Bar recursion over finite partial functions

Thomas Powell
(joint work with Paulo Oliva)

University of Innsbruck

CCC 2015

Kochel am See, Germany
15 September 2015

Outline

(1) Backward recursion in the continuous functionals
(2) The computational interpretation of countable choice
(3) Backward recursion as a learning realizer

Spector's bar recursion $\mathrm{BR}^{g, h, \varphi}: \rho^{*} \rightarrow \sigma$ is defined by

$$
\mathrm{BR}^{g, h, \varphi}(s)={ }_{\sigma} \begin{cases}g(s) & \text { if } \varphi(\hat{s})<\operatorname{len}(s) \\ h_{s}\left(\lambda x \cdot \mathrm{BR}^{g, h, \varphi}(s * x)\right) & \text { otherwise }\end{cases}
$$

Spector's bar recursion $\mathrm{BR}^{g, h, \varphi}: \rho^{*} \rightarrow \sigma$ is defined by

$$
\mathrm{BR}^{g, h, \varphi}(s)={ }_{\sigma} \begin{cases}g(s) & \text { if } \varphi(\hat{s})<\operatorname{len}(s) \\ h_{s}\left(\lambda x \cdot \mathrm{BR}^{g, h, \varphi}(s * x)\right) & \text { otherwise }\end{cases}
$$

Recursion

- input $s: X^{*}$ a finite sequence;
- recursive calls made over all one-element extensions $s * x$ of s;
- g assigns base values to the recursion.

Spector's bar recursion $\mathrm{BR}^{g, h, \varphi}: \rho^{*} \rightarrow \sigma$ is defined by

$$
\mathrm{BR}^{g, h, \varphi}(s)={ }_{\sigma} \begin{cases}g(s) & \text { if } \varphi(\hat{s})<\operatorname{len}(s) \\ h_{s}\left(\lambda x \cdot \mathrm{BR}^{g, h, \varphi}(s * x)\right) & \text { otherwise }\end{cases}
$$

Recursion

- input $s: X^{*}$ a finite sequence;
- recursive calls made over all one-element extensions $s * x$ of s;
- g assigns base values to the recursion.

Termination

- $\hat{s}:=\lambda k .\left\{\begin{array}{ll}s(k) & \text { if } k<|s| \\ 0 & \text { otherwise }\end{array}\right.$ i.e. a canonical embedding of s into $\rho^{\mathbb{N}}$;
- $\varphi: \rho^{\mathbb{N}} \rightarrow \mathbb{N}$ controls the recursion, terminating it when Spector's point $\varphi(\hat{s})$ is less than the length of the input i.e. $\varphi(\hat{s})<\operatorname{len}(s)$ holds.

Bar recursion exists in continuous models by a standard argument:

Bar recursion exists in continuous models by a standard argument:

1. Extend. If $\mathrm{BR}\left(s_{0}\right)=\perp$ there exists an infinite sequence $s_{0} \prec s_{1} \prec s_{2} \prec \ldots$ satisfying

$$
\varphi\left(\hat{s}_{i}\right) \geq \operatorname{len}\left(s_{i}\right) \quad \text { and } \quad s_{i+1}=s_{i} * x_{i} \quad \text { and } \quad \operatorname{BR}\left(s_{i+1}\right)=\perp
$$

Bar recursion exists in continuous models by a standard argument:

1. Extend. If $\mathrm{BR}\left(s_{0}\right)=\perp$ there exists an infinite sequence $s_{0} \prec s_{1} \prec s_{2} \prec \ldots$ satisfying

$$
\varphi\left(\hat{s}_{i}\right) \geq \operatorname{len}\left(s_{i}\right) \quad \text { and } \quad s_{i+1}=s_{i} * x_{i} \quad \text { and } \quad \operatorname{BR}\left(s_{i+1}\right)=\perp
$$

2. Limit. Let $\alpha: \rho^{\mathbb{N}}$ be the domain-theoretic limit of the s_{i} i.e.

$$
\alpha:=\bigsqcup_{i \in \mathbb{N}} s_{i}=\lambda k \cdot s_{k+1}(k)
$$

Bar recursion exists in continuous models by a standard argument:

