{2}\right)$ where

$$
\mathrm{G}_{\xi}(x) \leftrightarrow[\xi(x) \prec x \rightarrow \neg P(\xi(x))] .
$$

Then the ND interpretation of QFMin, given by

$$
\forall x, \xi \exists y(P(x) \rightarrow P(y) \wedge(\xi(y) \prec y \rightarrow \neg P(\xi(y))))
$$

is realized by

$$
\lambda x, \xi \cdot \lim \mathcal{L}_{\xi}[x] .
$$

Remark. A general result dealing with well-founded induction for arbitrary formulas and relations \prec is given in the paper.

Example 2, following (Schwichtenberg 2008). For any two natural numbers $a, b>0$ there exist integers m, n such that $a m+b n \mid a, b$.

Classical proof. Use a variant of QFMin relative to the ordering $(x, y) \prec\left(x^{\prime}, y^{\prime}\right):=a x+b y<a x^{\prime}+b y^{\prime}$.

Example 2, following (Schwichtenberg 2008). For any two natural numbers $a, b>0$ there exist integers m, n such that $a m+b n \mid a, b$.

Classical proof. Use a variant of QFMin relative to the ordering $(x, y) \prec\left(x^{\prime}, y^{\prime}\right):=a x+b y<a x^{\prime}+b y^{\prime}$.

A program for computing m, n in a, b can be extracted, namely a learning procedure of type $\left(\mathbb{N}^{(2)}\right)^{*}, \mathbb{N}^{(2)}$ given by

$$
(m, n):=\operatorname{tail}\left(\lim \mathcal{L}_{a, b}\left[\left\langle e_{0}, e_{1}\right\rangle\right]\right)
$$

where $\mathcal{L}_{a, b}=\left(\mathrm{G}_{a, b}, \xi_{a, b},::\right)$ for

- $\mathrm{G}_{a, b}(s) \leftrightarrow \operatorname{rem}\left(s_{l-2} \cdot(a, b), s_{l-1} \cdot(a, b)\right)=0$
- $\xi_{a, b}(s) \leftrightarrow s_{l-2}-\operatorname{quot}\left(s_{l-2} \cdot(a, b), s_{l-1} \cdot(a, b)\right) s_{l-1}$
- $s:: x:=\left\langle s_{0}, \ldots, s_{l-1}, x\right\rangle$.

Example 2, following (Schwichtenberg 2008). For any two natural numbers $a, b>0$ there exist integers m, n such that $a m+b n \mid a, b$.

Classical proof. Use a variant of QFMin relative to the ordering $(x, y) \prec\left(x^{\prime}, y^{\prime}\right):=a x+b y<a x^{\prime}+b y^{\prime}$.

A program for computing m, n in a, b can be extracted, namely a learning procedure of type $\left(\mathbb{N}^{(2)}\right)^{*}, \mathbb{N}^{(2)}$ given by

$$
(m, n):=\operatorname{tail}\left(\lim \mathcal{L}_{a, b}\left[\left\langle e_{0}, e_{1}\right\rangle\right]\right)
$$

where $\mathcal{L}_{a, b}=\left(\mathrm{G}_{a, b}, \xi_{a, b},::\right)$ for

- $\mathrm{G}_{a, b}(s) \leftrightarrow \operatorname{rem}\left(s_{l-2} \cdot(a, b), s_{l-1} \cdot(a, b)\right)=0$
- $\xi_{a, b}(s) \leftrightarrow s_{l-2}-\operatorname{quot}\left(s_{l-2} \cdot(a, b), s_{l-1} \cdot(a, b)\right) s_{l-1}$
- $s:: x:=\left\langle s_{0}, \ldots, s_{l-1}, x\right\rangle$.

This is just the Euclidean algorithm!

Meta-Example: The double negation shift

$$
\text { DNS : } \forall n \neg \neg \exists x^{X} \forall y P_{n}(x, y) \rightarrow \neg \neg \forall n \exists x \forall y P_{n}(x, y)
$$

Meta-Example: The double negation shift

$$
\text { DNS : } \forall n \neg \neg \exists x^{X} \forall y P_{n}(x, y) \rightarrow \neg \neg \forall n \exists x \forall y P_{n}(x, y)
$$

This has a (partial) functional interpretation given by

$$
\underbrace{\forall n, \xi \exists x P_{n}(x, \xi(x))} \rightarrow \underbrace{\forall \omega, \varphi \exists \alpha^{X^{\mathbb{N}}} P_{\omega \alpha}(\alpha(\omega \alpha), \varphi \alpha)}
$$

