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A reasonably long introduction...
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Let’s begin by looking at a simple non-constructive theorem, sometimes called
the ‘drinkers paradox’:

∃n ∈ N∀m ∈ N(Pm → Pn)

or... “In a pub there is always a person such that if anyone else is drinking,
then that person in drinking”

The drinkers paradox has a quick proof using classical logic:

∃kPk ∨ ∀k¬Pk

Pk → ∀m(Pm → Pk)

Pk → ∃n∀m(Pm → Pn)

∃kPk → ∃n∀m(Pm → Pn)

∀k¬Pk → Pm → P0

∀k¬Pk → ∀m(Pm → P0)

∀k¬Pk → ∃n∀m(Pm → Pn)

∃n∀m(Pm → Pn)

However, in general there is no effective way of realizing ∃n.

Q. What is the constructive interpretation of this theorem?

Thomas Powell (Darmstadt) 27 October 2016 3 / 38



Let’s begin by looking at a simple non-constructive theorem, sometimes called
the ‘drinkers paradox’:

∃n ∈ N∀m ∈ N(Pm → Pn)

or... “In a pub there is always a person such that if anyone else is drinking,
then that person in drinking”

The drinkers paradox has a quick proof using classical logic:

∃kPk ∨ ∀k¬Pk

Pk → ∀m(Pm → Pk)

Pk → ∃n∀m(Pm → Pn)

∃kPk → ∃n∀m(Pm → Pn)

∀k¬Pk → Pm → P0

∀k¬Pk → ∀m(Pm → P0)

∀k¬Pk → ∃n∀m(Pm → Pn)

∃n∀m(Pm → Pn)

However, in general there is no effective way of realizing ∃n.

Q. What is the constructive interpretation of this theorem?

Thomas Powell (Darmstadt) 27 October 2016 3 / 38



Let’s begin by looking at a simple non-constructive theorem, sometimes called
the ‘drinkers paradox’:

∃n ∈ N∀m ∈ N(Pm → Pn)

or... “In a pub there is always a person such that if anyone else is drinking,
then that person in drinking”

The drinkers paradox has a quick proof using classical logic:

∃kPk ∨ ∀k¬Pk

Pk → ∀m(Pm → Pk)

Pk → ∃n∀m(Pm → Pn)

∃kPk → ∃n∀m(Pm → Pn)

∀k¬Pk → Pm → P0

∀k¬Pk → ∀m(Pm → P0)

∀k¬Pk → ∃n∀m(Pm → Pn)

∃n∀m(Pm → Pn)

However, in general there is no effective way of realizing ∃n.

Q. What is the constructive interpretation of this theorem?

Thomas Powell (Darmstadt) 27 October 2016 3 / 38



Let’s begin by looking at a simple non-constructive theorem, sometimes called
the ‘drinkers paradox’:

∃n ∈ N∀m ∈ N(Pm → Pn)

or... “In a pub there is always a person such that if anyone else is drinking,
then that person in drinking”

The drinkers paradox has a quick proof using classical logic:

∃kPk ∨ ∀k¬Pk

Pk → ∀m(Pm → Pk)

Pk → ∃n∀m(Pm → Pn)

∃kPk → ∃n∀m(Pm → Pn)

∀k¬Pk → Pm → P0

∀k¬Pk → ∀m(Pm → P0)

∀k¬Pk → ∃n∀m(Pm → Pn)

∃n∀m(Pm → Pn)

However, in general there is no effective way of realizing ∃n.

Q. What is the constructive interpretation of this theorem?

Thomas Powell (Darmstadt) 27 October 2016 3 / 38



Old fashioned method: Hilbert’s ε-calculus

Idea: Replace quantifiers by ‘ideal’ ε-terms:

∃kA(k) A(εkA),

and quantifier axioms by critical formulas:

A(t)→ A(εkA).

1. Translation. Convert proofs in predicate logic to proofs in the epsilon
calculus. Instances of quantifier axioms are replaced by critical formulas.