1. Extend. If $\operatorname{BR}\left(s_{0}\right)=\perp$ there exists an infinite sequence $s_{0} \prec s_{1} \prec s_{2} \prec \ldots$ satisfying

$$
\varphi\left(\hat{s}_{i}\right) \geq \operatorname{len}\left(s_{i}\right) \quad \text { and } \quad s_{i+1}=s_{i} * x_{i} \quad \text { and } \quad \mathrm{BR}\left(s_{i+1}\right)=\perp
$$

2. Limit. Let $\alpha: \rho^{\mathbb{N}}$ be the domain-theoretic limit of the s_{i} i.e.

$$
\alpha:=\bigsqcup_{i \in \mathbb{N}} s_{i}=\lambda k \cdot s_{k+1}(k)
$$

3. Continuity. The value of $\varphi(\alpha)$ depends only on some finite initial segment $[\alpha(0), \ldots, \alpha(N-1)]$ of its argument.

Take any $M \geq N, \varphi(\alpha)+1$. Then

$$
\varphi\left(\hat{s}_{M}\right) \underbrace{=}_{\text {continuity: } N \leq M} \varphi(\alpha)<\varphi(\alpha)+1 \leq M \leq \operatorname{len}\left(s_{M}\right)
$$

What is so useful about bar recursion? One answer: self-reference.
Suppose $Q(s, i)$ is some predicate on $\rho^{*} \times \mathbb{N}$, and that whenever

$$
\forall k<\operatorname{len}(s) Q(s, k)
$$

we can compute an extension $a_{s}: \rho$ such that

$$
\forall k<\operatorname{len}\left(s * a_{s}\right) Q\left(s * a_{s}, k\right)
$$

Then bar recursion allows us to compute a chain [] $\prec s_{1} \prec s_{2} \prec \ldots \prec s_{M}$ with

$$
\forall k<\operatorname{len}\left(s_{i}\right) Q\left(s_{i}, k\right)
$$

for each i, and moreover s_{M} is a leaf with $\varphi\left(\hat{s}_{M}\right)<\operatorname{len}\left(s_{M}\right)$ therefore we have

$$
Q\left(s_{M}, \varphi\left(\hat{s}_{M}\right)\right)
$$

We will see why this in important in Part 2!

Symmetric bar recursion $\mathrm{sBR}^{g, h, \varphi}: \rho^{\dagger} \rightarrow \sigma$ is defined by

$$
\operatorname{sBR}^{g, h, \varphi}(u)={ }_{\sigma} \begin{cases}g(u) & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ h_{s}\left(\lambda x . \mathrm{sBR}^{\phi, b, \varphi}(u \oplus(\varphi(\hat{u}), x))\right) & \text { otherwise }\end{cases}
$$

Symmetric bar recursion $\mathrm{sBR}^{g, h, \varphi}: \rho^{\dagger} \rightarrow \sigma$ is defined by

$$
\operatorname{sBR}^{g, h, \varphi}(u)={ }_{\sigma} \begin{cases}g(u) & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ h_{s}\left(\lambda x \cdot \mathrm{sBR}^{\phi, b, \varphi}(u \oplus(\varphi(\hat{u}), x))\right) & \text { otherwise }\end{cases}
$$

Recursion

- input $u: \rho^{\dagger}$ a finite partial function;
- recursive calls made over one-element domain-theoretic extensions $u \oplus(\varphi(\hat{u}), x)$ of u;
- g assigns base values to the recursion.

Symmetric bar recursion $\mathrm{sBR}^{g, h, \varphi}: \rho^{\dagger} \rightarrow \sigma$ is defined by

$$
\operatorname{sBR}^{g, h, \varphi}(u)={ }_{\sigma} \begin{cases}g(u) & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ h_{s}\left(\lambda x \cdot \operatorname{sBR}^{\phi, b, \varphi}(u \oplus(\varphi(\hat{u}), x))\right) & \text { otherwise }\end{cases}
$$

Recursion

- input $u: \rho^{\dagger}$ a finite partial function;
- recursive calls made over one-element domain-theoretic extensions $u \oplus(\varphi(\hat{u}), x)$ of u;
- g assigns base values to the recursion.

