
Gödel’s functional interpretation and the concept of
learning

Thomas Powell

University of Innsbruck

Logic in Computer Science (LICS’16)

Columbia University, New York

United States of America

5 July 2016

Thomas Powell (Innsbruck) 5 July 2016 1 / 17



What is the computational meaning of classical reasoning?

One could consider the ‘finitized’ version of classical theorems:

A : there exists an ideal object x.

Afin : there exist finite approximations to x of arbitrary high quality.

Over classical logic, A ↔ Afin.

While ideal objects cannot be effectively constructed, finite approximations to
them can.

This talk is about algorithms which compute such approximations.
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What is the computational meaning of a Π3-theorem?

A :≡ ∀xX∃yY ∀zZP (x, y, z)

In general we cannot hope to produce a direct computable witness for ∃y. But
suppose we double negate and Skolemize:

¬A↔ ∃x∀y∃z¬P (x, y, z)

↔ ∃x, ξY→Z∀y¬P (x, y, ξ(y))

¬¬A↔ ∀x, ξ∃y¬¬P (x, y, ξ(y))

↔ ∀x, ξ∃y P (x, y, ξ(y))

Over classical logic

∀x∃y∀zP (x, y, z)︸ ︷︷ ︸
y ideal (for all z)

↔ ∀x, ξ∃yP (x, y, ξ(y))︸ ︷︷ ︸
y approximate relative to ξ

but we can realize the R.H.S.
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Let f : N→ N be an arbitrary function.

Infinitary. For any x ∈ N there exists some y ≥ x such that

∀z[z ≥ x→ f(y) ≤ f(z)].

Finitary. For any x ∈ N and ξ : N→ N there exists some y ≥ x such that

ξ(y) ≥ y → f(y) ≤ f(ξ(y)).

We can compute y by learning, as follows:

y :=


x if ξ(x) ≥ x→ f(x) ≤ f(ξ(x))

ξ(x) if ξ(2)(x) ≥ ξ(x)→ f(ξ(x)) ≤ f(ξ(2)(x))

ξ(2)(x) if ξ(3)(x) ≥ ξ(2)(x)→ f(ξ(2)(x)) ≤ f(ξ(3)(x))

· · · · · ·

Terminates since otherwise we’d have f(x) > f(ξ(x)) > f(ξ(2)(x)) > . . .
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A more interesting example: Cauchy convergence of a monotone sequence
(ai) ∈ [0, 1]ω

Infinitary. For any x there exists y such that i, j ≥ y implies |ai − aj | < 2−x.

Finitary (T. Tao). For any x and ξ : N→ N there exists Y such that any
0 ≤ a0 ≤ . . . ≤ aY ≤ 1 there exists y with 0 ≤ y < y + ξ(y) ≤ Y such that
|ai − aj | < 2−x for all y ≤ i, j ≤ ξ(y).

Moreover, we can show that Y ≤ (λi.i+ ξ(i))(2x)(0).
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The general problem of constructing a realizer for a finitary formulation of a
classical theorem is highly non-trivial. We can appeal to Gödel’s functional
interpretation (more precisely his ND interpretation):

A A¬¬  ∃x∀y|A¬¬|xy

which allows us to extract from a proof P of A a term t satisfying ∀y|A¬¬|ty

However, a brute force extraction can yield terms which are highly inefficient
and difficult to understand.

Given the wide range of applications of the functional interpretation in
modern proof theory, it can be extremely useful to devise refinements of the
functional interpretation which help us extract better terms.

My paper presents one such refinement, which enriches the usual interpreting
system of higher type recursors with learning algorithms that produce
realizing terms which are more efficient and intuitive.
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The intuition behind learning algorithms

Suppose we have a decidable predicate G on X, and we want to find some
x ∈ X satisfying G(x).

Let’s take some arbitrary x0. If G(x0) holds then we’re done. On the other
hand, if ¬G(x0) and we fail we often learn a useful piece of constructive
information ξ(x0).

We can then use this to update our original guess with a better one
x1 := x0 ⊕ ξ(x0), and continue:

x :=


x0 if G(x0)

x1 := x0 ⊕ ξ(x0) if G(x1)

x2 := x1 ⊕ ξ(x1) if G(x2)

· · · · · ·

The idea is that we eventually reach some xk satisfying G(xk).
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Learning algorithms - a formal definition

A learning algorithm of type X, L is a tuple L = (G, ξ,⊕) where

G : X → B is a decidable predicate which tests whether an element x ∈ X
is ‘good’;

ξ : X → L and ⊕ : X × L→ X are responsible for learning, and will be
used to map bad objects x ∈ X to improvements x⊕ ξ(x);

The learning procedure L[x] starting at x ∈ X is a sequence (xi) ∈ XN defined
by

x0 := x and xi+1 :=

{
xi if G(xi)

xi ⊕ ξ(xi) if ¬G(xi)

The limit of L[x] is defined as

limL[x] := xk

where xk is the least point satisfying G(xk) (whenever it exists).
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Rough idea. Suppose that ∃xA(x) is a classical theorem, and

∀ξ∃xA′ξ(x, ξ)

a finitization of A. Then x can be computed in the limit of a learning
procedure parametrised by ξ:

x := F (limLξ[x0])

for some x0.

This idea is made precise in the paper, where a collection of concrete results of
this kind are given, relating Gödel’s functional interpretation of induction and
comprehension principles to learning procedures.

In the remainder of the talk, however, I will simply give some illustrations.
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Example 1: The quantifier-free minimum principle

QFMin : ∃xP (x)→ ∃y(P (y) ∧ ∀z ≺ y¬P (z)).