2. Epsilon elimination (roughly!). Suppose we only use a finite set of critical
formulas. Interpret all ε-terms by 0. If we find a mistake i.e. A(t) ∧ ¬A(0), we
‘learn’ from this mistake and update εkA 7→ t.
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Interpreted proof:

∃kPk ∨ ∀k¬Pk

Pk → ∀m(Pm → Pk)

Pk → ∃n∀m(Pm → Pn)

∃kPk → ∃n∀m(Pm → Pn)

¬Pm → Pm → P0

∀k¬Pk → Pm → P0

∀k¬Pk → ∀m(Pm → P0)

∀k¬Pk → ∃n∀m(Pm → Pn)

∃n∀m(Pm → Pn)

Critical formulas:

(Pεmεk → Pεk)→ (Pεmεn → Pεn)

(Pεm0 → P0)→ (Pεmεn → Pεn)

ε-elimination:

Try εk = εn = 0. Works unless Pεm0 ∧ ¬P0.

But now we have a witness for ∃kPk, so set εk = εm = εm0.
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Finitary drinker’s paradox I: For an arbitrary ε-term εm(·) there exists
some εn satisfying

Pεmεn → Pεn .

This can be computed by the algorithm

1 Set εn := 0.

2 Check Pεm0 → P0. If true, END.

3 Else εn := εm0.

The term εm(·) represents the ‘proof theoretic environment’, a measure of how
we might use the drinkers paradox as a lemma, or more specifically, exactly
when we need the ∀-axiom

∃n∀m(Pm → Pn)→ ∃n(Pt → Pn).
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A ‘modern’ method: Gödel’s functional (Dialectica)
interpretation

Idea: A two stage translation: Negative translation + Dialectica
interpretation.

1. Eliminate classical reasoning by applying negative translation (can be more
flexible here e.g. ignore atomic formulas).

2. Extract realizing terms for Dialectica interpretation of this formula. More
complex than realizability - need to fully Skolemize implication:

(A→ B) (∃x∀yAD(x, y)→ ∃u∀vBD(u, v))

 ∀x∃u∀v∃y(AD(x, y)→ BD(u, v))

 ∃U, Y ∀x, v(AD(x, Y xv)→ BD(Ux, v))

Contraction problem: Interpretation of classical reasoning requires us to test
atomic formulas and use case distinctions.
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∃kPk ∨ ∀k¬Pk

[∃kPk]

.

.

.

∃n∀m(Pm → Pn)

[∀k¬Pk]

.

.

.

∃n∀m(Pm → Pn)

∃n∀m(Pm → Pn)

First branch:
∃kPk → ¬¬∃n∀m(Pm → Pn)

 ∃kPk → ∀gN→N∃n(Pgn → Pn)

 ∀g, k∃n(Pk → Pgn → Pn)

 ∀g, k(Pk → Pgk → Pk)

Second branch:
∀k¬Pk → ¬¬∃n∀m(Pm → Pn)

 ∀k¬Pk → ∀g∃n(Pgn → Pn)

 ∀g∃k, n(¬Pk → Pgn → Pn)

 ∀g(¬Pg0 → Pg0 → P0)
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Pg0 ∨ ¬Pg0

[Pg0]

.

.

.
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.
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Pg0 ∨ ¬Pg0

[Pg0]

.

.

.

Pg(g0) → Pg0

[¬Pg0]

.

.

.

Pg0 → P0

Pg(Ng) → PNg

Solved by

Ng :=

{
0 if ¬Pg0
g0 if Pg0
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Finitary drinker’s paradox II: For an arbitrary function g : N→ N there
exists some N : (N→ N)→ N satisfying

Pg(Ng) → PNg.

This can be defined as

Ng :=

{
0 if ¬Pg0
g0 otherwise.

The proof theoretic environment is represented by an explicit ‘counterexample
function’ g. Any instance of the drinkers paradox in a bigger proof will involve
a concrete instantiation gv of g:

∃n∀m(Pm → Pn)→ ∃u∀vB(u, v)

 ∃U, g∀n, v((Pgvn → Pn)→ B(Un, v))

and hence ∀vB(U(N(gv)), v) holds.
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General finitary drinker’s paradox: There exists an approximate
witness N to ∃n∀m(Pn → Pm), that works relative to any environment M
(representing ∀m).

Technique N M

ε-calculus

[
εn := 0

Check Pεm0 → P0. If true, END.