Termination

- $\hat{u}:=\lambda k .\left\{\begin{array}{ll}u(k) & \text { if } k \in \operatorname{dom}(u) \\ 0 & \text { otherwise }\end{array}\right.$, a canonical embedding of u into $\rho^{\mathbb{N}} ;$
- $\varphi: \rho^{\mathbb{N}} \rightarrow \mathbb{N}$ controls recursion, terminating when Spector's point is in the domain of u i.e. $\varphi(\hat{u}) \in \operatorname{dom}(u)$ holds.

Need to adapt standard argument:

Need to adapt standard argument:

1. Extend. If $\operatorname{sBR}\left(u_{0}\right)=\perp$ there exists an infinite sequence $u_{0} \sqsubset u_{1} \sqsubset u_{2} \sqsubset \ldots$ satisfying

$$
n_{i}:=\varphi\left(\hat{u}_{i}\right) \notin \operatorname{dom}\left(u_{i}\right) \quad \text { and } \quad u_{i+1}=u_{i} \oplus\left(n_{i}, x_{i}\right) \quad \text { and } \quad \operatorname{sBR}\left(u_{i+1}\right)=\perp
$$

Need to adapt standard argument:

1. Extend. If $\operatorname{sBR}\left(u_{0}\right)=\perp$ there exists an infinite sequence $u_{0} \sqsubset u_{1} \sqsubset u_{2} \sqsubset \ldots$ satisfying

$$
n_{i}:=\varphi\left(\hat{u}_{i}\right) \notin \operatorname{dom}\left(u_{i}\right) \quad \text { and } \quad u_{i+1}=u_{i} \oplus\left(n_{i}, x_{i}\right) \quad \text { and } \quad \operatorname{sBR}\left(u_{i+1}\right)=\perp
$$

2. Limit. Let $\alpha: \mathbb{N} \rightarrow \rho_{\perp}$ be the domain-theoretic limit of the u_{i} i.e.

$$
\alpha:=\bigsqcup_{i \in \mathbb{N}} u_{i}=\lambda k \cdot \begin{cases}u_{i(k)}(k) & \text { where } i(k) \text { least s.t. } k \in \operatorname{dom}\left(u_{i(k)}\right) \\ \text { undefined } & \text { if no such index exists. }\end{cases}
$$

Let $\hat{\alpha}: \rho^{\mathbb{N}}$ denote the canonical extenion:

$$
\hat{\alpha}=\lambda k \cdot \begin{cases}u_{i(k)}(k) & \text { where } i(k) \text { least s.t. } k \in \operatorname{dom}\left(u_{i(k)}\right) \\ 0_{\rho} & \text { if no such index exists. }\end{cases}
$$

3. Continuity. The value of $\varphi(\hat{\alpha})$ depends only on some finite initial segment $[\hat{\alpha}(0), \ldots, \hat{\alpha}(N-1)]$ of its argument.

Take any $M \geq N, \varphi(\hat{\alpha})+1$. Since $\alpha=\bigsqcup u_{i}$ there exists some I such that

$$
\forall i<M\left(u_{I}(i)=\alpha(i)\right), \text { or equivalently, } \forall i<M\left(\hat{u}_{I}(i)=\hat{\alpha}(i)\right)
$$

which implies that

$$
n_{I}:=\varphi\left(\hat{u}_{I}\right) \underbrace{=}_{\text {continuity: } N \leq M} \varphi(\hat{\alpha})<\varphi(\hat{\alpha})+1 \leq M .
$$

Since $n_{I} \notin \operatorname{dom}\left(u_{I}\right)$ and $n_{I}<M$ we have $n_{I} \notin \operatorname{dom}(\alpha)$. But

$$
u_{I+1}=u_{I} \oplus\left(n_{I}, x_{I}\right)
$$

and since $u_{I+1} \sqsubset \alpha$ we have $n_{I} \in \operatorname{dom}(\alpha)$, a contradiction.
Therefore $n_{I}=\varphi\left(\hat{u}_{I}\right) \in \operatorname{dom}\left(u_{I}\right)$.