This has an ND interpretation given by

(∗) ∀x, ξ∃y(P (x)→ P (y) ∧ (ξ(y) ≺ y → ¬P (ξ(y))))

“For all x, ξ there exists some y such that whenever P (x) holds then P (y)
holds and y is approximately minimal with respect to ξ(y)”

We can compute y in x and ξ using the following idea

y :=


x if ξ(x) ≺ x→ ¬P (ξ(x))

ξ(x) if ξ(2)(x) ≺ ξ(x)→ ¬P (ξ(2)(x))

ξ(2)(x) if . . .

· · · · · ·
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Theorem. Define Lξ := (Gξ, ξ, π2) where

Gξ(x)↔ [ξ(x) ≺ x→ ¬P (ξ(x))].

Then the ND interpretation of QFMin, given by

∀x, ξ∃y(P (x)→ P (y) ∧ (ξ(y) ≺ y → ¬P (ξ(y))))

is realized by
λx, ξ . limLξ[x].

Remark. A general result dealing with well-founded induction for arbitrary
formulas and relations ≺ is given in the paper.
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Example 2, following (Schwichtenberg 2008). For any two natural
numbers a, b > 0 there exist integers m,n such that am+ bn | a, b.

Classical proof. Use a variant of QFMin relative to the ordering
(x, y) ≺ (x′, y′) := ax+ by < ax′ + by′.

A program for computing m,n in a, b can be extracted, namely a learning
procedure of type (N(2))∗, N(2) given by

(m,n) := tail(limLa,b[〈e0, e1〉])

where La,b = (Ga,b, ξa,b, ::) for

Ga,b(s)↔ rem(sl−2 · (a, b), sl−1 · (a, b)) = 0

ξa,b(s)↔ sl−2 − quot(sl−2 · (a, b), sl−1 · (a, b))sl−1

s :: x := 〈s0, . . . , sl−1, x〉.
This is just the Euclidean algorithm!
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Meta-example: The double negation shift

DNS : ∀n¬¬∃xX∀yPn(x, y)→ ¬¬∀n∃x∀yPn(x, y)

This has a (partial) functional interpretation given by

∀n, ξ∃xPn(x, ξ(x))︸ ︷︷ ︸
(Ln,ξ)n<∞

→ ∀ω, ϕ∃αX
N
Pωα(α(ωα), ϕα)︸ ︷︷ ︸
L∞,(ω,ϕ)

“If, for each n, Pn is approximately witnessed by some x ∈ X relative to ξ,
then we can produce a ‘global’ witness α ∈ XN for the conclusion which is
approximately correct relative to ϕα at point ωα”

Is there some sort of formal construction from a collection of ‘pointwise’
learning algorithms to a ‘global’ learning algorithm:

(Ln,ξ)n<∞ 7→ L∞,(ω,φ)?

Yes! But I will just give an illustration here.
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Example 3: Law of excluded middle for Σ0
1-formulas

∀n∃bB(∃xQn(x) ∨b ∀y¬Qn(y))

 ∀n∃b, x∀y(Qn(x) ∨b ¬Qn(y))

This has a functional interpretation given by

∀n, ξ∃b, x(Qn(x) ∨b ¬Qn(ξ(b, x)))

which is realized by a learning procedure of length at most two:

b, x =

{
⊥, 0 if ¬Qn(ξ(⊥, 0))

>, ξ(⊥, 0) otherwise.
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Example 4: Σ0
1-arithmetic comprehension

∃αN→B×N∀n∀y[Qn(α(n)1) ∨α(n)0 ¬Qn(y)]

i.e. α(n)0 ∈ B indicates the truth of ∃xQn(x) and α(n)1 ∈ N provides a
witness. This has a functional interpretation given by

∀ω, ϕ∃α[Qωα(α(ωα)1) ∨α(ωα)0 ¬Qωα(ϕα)]

which can be realized by a learning procedure on N→ B× N of unbounded
length, but of ‘pointwise’ length at most two.

α =



[ ]︸︷︷︸
α0

:= λn.(⊥, 0) if ¬Qωα0
(ϕα0)

[ωα0 7→ (>, ϕα0)]︸ ︷︷ ︸
α1

if α1(ωα1)0 = ⊥ → ¬Qωα1
(ϕα1)

[ωα0 7→ (>, ϕα0), ωα1 7→ (>, ϕα1)]︸ ︷︷ ︸
α2

if α2(ωα2)0 = ⊥ → ¬Qωα2
(ϕα2)

· · · · · ·
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Summary. For the instance of DNS given by

∀n¬¬∃b, x∀y[Qn(x) ∨b ¬Qn(y)]→ ¬¬∀n∃b, x∀y[Qn(x) ∨b Qn(y)]

we have (Ln,ξ)n<∞ given by

b, x =

{
⊥, 0 if ¬Qn(ξ(⊥, 0))

>, ξ(⊥, 0) otherwise.

and L∞,(ω,ϕ) given by

α =


[ ] = λn.(⊥, 0) =: α0 if ¬Qωα0

(ϕα0)

[ωα0 7→ (>, ϕα0)] =: α1 if α1(ωα1)0 = ⊥ → ¬Qωα1
(ϕα1)

[ωα0 7→ (>, ϕα0), ωα1 7→ (>, ϕα1)] if . . .

· · · · · ·
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Directions for the future

- To establish new complexity results on the length of learning procedures
extracted from proofs.

- Try to link our approach to other computational interpretations of classical
logic based on learning e.g. the Aschieri-Berardi learning realizability
(Aschieri-Berardi 2010).

- Formalise everything so that learning procedures can be automatically
extracted, and resulting programs decorated with information indicating how
they behave.

- Extend the idea to stronger subsystems of mathematics. I conjecture that
weak forms of Zorn’s lemma of the kind used to prove Kruskal’s theorem can
be interpreted via a learning procedure which computes approximations to
maximal elements in chain complete posets.
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