Else εn := εm0

εm(·)

Dialectica Ng :=
{

0 if ¬Pg0
g0 otherwise

g : N→ N

Both methods carry out ‘learning’, but in completely different frameworks:
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What is the general idea I’m getting at?

One can interpret non-constructive theorems by ‘finitized’ versions of those
theorems:

A : there exists an ideal object x.

Afin : there exist finite approximations to x of arbitrary high quality.

Over classical logic, A ↔ Afin.

While ideal objects cannot be effectively constructed, finite approximations to
them can.

Technique approxmation algorithm

ε-calculus ε-terms ε-elimination

Dialectica negative translation + Skolemisation THIS TALK
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Why should we care about this?

The Dialectica interpretation has proven itself to be one of the most powerful
methods for extracting programs from proofs. In particular, it is the basic
technique that underlies the whole proof mining program.

However, for any but the simplest proofs, extracted programs are hugely
complex, and their behaviour can be extremely difficult to understand. We
want to improve this situation.

In this talk, I hope to show that the concept of learning underlies the
Dialectica interpretation, and that studying this can lead to:

1 Refined interpretations which extract more intuitive programs from
proofs (learning);

2 Interesting problems in computability theory (limits);

3 Potentially new applications in computer science (loops).
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A (highly selective) list of works on the connection between classical logic and
learning that are particularly relevant here:

Hilbert (1930s). Epsilon calculus and elimination procedure.

Coquand et al. (1990s). Novikoff’s calculus, and truth as a ‘winning
strategy’ in a game between quantifiers. In particular, a winning strategy
for countable choice (1998).

Avigad (2002). Formalisation of learning implicit in epsilon calculus via
‘update procedures’.

Aschieri, Berardi et al. (c. 2005-). Development of explicit
‘learning-based’ computational interpretations of classical logic.

Kohlenbach, Safarik (2013). A quantitative analysis of learning
procedures extracted from convergence proofs.
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Learning!
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How does the Dialectica interpretation interpret a Π3-theorem?

A :≡ ∀xX∃yY ∀zZP (x, y, z)

In general we cannot hope to produce a direct computable witness for ∃y. But
suppose we double negate and Skolemize:

¬A↔ ∃x∀y∃z¬P (x, y, z)

↔ ∃x, gY→Z∀y¬P (x, y, g(y))

¬¬A↔ ∀x, g∃y¬¬P (x, y, g(y))

↔ ∀x, g∃y P (x, y, g(y))

Over classical logic

∀x∃y∀zP (x, y, z)︸ ︷︷ ︸
y ideal (for all z)

↔ ∀x, g∃yP (x, y, g(y))︸ ︷︷ ︸
y approximate relative to g

but we can realize the R.H.S.
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Infinitary. ∃n ∈ N∀m ∈ N(Pm → Pn).

Finitary. ∀g : N→ N∃n(Pgn → Pn)

We can compute n by learning, as follows:

n :=

{
0 if ¬Pg0
g0 otherwise.
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Let f : N→ N be an arbitrary function.

Infinitary. For any x ∈ N there exists some y ≥ x such that

∀z[z ≥ x→ f(y) ≤ f(z)].

Finitary. For any x ∈ N and g : N→ N there exists some y ≥ x such that

g(y) ≥ y → f(y) ≤ f(g(y)).

We can compute y by learning, as follows:

y :=


x if g(x) ≥ x→ f(x) ≤ f(g(x))

g(x) if g(2)(x) ≥ g(x)→ f(g(x)) ≤ f(g(2)(x))

g(2)(x) if g(3)(x) ≥ g(2)(x)→ f(g(2)(x)) ≤ f(g(3)(x))

· · · · · ·

Terminates since otherwise we’d have f(x) > f(g(x)) > f(g(2)(x)) > . . .
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A more interesting example: Cauchy convergence of a monotone sequence
(ai) ∈ [0, 1]ω

Infinitary. For any x there exists y such that i, j ≥ y implies |ai − aj | < 2−x.

Finitary (T. Tao). For any x and g : N→ N there exists Y such that for
any finite increasing sequence

0 ≤ a0 ≤ . . . ≤ aY ≤ 1

there exists some y with 0 ≤ y < y + g(y) ≤ Y such that

|ai − aj | < 2−x

for all y ≤ i, j ≤ g(y).