Summary: Two ways of achieving self-Reference

Spector's bar recursion

$$
\mathrm{BR}^{g, h, \varphi}(s)={ }_{\sigma} \begin{cases}g(s) & \text { if } \varphi(\hat{s})<\operatorname{len}(s) \\ h_{s}\left(\lambda x \cdot \mathrm{BR}^{g, h, \varphi}(s * x)\right) & \text { otherwise }\end{cases}
$$

makes recursive calls over the tree $s_{0} \prec s_{1} \prec s_{2} \prec \ldots$ until it reaches a leaf s_{M} such that $\varphi\left(s_{M}\right)<\operatorname{len}\left(s_{M}\right)$. This tree is well-founded in continuous models.

Symmetric bar recursion generalises this idea:

$$
\mathrm{BR}^{g, h, \varphi}(u)={ }_{\sigma} \begin{cases}g(u) & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ h_{s}\left(\lambda x \cdot \mathrm{BR}^{\phi, b, \varphi}(u \oplus(\varphi(\hat{u}), x))\right) & \text { otherwise }\end{cases}
$$

making recursive calls over the tree $u_{0} \sqsubset u_{1} \sqsubset u_{2} \sqsubset \ldots$ until it reaches a leaf u_{M} such that $\varphi\left(\hat{u}_{M}\right) \in \operatorname{dom}\left(u_{M}\right)$. This tree is well-founded in continuous models.

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).
Theorem 1. BR is primitive recursively definable from sBR, provably in $\mathrm{E}-\mathrm{HA}^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).
Theorem 1. BR is primitive recursively definable from sBR, provably in $\mathrm{E}-\mathrm{HA}^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.
Theorem 2. sBR is primitive recursively definable from BR, provably in $E-H A^{\omega}+D C$.

Proof. Fairly complex. Need to move up a type level to define sBR.

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).
Theorem 1. BR is primitive recursively definable from sBR, provably in $\mathrm{E}-\mathrm{HA}^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.
Theorem 2. sBR is primitive recursively definable from BR, provably in $\mathrm{E}-\mathrm{HA}^{\omega}+\mathrm{DC}$.

Proof. Fairly complex. Need to move up a type level to define sBR.
Corollary 1. Both the Kleene-Kreisel continuous functionals \mathcal{C}^{ω} and the strongly majorizable functionals \mathcal{M}^{ω} are a model of sBR.

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).
Theorem 1. BR is primitive recursively definable from sBR, provably in $\mathrm{E}-\mathrm{H} \mathrm{A}^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.
Theorem 2. sBR is primitive recursively definable from BR, provably in $\mathrm{E}-\mathrm{HA}^{\omega}+\mathrm{DC}$.

Proof. Fairly complex. Need to move up a type level to define sBR.
Corollary 1. Both the Kleene-Kreisel continuous functionals \mathcal{C}^{ω} and the strongly majorizable functionals \mathcal{M}^{ω} are a model of $s B R$.

Corollary 2. The tree $u_{0} \sqsubset u_{1} \sqsubset u_{2} \ldots$ with leaves $u_{i} \in \operatorname{dom}\left(\hat{u}_{i}\right)$ is well-founded in any model of E-HA ${ }^{\omega}+\mathrm{sBR}$, including \mathcal{C}^{ω} and \mathcal{M}^{ω}.

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).
Theorem 1. BR is primitive recursively definable from sBR, provably in $\mathrm{E}-\mathrm{H} \mathrm{A}^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.
Theorem 2. sBR is primitive recursively definable from BR, provably in $\mathrm{E}-\mathrm{HA}^{\omega}+\mathrm{DC}$.

Proof. Fairly complex. Need to move up a type level to define sBR.
Corollary 1. Both the Kleene-Kreisel continuous functionals \mathcal{C}^{ω} and the strongly majorizable functionals \mathcal{M}^{ω} are a model of $s B R$.

Corollary 2. The tree $u_{0} \sqsubset u_{1} \sqsubset u_{2} \ldots$ with leaves $u_{i} \in \operatorname{dom}\left(\hat{u}_{i}\right)$ is well-founded in any model of $\mathrm{E}-\mathrm{HA}{ }^{\omega}+\mathrm{sBR}$, including \mathcal{C}^{ω} and \mathcal{M}^{ω}.

Corollary 3. sBR is S1-S9 computable in \mathcal{C}^{ω}, and thus strictly weaker than modified bar recursion/Gandy-Hyland Γ functional.

