
A constructive interpretation of open induction

Thomas Powell

University of Innsbruck

Dagstuhl Seminar on

Well Quasi-Orders in Computer Science

Leibniz-Zentrum für Informatik

Germany

22 January 2016

Thomas Powell (Innsbruck) Open induction 22 January 2016 1 / 18

A map of the talk:

1. A very quick introduction to (a) open induction (b) Gödel’s functional
(Dialectica) intepretation;

2. A short discussion on the functional interpretation of induction principles;

3. A list of questions and directions for future research!

Thomas Powell (Innsbruck) Open induction 22 January 2016 2 / 18

A partial order (X,≺) is chain complete if every non-empty chain γ has a
greatest lower bound

∧
γ.

A predicate O is open if O(
∧
γ)→ ∃x ∈ γO(x).

The principle of open induction is given by

∀y(∀z ≺ yO(z)→ O(y))→ ∀xO(x),

which is classically equivalent to the minimum principle

∃x¬O(x)→ ∃y(¬O(y) ∧ ∀z ≺ yO(z))

Open induction is just Zorn’s lemma in disguise

Let S := {x ∈ X : ¬O(x)}. Openness of O means that every chain in S has a
lower bound in S. Then ∃x¬O(x) implies S is non-empty, therefore has a
minimal element y.

Thomas Powell (Innsbruck) Open induction 22 January 2016 3 / 18

Chain complete partial orders include:

(X,<) for is well-founded < (then any formula on X is open).

(N⇀ X,A) for partial functions with usual domain-theoretic ordering.

(N→ X,<lex) for sequences with lexicographic ordering.

Nash-Williams’ proof is just open induction (over <lex) in disguise

u ∈ XN is good ≡ ∃i < j(ui ≤ uj)

depends only on a finite initial segment of u, so an open property.

∃u(u is bad)→ ∃v(v is bad ∧ ∀w<lexv(w is good))︸ ︷︷ ︸
minimal bad sequence argument

Let vi = v′i ∗ xi. By Ramsey’s theorem xi0 < xi1 < . . . for some subsequence
(xij). Then

w := v0, . . . , vi0−1, v
′
i0 , v

′
i1 , . . .

satisfies w<lexv and thus w is good. But this implies v cannot be bad.

Thomas Powell (Innsbruck) Open induction 22 January 2016 4 / 18

What is the computational content of Higman’s lemma?

What is the computational content of open induction?

OO

What is the computational content of Zorn’s lemma?

OO

Thomas Powell (Innsbruck) Open induction 22 January 2016 5 / 18

What is the computational meaning of a Π3-theorem?

A :≡ ∀xX∃yY ∀zZP (x, y, z)

In general we cannot hope to produce a direct computable witness for ∃y. But
suppose we double negate and Skolemize:

¬A↔ ∃x∀y∃z¬P (x, y, z)

↔ ∃x, φY→Z∀y¬P (x, y, φ(y))

¬¬A↔ ∀x, φ∃y¬¬P (x, y, φ(y))

↔ ∀x, φ∃y P (x, y, φ(y))

We can typically extract some indirect computable witness

F : X → (Y → Z)→ Y

for ∃y in ¬¬A, i.e.
∀x, φ P (x, Fx,φ, φ(Fx,φ)).

Thomas Powell (Innsbruck) Open induction 22 January 2016 6 / 18

In the statement
A ≡ ∀x∃y∀zP (x, y, z),

y is an ideal object which works for all z. On the other hand, in the statement

A′ ≡ ∀x, φ∃yP (x, y, φ(y))

y is a finitary approximation to ideal object, which works for just φ(y). The
function φ can be seen as determining the size, or ‘quality’, of this
approximation.

Over classical logic A↔ A′, but A′ can be directly realized, unlike A.

Gödel’s Dialectica interpretation is a systematic way of doing this for
arbitrary A: A map A 7→ ∃x∀yA∗(x, y) for quantifier-free A∗ such that

P ` A⇒ P ′ ` ∀yA∗(t, y)

where t is a term extracted from the proof P.

Thomas Powell (Innsbruck) Open induction 22 January 2016 7 / 18

Take a very simple case of ‘open’ induction: ≺ well-founded, P decidable.