We can show that Y = (λi.i+ g(i))(2x)(0).
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The intuition behind learning algorithms

Suppose we have a decidable predicate G on X, and we want to find some
x ∈ X satisfying G(x).

Let’s take some arbitrary x0. If G(x0) holds then we’re done. On the other
hand, if ¬G(x0) and we fail we often learn a useful piece of constructive
information g(x0).

We can then use this to update our original guess with a better one
x1 := x0 ⊕ g(x0), and continue:

x :=


x0 if G(x0)

x1 := x0 ⊕ g(x0) if G(x1)

x2 := x1 ⊕ g(x1) if G(x2)

· · · · · ·

The idea is that we eventually reach some xk satisfying G(xk).
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Learning algorithms - a formal definition

A learning algorithm of type X, L is a tuple L = (G, g,⊕) where

G : X → B is a decidable predicate which tests whether an element x ∈ X
is ‘good’;

g : X → L and ⊕ : X × L→ X are responsible for learning, and will be
used to map bad objects x ∈ X to improvements x⊕ g(x);

The learning procedure L[x] starting at x ∈ X is a sequence (xi) ∈ XN defined
by

x0 := x and xi+1 :=

{
xi if G(xi)

xi ⊕ g(xi) if ¬G(xi)

The limit of L[x] is defined as

limL[x] := xk

where xk is the least point satisfying G(xk) (whenever it exists).
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Vague idea. Suppose that ∃xA(x) is a classical theorem, and

∀g∃xA′g(x, g)

a finitization of A. Then x can be computed in the limit of a learning
procedure parametrised by g:

x := F (limLg[x0])

for some x0.

This idea is made more precise in (P. 2016), where a collection of concrete
results of this kind are given, relating Gödel’s functional interpretation of
induction and comprehension principles to learning procedures.

In this talk I will just give some illustrations.
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Example 1: The quantifier-free minimum principle

QFMin : ∃xP (x)→ ∃y(P (y) ∧ ∀z ≺ y¬P (z)).

This has an ND interpretation given by

(∗) ∀x, g∃y(P (x)→ P (y) ∧ (g(y) ≺ y → ¬P (g(y))))

“For all x, g there exists some y such that whenever P (x) holds then P (y)
holds and y is approximately minimal with respect to g(y)”

We can compute y in x and g using the following idea

y :=


x if g(x) ≺ x→ ¬P (g(x))

g(x) if g(2)(x) ≺ g(x)→ ¬P (g(2)(x))

g(2)(x) if . . .

· · · · · ·
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Theorem. Define Lg := (Gg, g, π2) where

Gg(x)↔ [g(x) ≺ x→ ¬P (g(x))].

Then the ND interpretation of QFMin, given by

∀x, g∃y(P (x)→ P (y) ∧ (g(y) ≺ y → ¬P (g(y))))

is realized by
λx, g . limLg[x].

Remark. A general result dealing with well-founded induction for arbitrary
formulas and relations ≺ is given in (P. 2016), inspired by (Schwichtenberg
2008).
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Example 2, following (Schwichtenberg 2008). For any two natural
numbers a, b > 0 there exist integers m,n such that am+ bn | a, b.

Classical proof. Use a variant of QFMin relative to the ordering
(x, y) ≺ (x′, y′) := ax+ by < ax′ + by′.

A program for computing m,n in a, b can be extracted, namely a learning
procedure of type (N(2))∗, N(2) given by

(m,n) := tail(limLa,b[〈e0, e1〉])

where La,b = (Ga,b, ga,b, ::) for

Ga,b(s)↔ rem(sl−2 · (a, b), sl−1 · (a, b)) = 0

ga,b(s)↔ sl−2 − quot(sl−2 · (a, b), sl−1 · (a, b))sl−1

s :: x := 〈s0, . . . , sl−1, x〉.
This is just the Euclidean algorithm!
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Limits, or alternatively: are there any interesting examples of
learning procedures?
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Let’s go back (one final time!) to the drinkers paradox:

(∃n ∈ N)(∀m ∈ N)(Pm → Pn).

which we know is interpreted as

∀g∃n(Pgn → Pn)

i.e. “for any g there is a g-approximation to the ideal object n which works for
gn”.