"If, for each n, P_{n} is approximately witnessed by some $x \in X$ relative to ξ, then we can produce a 'global' witness $\alpha \in X^{\mathbb{N}}$ for the conclusion which is approximately correct relative to $\varphi \alpha$ at point $\omega \alpha$ "

$$
\text { DNS: } \forall n \neg \neg \exists x^{X} \forall y P_{n}(x, y) \rightarrow \neg \neg \forall n \exists x \forall y P_{n}(x, y)
$$

This has a (partial) functional interpretation given by

$$
\underbrace{\forall n, \xi \exists x P_{n}(x, \xi(x))}_{\left(\mathcal{L}_{n, \xi}\right)_{n<\infty}} \rightarrow \underbrace{\forall \omega, \varphi \exists \alpha^{\mathbb{N}} P_{\omega \alpha}(\alpha(\omega \alpha), \varphi \alpha)}_{\mathcal{L}_{\infty,(\omega, \varphi)}}
$$

"If, for each n, P_{n} is approximately witnessed by some $x \in X$ relative to ξ, then we can produce a 'global' witness $\alpha \in X^{\mathbb{N}}$ for the conclusion which is approximately correct relative to $\varphi \alpha$ at point $\omega \alpha$ "

Is there some sort of formal construction from a collection of 'pointwise' learning algorithms to a 'global' learning algorithm:

$$
\left(\mathcal{L}_{n, \xi}\right)_{n<\infty} \mapsto \mathcal{L}_{\infty,(\omega, \phi)} ?
$$

$$
\text { DNS: } \forall n \neg \neg \exists x^{X} \forall y P_{n}(x, y) \rightarrow \neg \neg \forall n \exists x \forall y P_{n}(x, y)
$$

This has a (partial) functional interpretation given by

$$
\underbrace{\forall n, \xi \exists x P_{n}(x, \xi(x))}_{\left(\mathcal{L}_{n, \xi}\right)_{n<\infty}} \rightarrow \underbrace{\forall \omega, \varphi \exists \alpha^{\mathbb{N}} P_{\omega \alpha}(\alpha(\omega \alpha), \varphi \alpha)}_{\mathcal{L}_{\infty,(\omega, \varphi)}}
$$

"If, for each n, P_{n} is approximately witnessed by some $x \in X$ relative to ξ, then we can produce a 'global' witness $\alpha \in X^{\mathbb{N}}$ for the conclusion which is approximately correct relative to $\varphi \alpha$ at point $\omega \alpha$ "

Is there some sort of formal construction from a collection of 'pointwise' learning algorithms to a 'global' learning algorithm:

$$
\left(\mathcal{L}_{n, \xi}\right)_{n<\infty} \mapsto \mathcal{L}_{\infty,(\omega, \phi)} ?
$$

Yes! But I will just give an illustration here.

Example 3: Law of excluded middle for Σ_{1}^{0}-Formulas

$$
\begin{aligned}
& \forall n \exists b^{\mathbb{B}}\left(\exists x Q_{n}(x) \vee_{b} \forall y \neg Q_{n}(y)\right) \\
& \rightsquigarrow \forall n \exists b, x \forall y\left(Q_{n}(x) \vee_{b} \neg Q_{n}(y)\right)
\end{aligned}
$$

Example 3: Law of excluded middle for Σ_{1}^{0}-Formulas

$$
\begin{aligned}
\forall n \exists b^{\mathbb{B}}\left(\exists x Q_{n}(x) \vee_{b} \forall y \neg Q_{n}(y)\right) \\
\rightsquigarrow \forall n \exists b, x \forall y\left(Q_{n}(x) \vee_{b} \neg Q_{n}(y)\right)
\end{aligned}
$$

This has a functional interpretation given by

$$
\forall n, \xi \exists b, x\left(Q_{n}(x) \vee_{b} \neg Q_{n}(\xi(b, x))\right)
$$

Example 3: Law of excluded middle for Σ_{1}^{0}-Formulas

$$
\begin{aligned}
\forall n \exists b^{\mathbb{B}}\left(\exists x Q_{n}(x) \vee_{b} \forall y \neg Q_{n}(y)\right) \\
\rightsquigarrow \forall n \exists b, x \forall y\left(Q_{n}(x) \vee_{b} \neg Q_{n}(y)\right)
\end{aligned}
$$

This has a functional interpretation given by

$$
\forall n, \xi \exists b, x\left(Q_{n}(x) \vee_{b} \neg Q_{n}(\xi(b, x))\right)
$$

which is realized by a learning procedure of length at most two:

$$
b, x= \begin{cases}\perp, 0 & \text { if } \neg Q_{n}(\xi(\perp, 0)) \\ \top, \xi(\perp, 0) & \text { otherwise. }\end{cases}
$$