Outline

(1) Backward recursion in the continuous functionals
(2) The computational interpretation of countable choice
(3) Backward recursion as a learning realizer

What is the computational meaning of a Π_{3}-theorem?

$$
P: \equiv \forall a^{\rho} \exists x^{\sigma} \forall y^{\tau} A(a, x, y)
$$

What is the computational meaning of a Π_{3}-theorem?

$$
P: \equiv \forall a^{\rho} \exists x^{\sigma} \forall y^{\tau} A(a, x, y)
$$

In general we cannot hope to produce a direct computable witness for $\exists x$. But suppose we double negate and Skolemize:

$$
\begin{aligned}
\neg P & \leftrightarrow \exists a \forall x \exists y \neg A(a, x, y) \\
& \leftrightarrow \exists a, p^{\sigma \rightarrow \tau} \forall x \neg A(a, x, p(x)) \\
\neg \neg P & \leftrightarrow \forall a, p \exists x \neg \neg A(a, x, p(x)) \\
& \leftrightarrow \forall a, p \exists x A(a, x, p(x))
\end{aligned}
$$

What is the computational meaning of a Π_{3}-theorem?

$$
P: \equiv \forall a^{\rho} \exists x^{\sigma} \forall y^{\tau} A(a, x, y)
$$

In general we cannot hope to produce a direct computable witness for $\exists x$. But suppose we double negate and Skolemize:

$$
\begin{aligned}
\neg P & \leftrightarrow \exists a \forall x \exists y \neg A(a, x, y) \\
& \leftrightarrow \exists a, p^{\sigma \rightarrow \tau} \forall x \neg A(a, x, p(x)) \\
\neg \neg P & \leftrightarrow \forall a, p \exists x \neg \neg A(a, x, p(x)) \\
& \leftrightarrow \forall a, p \exists x A(a, x, p(x))
\end{aligned}
$$

We can typically extract some indirect computable witness

$$
X: \rho \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma
$$

for $\exists x$ in $\neg \neg P$, i.e.

$$
\forall a, p A\left(a, X_{a, p}, p\left(X_{a, p}\right)\right) .
$$

In the statement

$$
\forall a \exists x \forall y A(a, x, y),
$$

x is an ideal object which works for all y. On the other hand, in the statement

$$
\forall a, p \exists x A(a, x, p(x))
$$

x is a finitary approximation to ideal object, which works for just $p(x)$. The function p can be seen as determining the size, or 'quality', of this approximation.
I There exists an ideal object x which works for all y.
I^{\prime} For arbitrary p, there is an approximation x to an ideal object which works for $p(x)$.

Over classical logic I I I^{\prime}, but I^{\prime} is intuitionistically weak enough to admit a computational interpretation.

Example

By the least element principle we can prove

$$
P: \equiv \forall f: \mathbb{N} \rightarrow \mathbb{N} \exists x \in \mathbb{N} \forall y \in \mathbb{N} . f(x) \leq f(y)
$$

However, there is no computable witness $F:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ for $\exists x$.

Example

By the least element principle we can prove

$$
P: \equiv \forall f: \mathbb{N} \rightarrow \mathbb{N} \exists x \in \mathbb{N} \forall y \in \mathbb{N} . f(x) \leq f(y)
$$

However, there is no computable witness $F:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ for $\exists x$. But over classical logic P is equivalent to

$$
\forall f, p: \mathbb{N} \rightarrow \mathbb{N} \exists x f(x) \leq f(p(x))
$$

and $\exists x$ must be witnessed for some $x \leq p^{(f(0))}(0)$, else we'd have

$$
\underbrace{f(0)>f(p(0))>f\left(p^{(2)}(0)\right)>\ldots>f\left(p^{(f(0))}(0)\right)>f\left(p^{(f(0)+1)}(0)\right)}_{f(0)+1 \text { times }} \geq 0
$$

Example

By the least element principle we can prove

$$
P: \equiv \forall f: \mathbb{N} \rightarrow \mathbb{N} \exists x \in \mathbb{N} \forall y \in \mathbb{N} . f(x) \leq f(y)
$$