It is realized by the two-step learning procedure

n :=

{
0 if ¬Pg0
g0 if Pg0

i.e. either our default guess 0 is true, or it is false, and from its falsity we are
able to collect a piece of constructive information about P , namely that Pg0 is
true.
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But now suppose that we have an infinite sequence of predicates P (k). Then
by classical logic we have

(∀k)(∃n)(∀m)(P (k)m → P (k)n)

and by countable choice we obtain

(∃f ∈ N→ N)(∀m, k)(P (k)m → P (k)f(k)).

To give this a computational interpretation, we double negate:

¬¬(∃f)(∀m, k)(P (k)m → P (k)f(k)).

and then Skolemise:

(∀φ, ω : NN → N)(∃f)(P (ωf)φf → P (ωf)f(ωf)).
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Goal: Given φ, ω produce f satisfying

P (ωf)φf → P (ωf)f(ωf).

Let’s try the following learning procedure, of ‘unbounded’ length:

f0 = 0, 0, 0, 0, 0, . . .

f1 = 0, 0, φf0︸︷︷︸
ωf0

, 0, 0, . . .

f2 = 0, 0, φf0︸︷︷︸
ωf0

, 0, φf1︸︷︷︸
ωf1

, . . .

f3 = 0, φf2︸︷︷︸
ωf2

, φf0︸︷︷︸
ωf0

, 0, φf1︸︷︷︸
ωf1

, . . .

· · ·

We terminate the procedure unless

ωfi /∈ dom(fi) ∧ P (ωfi)φfi ,

where dom(fi) = {ωf0, . . . , ωfi−1}.
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Informal idea: For all k ∈ dom(fi) we have P (k)fi(k), and so we’re
progressively building a better approximation of f .

At each stage, either:

X ωfi ∈ dom(fi), and we’re done (satisfy ω-test);

X ¬P (ωfi)φfi , and we’re done (satisfy φ-test);

X ωfi /∈ dom(fi) ∧ P (ωfi)φfi and we have learned a new piece of constructive
information about P , so we update our approximation:

fi+1 = fi[ωfi 7→ φfi].

Whenever ω is a continuous functional, it only looks at a finite part of its
input, so we will eventually reach some N such that

ωfN ∈ dom(fN ) = {ωf0, . . . , ωfN−1}.

Therefore the learning algorithm terminates.
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∀k¬¬∃n∀m(P (k)m → P (k)n)

⇓

n :=

{
0 if ¬P (k)g0

g0 otherwise

¬¬(∃f ∈ N→ N)(∀m, k)(P (k)m → P (k)f(k))

⇓

f :=



0︸︷︷︸
f0

= λi.0 if ωf0 ∈ dom(f0) ∨ ¬P (ωf0)φf0

f0[ωf0 7→ φf0]︸ ︷︷ ︸
f1

if ωf1 ∈ dom(f1) ∨ ¬P (ωf1)φf1

f1[ωf1 7→ φf1]︸ ︷︷ ︸
f2

if ωf2 ∈ dom(f2) ∨ ¬P (ωf2)φf2

· · · · · ·
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This is an instance of the double negation shift

DNS : ∀n¬¬∃xX∀yAn(x, y)→ ¬¬∀n∃x∀yAn(x, y).

which has a (partial) functional interpretation given by

∀n, g∃xAn(x, g(x))→ ∀ω, φ∃αX
N
Aωα(α(ωα), φα)

“If, for each n, An is approximately witnessed by some x ∈ X relative to g,
then we can produce a ‘global’ witness α ∈ XN for the conclusion which is
approximately correct relative to φα at point ωα”

Is there some sort of formal construction from a collection of ‘pointwise’
learning algorithms to a ‘global’ learning algorithm:

(Ln,g)n<∞ 7→ L∞,(ω,φ)?