∃x¬P (x)→ ∃y(¬P (y) ∧ ∀z ≺ yP (z)).

This has a functional interpretation given by

∃x¬P (x)→ ¬¬∃y∀z(¬P (y) ∧ (z ≺ y → P (z)))

 ∃x¬P (x)→ ∀φ∃y(¬P (y) ∧ (φy ≺ y → P (φy)))

 ∀x, φ∃y(¬P (x)→ ¬P (y) ∧ (φy ≺ y → P (φy)))

“For all x, φ there exists some y such that whenever ¬P (x) then ¬P (y) and y
is approximately minimal with respect to φy”

We can witness y in x and φ using well-founded recursion over ≺:

y :=


x if φx ≺ x→ P (φx)

φx if φ(2)x ≺ φx→ P (φ(2)x)

φ(2)x if φ(3)x ≺ φ(2)x→ P (φ(3)x)
...

...

Thomas Powell (Innsbruck) Open induction 22 January 2016 8 / 18

Remark: For Σ1-formulas this becomes a lot more complex!

∃x¬∃iP (x, i)→ ∃y(¬∃jP (y, j) ∧ ∀z ≺ y∃kP (z, k)))

has a functional interpretation

∀x, φ∃i, y, g[¬P (x, i)→ ¬P (y, φ0yg) ∧ (φ1yg ≺ y → P (φ1yg, g(φyg)))]

Solution is given by (cf. Schwichtenberg 2008)

i := φ0xg
φ0
x

y :=



x, gφ0
x if φ̃1x ≺ x→ P (φ̃1x, gx(φ̃x))

φ̃x, gφ0

φ̃x
if φ̃

(2)
1 x ≺ φ̃x→ P (φ̃

(2)
1 x, gx(φ̃(2)x))

φ̃(2)x, gφ0

φ̃(2)x
if φ̃

(3)
1 x ≺ φ̃(2)x→ P (φ̃

(3)
1 x, gx(φ̃(3)x))

...
...

φ̃x := φxgφ0
x

gφ0
x := λy ≺ x . φ0ygφ0

y

Thomas Powell (Innsbruck) Open induction 22 January 2016 9 / 18

Let’s consider a simple case of open induction for non well-founded orders. Let
(N⇀ X,A) be the chain complete set of partial functions N→ X with the
usual domain theoretic ordering, and P (n, x) a predicate on N×X.

The following is essentially Σ1-comprehension over numbers:

Theorem. ∃v∀n([n ∈ dom(v)→ P (n, vn)] ∧ [n /∈ dom(v)→ ∀x¬P (n, x)]).

Proof.

Define the open predicate on N⇀ X by

O(u) :≡ ∃n ∈ dom(u)¬P (n, un)

Then ¬O(∅) trivially holds, therefore by open induction there exists some
A-minimal (@-maximal!) v satisfying ¬O(v) ∧ ∀w A vO(w), which implies

∀n ∈ dom(v)P (n, vn) ∧ ∀m(m /∈ dom(v)→ ∀x¬P (m,x))

i.e.
∀n([n ∈ dom(v)→ P (n, vn)] ∧ [n /∈ dom(v)→ ∀x¬P (n, x)])

Thomas Powell (Innsbruck) Open induction 22 January 2016 10 / 18

The functional interpretation of the theorem is given by

¬¬∃v∀n, x([n ∈ dom(v)→ P (n, vn)] ∧ [n /∈ dom(v)→ ¬P (n, x)])

 ∀ϕ, φ∃v([ϕv ∈ dom(v)→ P (ϕv, v(ϕv))] ∧ [ϕv /∈ dom(v)→ ¬P (ϕv, φv)])

This is interpreted by recursion over the (non-well-founded) order A as

v :=


∅ =: v0 if ϕv0 /∈ dom(v0)→ ¬P (ϕv0, φv0)

[ϕv0 7→ φv0] =: v1 if ϕv1 /∈ dom(v1)→ ¬P (ϕv1, φv1)

[ϕv0 7→ φv0, ϕv1 7→ φv1] =: v2 if ϕv2 /∈ dom(v2)→ ¬P (ϕv2, φv2)
...

...

.

If we assume continuity of ϕ (it only looks at a finite part of its input), then at
some point we have ϕvi ∈ dom(vi), so the recursion is well-founded.