However, there is no computable witness $F:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ for $\exists x$. But over classical logic P is equivalent to

$$
\forall f, p: \mathbb{N} \rightarrow \mathbb{N} \exists x f(x) \leq f(p(x))
$$

and $\exists x$ must be witnessed for some $x \leq p^{(f(0))}(0)$, else we'd have

$$
\underbrace{f(0)>f(p(0))>f\left(p^{(2)}(0)\right)>\ldots>f\left(p^{(f(0))}(0)\right)>f\left(p^{(f(0)+1)}(0)\right)}_{f(0)+1 \text { times }} \geq 0
$$

Various choices of p yield e.g.

$$
\begin{aligned}
& \exists x \forall y \in[0,1000000] \cdot f(x) \leq f(y) \\
& \exists x \forall y \in\left[2^{x}, 2^{2^{2^{x}}}\right] \cdot f(x) \leq f(y)
\end{aligned}
$$

A well-known technique of extracting computable witnesses for negated theorems in this way is:

$$
\mathcal{T}_{\text {class }} \vdash P \underbrace{\Rightarrow}_{\text {negative translation }} \mathcal{T}_{\text {int }} \vdash P^{N} \underbrace{\Rightarrow}_{\text {Dialectica interpretation }} \mathrm{T}_{\lambda} \vdash \forall y\left|P^{N}\right|_{y}^{t}
$$

Theorem (Gödel, 1930s). If PA $\vdash P$ then $\mathrm{T}_{\lambda} \vdash \forall y\left|P^{N}\right|_{y}^{t}$, where T_{λ} is the system of primitive recursive functionals in all finite types.

Corollary. If

$$
\mathrm{PA} \vdash \forall a^{\rho} \exists x^{\sigma} \forall y^{\tau} A(a, x, y),
$$

then there is a primitive recursive functional $X: \rho \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma$ satisfying

$$
\forall a, p^{\sigma \rightarrow \tau} A\left(a, X_{a, p}, p\left(X_{a, p}\right)\right)
$$

and an algorithm for formally extracting such an X from the proof.

What is the computational content of the axiom of countable choice?

$$
\mathrm{AC}: \forall n^{\mathbb{N}} \exists x^{\rho} \forall y^{\sigma} A(n, x, y) \rightarrow \exists f^{\mathbb{N} \rightarrow \rho} \forall n, y A(n, f(n), y) .
$$

What is the computational content of the axiom of countable choice?

$$
\mathrm{AC}: \forall n^{\mathbb{N}} \exists x^{\rho} \forall y^{\sigma} A(n, x, y) \rightarrow \exists f^{\mathbb{N} \rightarrow \rho} \forall n, y A(n, f(n), y) .
$$

First, let's interpret the premise and conclusion seperately:

$$
\forall n, p^{\rho \rightarrow \sigma} \exists x A(n, x, p(x)) \rightarrow \forall \varphi^{\rho^{\mathbb{N}} \rightarrow \mathbb{N}}, q^{\rho^{\mathbb{N}} \rightarrow \sigma} \exists f A(\varphi(f), f(\varphi(f)), q(f))
$$

Premise: For each n there exists a finitary (pointwise) approximation x to the ideal object which works for $p(x)$.

Conclusion: There exists a finitary (global) approximation f to the ideal choice sequence which works for $q(f)$ at point $\varphi(f)$.

What is the computational content of the axiom of countable choice?

$$
\mathrm{AC}: \forall n^{\mathbb{N}} \exists x^{\rho} \forall y^{\sigma} A(n, x, y) \rightarrow \exists f^{\mathbb{N} \rightarrow \rho} \forall n, y A(n, f(n), y) .
$$

First, let's interpret the premise and conclusion seperately:

$$
\forall n, p^{\rho \rightarrow \sigma} \exists x A(n, x, p(x)) \rightarrow \forall \varphi^{\rho^{\mathbb{N}} \rightarrow \mathbb{N}}, q^{\rho^{\mathbb{N}} \rightarrow \sigma} \exists f A(\varphi(f), f(\varphi(f)), q(f))
$$

Premise: For each n there exists a finitary (pointwise) approximation x to the ideal object which works for $p(x)$.