Yes! Details in (P. 2016)... I gave just a very simple illustration here!
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Remark. The realizers we obtain for the functional interpretation of
comprehension principles using learning procedures is different from those we
obtain using bar recursion. In this context, bar recursion is equivalent to a
form of ‘forgetful’ learning, which erases information it has learned above the
point being updated e.g.

f0 = 0, 0, 0, 0, 0 . . .

f1 = 0, 0, φf0︸︷︷︸
ωf0

, 0, . . .

f2 = 0, 0, φf0, 0, φf1︸︷︷︸
ωf1

, . . .

f3 = 0, φf2︸︷︷︸
ωf2

, 0, 0, 0, . . .

· · ·

Further detals in (P. 2016).
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Historical remark. Gödel developed his functional interpretation over a
period of 30 years, finally publishing it in 1958. The original paper dealt only
with Peano arithmetic, and was extended to analysis by Spector in 1962.

Spector showed that the functional interpretation of the double negation shift
(and hence the ND interpretation of countable choice) could be realized using
bar recursion in all finite types.

However, Spector’s paper was left unfinished - in particular, Section 12.1
sketches an alternative to bar recursion for a very simple case of DNS, namely
a learning algorithm similar to that presented here. Kreisel received this as a
letter, writing:

“The typescript ... consists of sections up to and including 12.1 of the present
paper, with about half a page (crossed out) of a projected 12.2. This last half
page states that the proof of the Gödel translation of axiom F [the DNS] would
use a generalization of Hilbert’s substitution method as illustrated in the
special case of 12.1. However Spector’s notes do not contain any details, so
that it is not quite clear how to reconstruct the proof he had in mind.”
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You may be wondering... What does any of this have to do with Zorn’s
lemma? (cf. my Abstract!)

The two main kinds of non-constructive proof we have looked at are (a)
minimum principles, (b) countable choice.

But countable choice is provable using a weak form of Zorn’s lemma, which is
in turn just a ‘minimum principle’ over chain-complete partial orders. More
precisely, a choice function is a minimum element of the set of partial choice
functions ordered by f A g whenever f is an extension of g.

So our approach allows us to unify the computational interpretations of
arithmetic (induction ∼ minimum principle) and analysis (comprehension ∼
Zorn’s lemma).

Open question. Can we give a computational interpretation to stronger
forms of Zorn’s lemma (e.g. minimal bad sequence arguments)? But this is a
different talk...

Thomas Powell (Darmstadt) 27 October 2016 34 / 38



You may be wondering... What does any of this have to do with Zorn’s
lemma? (cf. my Abstract!)

The two main kinds of non-constructive proof we have looked at are (a)
minimum principles, (b) countable choice.

But countable choice is provable using a weak form of Zorn’s lemma, which is
in turn just a ‘minimum principle’ over chain-complete partial orders. More
precisely, a choice function is a minimum element of the set of partial choice
functions ordered by f A g whenever f is an extension of g.

So our approach allows us to unify the computational interpretations of
arithmetic (induction ∼ minimum principle) and analysis (comprehension ∼
Zorn’s lemma).

Open question. Can we give a computational interpretation to stronger
forms of Zorn’s lemma (e.g. minimal bad sequence arguments)? But this is a
different talk...

Thomas Powell (Darmstadt) 27 October 2016 34 / 38



You may be wondering... What does any of this have to do with Zorn’s
lemma? (cf. my Abstract!)

The two main kinds of non-constructive proof we have looked at are (a)
minimum principles, (b) countable choice.

But countable choice is provable using a weak form of Zorn’s lemma, which is
in turn just a ‘minimum principle’ over chain-complete partial orders. More
precisely, a choice function is a minimum element of the set of partial choice
functions ordered by f A g whenever f is an extension of g.

So our approach allows us to unify the computational interpretations of
arithmetic (induction ∼ minimum principle) and analysis (comprehension ∼
Zorn’s lemma).

Open question. Can we give a computational interpretation to stronger
forms of Zorn’s lemma (e.g. minimal bad sequence arguments)? But this is a
different talk...

Thomas Powell (Darmstadt) 27 October 2016 34 / 38



You may be wondering... What does any of this have to do with Zorn’s
lemma? (cf. my Abstract!)

The two main kinds of non-constructive proof we have looked at are (a)
minimum principles, (b) countable choice.