Remark: Continuity ensures that the predicate “recursion is well-founded” is
also an open property.

Thomas Powell (Innsbruck) Open induction 22 January 2016 11 / 18

What is the functional interpretation of open induction over <lex for
predicates of the form ∃iP ([u](i)) where [u](i) the initial segment of u ∈ XN of
length i? Naturally we have ∃n∃i < j ≤ n(ui ≤ uj) in mind!

∃u∀i¬P ([u](i))→ ∃v(∀j¬P ([v](j)) ∧ ∀w(w<lexv︸ ︷︷ ︸
∃n(w<lex,nv)

→ ∃kP ([w](k)))).

This is given by

∀u, ϕ, φ∃i, v, g

{
¬P ([u](i))→
¬P ([v](ϕvg)) ∧ (φ1vg <lex,φ0vg v → P ([φ1vg](g(φvg))))

“For all u, ϕ and φ there exists some i, v and g such that: if u is i-bad then v
is ϕvg-bad and whenever φ1vg is lexicographically less than v at point φ0vg
then φ1vg is good at point g(φvg)”

Remark: A realizing term must have type

XN × (XN × (N×XN → N)→ N× N×XN)→ N×XN × (N×XN → N)

Thomas Powell (Innsbruck) Open induction 22 January 2016 12 / 18

Questions

Thomas Powell (Innsbruck) Open induction 22 January 2016 13 / 18

Q1 (Proof theory/WQO theory)

How should we realize the functional interpretation of open induction over
<lex for Σ1-formulas (and more generally), and thus give a computational
interpretation to the classical proofs of Higman’s lemma/Kruskal’s theorem?

Open induction of this form is provable from dependent choice, which in turn
has a functional interpretation in the bar recursive functionals (Spector 1962).
Can extract a term using a higher-type form of bar recursion in the standard
way (P. 2013), but this is hugely complex and the realizer does not behave like
recursion over <lex!

U. Berger 2004 has shown that the modified realizability (essentially BHK)
interpretation of open induction can be witnessed by a form of recursion over
<lex called open recursion. Can we adapt this idea for the (very different)
functional interpretation?

Can we use this to extract natural programs from the Nash-Williams proof of
Kruskal’s theorem?

Thomas Powell (Innsbruck) Open induction 22 January 2016 14 / 18

Q2 (Higher order computability)

Can we give an alternative characterisation of Spector’s class of bar recursive
functionals in terms of lexicographic recursion? Then in particular the type 1
lexicographically recursive functions will be exactly the provably recursive
functions of PA + DC.

Open recursion in the sense of Berger is not S1-S9 computable in the
Kleene-Kreisel continuous functionals, as it defines the Gandy-Hyland
Γ-functional (P. 2014), and is thus stronger than bar recursion (in the sense of
Spector).

Can we define an S1-S9 computable form of induction over <lex which gives a
natural computational interpretation to open induction but is still primitive
recursively equivalent to Spector’s bar recursion?

Thomas Powell (Innsbruck) Open induction 22 January 2016 15 / 18

Q3 (Proof theory/Topology)

Can we give a functional interpretation to instances of open induction/Zorn’s
lemma over chain-complete partial orders more complex than <lex?

Logic Recursion

well-founded induction //

��

well-founded recursion

��
<lex-induction for ∃nP ([u](n))︸ ︷︷ ︸

openness

��

// <lex-recursion for continuous parameters︸ ︷︷ ︸
openness

��
? // ?

Thomas Powell (Innsbruck) Open induction 22 January 2016 16 / 18

Q4 (Applications in computer science)

By studying weak forms of open induction used to prove termination of
programs, can we use the functional interpretation to extract useful bounds on
the complexity of these programs?

Program // Technique based on WQO theory //

��

termination

Functional interpretation // complexity bound

Proof theoretic analyses not only yield a complexity bound, but reveal on a
deep, structural level why the termination technique produces this bound.
This in turn encourages a general way of thinking about these techniques and
how they can be modified and extended. Can the functional interpretation
add something new?

Thomas Powell (Innsbruck) Open induction 22 January 2016 17 / 18

Thank you!

Thomas Powell (Innsbruck) Open induction 22 January 2016 18 / 18