Conclusion: There exists a finitary (global) approximation f to the ideal choice sequence which works for $q(f)$ at point $\varphi(f)$.

$$
\underbrace{\forall X^{\mathbb{N} \rightarrow(\rho \rightarrow \sigma) \rightarrow \rho} \forall \varphi, q \exists f}\left[\forall n, p A\left(n, X_{n, p}, p\left(X_{n, p}\right)\right) \rightarrow A(\varphi(f), f(\varphi(f)), q(f))\right] .
$$

Comp. Interpretation: For any pointwise realizer X of the premise of AC, and parameters φ, q, there is a global approximation f to a choice sequence in φ and q.

For an arbitrary sequence $s: \rho^{*}$ define an extension $s \preceq \mathrm{E}_{s}$ using bar recursion:

$$
\mathrm{E}_{s}= \begin{cases}s & \text { if } \varphi(\hat{s})<\operatorname{len}(s) \\ \mathrm{E}_{s * a_{s}} & \text { otherwise }\end{cases}
$$

where $a_{s}:=X_{\operatorname{len}(s), \lambda x \cdot q\left(\hat{E}_{s * x}\right)}$.
Suppose that \hat{s} is an approximation to a choice sequence which works for $q\left(\hat{\mathrm{E}}_{s}\right)$ at all points $i<\operatorname{len}(s)$:

$$
\operatorname{App}(s): \forall i<\operatorname{len}(s) A\left(i, s(i), q\left(\hat{\mathbf{E}}_{s}\right)\right)
$$

but $\varphi(\hat{s}) \geq \operatorname{len}(s)$. Then since $A(\operatorname{len}(s), \overbrace{X_{\operatorname{len}(s), \lambda x \cdot q\left(\hat{\mathrm{E}}_{s * *}\right)}}^{a_{s}} \overbrace{q\left(\hat{\mathrm{E}}_{s * a_{s}}\right)}^{p\left(a_{s}\right)})$ holds we have $\mathrm{E}_{s}=\mathrm{E}_{s * a_{s}}$ and

$$
\operatorname{App}(s) \Rightarrow \operatorname{App}\left(s * a_{s}\right)
$$

i.e. we can build a better approximation $\widehat{s * a_{s}}$, which works for $q\left(\hat{\mathrm{E}}_{s * a_{s}}\right)$ at all points $i<\operatorname{len}(s)+1$.

If $\operatorname{App}\left(s_{0}\right)$ there exists a sequence $s_{0} \prec s_{1} \prec \ldots$ of progressively better approximations:

$$
\varphi\left(\hat{s}_{i}\right) \geq \operatorname{len}\left(s_{i}\right) \quad \text { and } \quad s_{i+1}=s_{i} * a_{s_{i}} \quad \text { and } \quad \operatorname{App}\left(s_{i+1}\right) \quad \text { and } \quad \mathrm{E}_{s_{i}}=\mathrm{E}_{s_{i+1}}
$$

But at some point we reach a leaf $\varphi\left(\hat{s}_{M}\right)<\operatorname{len}\left(s_{M}\right)$, and then $\mathrm{E}_{s_{M}}=s_{M}$ and

$$
\begin{aligned}
\operatorname{App}\left(s_{M}\right) & \equiv \forall i<\operatorname{len}\left(s_{M}\right) A\left(i, s_{M}(i), q\left(\hat{\mathrm{E}}_{s_{M}}\right)\right) \\
& \Rightarrow A\left(\varphi\left(\hat{s}_{M}\right), \hat{s}_{M}\left(\varphi\left(\hat{s}_{M}\right)\right), q\left(\hat{s}_{M}\right)\right)
\end{aligned}
$$

Thus $F_{X, \varphi, q}=\mathrm{E}_{s_{0}}=\ldots=\mathrm{E}_{s_{M}}=\hat{s}_{M}$ is a sufficiently good approximation.