Example 4: Σ_{1}^{0}-ARITHMETIC COMPREHENSION

$$
\exists \alpha^{\mathbb{N} \rightarrow \mathbb{B} \times \mathbb{N} \forall n \forall y\left[Q_{n}\left(\alpha(n)_{1}\right) \vee_{\alpha(n)_{0}} \neg Q_{n}(y)\right]}
$$

Example 4: Σ_{1}^{0}-ARITHMETIC COMPREHENSION

$$
\exists \alpha^{\mathbb{N} \rightarrow \mathbb{B} \times \mathbb{N}} \forall n \forall y\left[Q_{n}\left(\alpha(n)_{1}\right) \vee_{\alpha(n)_{0}} \neg Q_{n}(y)\right]
$$

i.e. $\alpha(n)_{0} \in \mathbb{B}$ indicates the truth of $\exists x Q_{n}(x)$ and $\alpha(n)_{1} \in \mathbb{N}$ provides a witness. This has a functional interpretation given by

$$
\forall \omega, \varphi \exists \alpha\left[Q_{\omega \alpha}\left(\alpha(\omega \alpha)_{1}\right) \vee_{\alpha(\omega \alpha)_{0}} \neg Q_{\omega \alpha}(\varphi \alpha)\right]
$$

ExAmple 4: Σ_{1}^{0}-ARITHMETIC COMPREHENSION

$$
\exists \alpha^{\mathbb{N} \rightarrow \mathbb{B} \times \mathbb{N}} \forall n \forall y\left[Q_{n}\left(\alpha(n)_{1}\right) \vee_{\alpha(n)_{0}} \neg Q_{n}(y)\right]
$$

i.e. $\alpha(n)_{0} \in \mathbb{B}$ indicates the truth of $\exists x Q_{n}(x)$ and $\alpha(n)_{1} \in \mathbb{N}$ provides a witness. This has a functional interpretation given by

$$
\forall \omega, \varphi \exists \alpha\left[Q_{\omega \alpha}\left(\alpha(\omega \alpha)_{1}\right) \vee_{\alpha(\omega \alpha)_{0}} \neg Q_{\omega \alpha}(\varphi \alpha)\right]
$$

which can be realized by a learning procedure on $\mathbb{N} \rightarrow \mathbb{B} \times \mathbb{N}$ of unbounded length, but of 'pointwise' length at most two.

Summary. For the instance of DNS given by

$$
\forall n \neg \neg \exists b, x \forall y\left[Q_{n}(x) \vee_{b} \neg Q_{n}(y)\right] \rightarrow \neg \neg \forall n \exists b, x \forall y\left[Q_{n}(x) \vee_{b} Q_{n}(y)\right]
$$

we have $\left(\mathcal{L}_{n, \xi}\right)_{n<\infty}$ given by

$$
b, x= \begin{cases}\perp, 0 & \text { if } \neg Q_{n}(\xi(\perp, 0)) \\ \top, \xi(\perp, 0) & \text { otherwise. }\end{cases}
$$

and $\mathcal{L}_{\infty,(\omega, \varphi)}$ given by

$$
\alpha= \begin{cases}{[]=\lambda n \cdot(\perp, 0)=: \alpha_{0}} & \text { if } \neg Q_{\omega \alpha_{0}}\left(\varphi \alpha_{0}\right) \\ {\left[\omega \alpha_{0} \mapsto\left(\top, \varphi \alpha_{0}\right)\right]=: \alpha_{1}} & \text { if } \alpha_{1}\left(\omega \alpha_{1}\right)_{0}=\perp \rightarrow \neg Q_{\omega \alpha_{1}}\left(\varphi \alpha_{1}\right) \\ {\left[\omega \alpha_{0} \mapsto\left(\top, \varphi \alpha_{0}\right), \omega \alpha_{1} \mapsto\left(\top, \varphi \alpha_{1}\right)\right]} & \text { if } \ldots \\ \cdots & \cdots\end{cases}
$$

Directions for the future

- To establish new complexity results on the length of learning procedures extracted from proofs.
- Try to link our approach to other computational interpretations of classical logic based on learning e.g. the Aschieri-Berardi learning realizability (Aschieri-Berardi 2010).
- Formalise everything so that learning procedures can be automatically extracted, and resulting programs decorated with information indicating how they behave.
- Extend the idea to stronger subsystems of mathematics. I conjecture that weak forms of Zorn's lemma of the kind used to prove Kruskal's theorem can be interpreted via a learning procedure which computes approximations to maximal elements in chain complete posets.