But countable choice is provable using a weak form of Zorn’s lemma, which is
in turn just a ‘minimum principle’ over chain-complete partial orders. More
precisely, a choice function is a minimum element of the set of partial choice
functions ordered by f A g whenever f is an extension of g.

So our approach allows us to unify the computational interpretations of
arithmetic (induction ∼ minimum principle) and analysis (comprehension ∼
Zorn’s lemma).

Open question. Can we give a computational interpretation to stronger
forms of Zorn’s lemma (e.g. minimal bad sequence arguments)? But this is a
different talk...

Thomas Powell (Darmstadt) 27 October 2016 34 / 38



You may be wondering... What does any of this have to do with Zorn’s
lemma? (cf. my Abstract!)

The two main kinds of non-constructive proof we have looked at are (a)
minimum principles, (b) countable choice.

But countable choice is provable using a weak form of Zorn’s lemma, which is
in turn just a ‘minimum principle’ over chain-complete partial orders. More
precisely, a choice function is a minimum element of the set of partial choice
functions ordered by f A g whenever f is an extension of g.

So our approach allows us to unify the computational interpretations of
arithmetic (induction ∼ minimum principle) and analysis (comprehension ∼
Zorn’s lemma).

Open question. Can we give a computational interpretation to stronger
forms of Zorn’s lemma (e.g. minimal bad sequence arguments)? But this is a
different talk...

Thomas Powell (Darmstadt) 27 October 2016 34 / 38



And to conclude... Loops!
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Learning procedures are useful because they give extracted programs a more
‘imperative’ feel, allowing us to understand how these programs compute
realizers.

In fact, a learning procedure is nothing more than a while loop - the following
imperative program computes limLg[x0]: y := x0

while ¬G(y)

y := y⊕ g(y)

return y

Extracted programs can be incredible simple. To compute a realizer for the
functional interpretation of our instance of comprehension, this suffices: f := []

while ωf /∈ dom(f) ∧ P(ωf)φf

f := f[ωf 7→ φf]

return f

Compare this to bar recursion!
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Question. Can we develop an imperative functional interpretation?

Usually we have{
Predicate logic + Induction ` A
⇒ can extract a term t of system T s.t. T ` AD(t, x)

An imperative version of the interpretation might look something like the
following:{

Predicate logic + Hoare-style rules ` A⇒
can extract a program S s.t. Hoare logic ` {I} S {AD(y, x)}

Obviously there are many subtleties here , notably how to incorporate
higher-order features (which will always be essential).

But the benefits and new applications could be worth the effort!

Thomas Powell (Darmstadt) 27 October 2016 37 / 38



Question. Can we develop an imperative functional interpretation?

Usually we have{
Predicate logic + Induction ` A
⇒ can extract a term t of system T s.t. T ` AD(t, x)

An imperative version of the interpretation might look something like the
following:{

Predicate logic + Hoare-style rules ` A⇒
can extract a program S s.t. Hoare logic ` {I} S {AD(y, x)}

Obviously there are many subtleties here , notably how to incorporate
higher-order features (which will always be essential).

But the benefits and new applications could be worth the effort!

Thomas Powell (Darmstadt) 27 October 2016 37 / 38



Question. Can we develop an imperative functional interpretation?

Usually we have{
Predicate logic + Induction ` A
⇒ can extract a term t of system T s.t. T ` AD(t, x)

An imperative version of the interpretation might look something like the
following:{

Predicate logic + Hoare-style rules ` A⇒
can extract a program S s.t. Hoare logic ` {I} S {AD(y, x)}

Obviously there are many subtleties here , notably how to incorporate
higher-order features (which will always be essential).

But the benefits and new applications could be worth the effort!

Thomas Powell (Darmstadt) 27 October 2016 37 / 38



Adapting the functonal interpretation in an imperative setting would:

1. Take further step towards making the connecting between classical logic
and learning more precise, continuing the line of thought begun by Hilbert
and further developed by Coquand, Aschieri et al. etc.

2. Enable us to extract more efficient, readable and intuitive programs from
proofs in mathematics.

3. Potentially lead to new applications in computer science by providing us
with a technique for formally extracting verified imperative programs.

I’m particularly interested in the last point - this has been explored by (Berger
et al. 2014), but there is a huge scope for further work, which could lead to
applications in the real world...
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