If $\operatorname{App}\left(s_{0}\right)$ there exists a sequence $s_{0} \prec s_{1} \prec \ldots$ of progressively better approximations:

$$
\varphi\left(\hat{s}_{i}\right) \geq \operatorname{len}\left(s_{i}\right) \quad \text { and } \quad s_{i+1}=s_{i} * a_{s_{i}} \quad \text { and } \quad \operatorname{App}\left(s_{i+1}\right) \quad \text { and } \quad \mathrm{E}_{s_{i}}=\mathrm{E}_{s_{i+1}} .
$$

But at some point we reach a leaf $\varphi\left(\hat{s}_{M}\right)<\operatorname{len}\left(s_{M}\right)$, and then $\mathrm{E}_{s_{M}}=s_{M}$ and

$$
\begin{aligned}
\operatorname{App}\left(s_{M}\right) & \equiv \forall i<\operatorname{len}\left(s_{M}\right) A\left(i, s_{M}(i), q\left(\hat{\mathrm{E}}_{s_{M}}\right)\right) \\
& \Rightarrow A\left(\varphi\left(\hat{s}_{M}\right), \hat{s}_{M}\left(\varphi\left(\hat{s}_{M}\right)\right), q\left(\hat{s}_{M}\right)\right)
\end{aligned}
$$

Thus $F_{X, \varphi, q}=\mathrm{E}_{s_{0}}=\ldots=\mathrm{E}_{s_{M}}=\hat{s}_{M}$ is a sufficiently good approximation.
Theorem. $\hat{E}_{[]}$is a sufficiently good approximation to a choice sequence.
Corollary (Spector 1962). If PA $+\mathrm{AC} \vdash P$ then $\mathrm{T}_{\lambda_{\mathrm{BR}}} \vdash \forall y\left|P^{N}\right|_{y}^{t}$, where $\mathrm{T}_{\lambda_{\mathrm{BR}}}$ is the system of primitive recursive functionals in all finite types together with Spector's bar recursion.

For an arbitrary partial function $u: \rho^{\dagger}$ define an extension $u \sqsubset \mathrm{U}_{u}$ as:

$$
\mathrm{U}_{u}= \begin{cases}u & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \mathrm{U}_{s *\left(n_{u}, a_{u}\right)} & \text { otherwise }\end{cases}
$$

where $n_{u}:=\varphi(\hat{u})$ and $a_{u}:=X_{n_{u}, \lambda x \cdot q\left(\hat{U}_{u \oplus\left(n_{u}, x\right)}\right)}$.
Suppose that \hat{u} is an approximation to a choice sequence which works for $q\left(\hat{\mathrm{U}}_{u}\right)$ at all points $i \in \operatorname{dom}(u)$:

$$
\operatorname{App}(u): \forall i \in \operatorname{dom}(u) A\left(i, u(i), q\left(\hat{\mathrm{U}}_{u}\right)\right)
$$

but $\varphi(\hat{u}) \notin \operatorname{dom}(u)$. Then since $A(n_{u}, \overbrace{X_{n_{u}, \lambda x . q\left(\hat{U}_{u \oplus\left(n_{u}, x\right)}\right)}}^{a_{u}} \overbrace{q\left(\hat{U}_{u \oplus\left(n_{u}, a_{u}\right)}\right)}^{p\left(a_{u}\right)})$ holds we have $\mathrm{U}_{u}=\mathrm{U}_{u \oplus\left(n_{u}, a_{u}\right)}$ and

$$
\operatorname{App}(u) \Rightarrow \operatorname{App}\left(u \oplus\left(n_{u}, a_{u}\right)\right)
$$

i.e. we can build a better approximation $\left.u \oplus \widehat{\left(n_{u},\right.} a_{u}\right)$, which works for $q\left(\hat{U}_{u \oplus\left(n_{u}, a_{u}\right)}\right)$ at all points $i \in \operatorname{dom}(u) \cup\left\{n_{u}\right\}$.

If $\operatorname{App}\left(u_{0}\right)$ there exists a sequence $u_{0} \sqsubset u_{1} \sqsubset \ldots$ of progressively better approximations:

$$
n_{u}:=\varphi\left(\hat{u}_{i}\right) \notin \operatorname{dom}\left(u_{i}\right) \quad \text { and } \quad u_{i+1}=u_{i} \oplus\left(n_{u_{i}}, a_{u_{i}}\right) \quad \text { and } \quad \operatorname{App}\left(u_{i+1}\right) .
$$

But at some point we reach a leaf $\varphi\left(\hat{u}_{M}\right) \in \operatorname{dom}\left(u_{M}\right)$, and then $\mathrm{U}_{u_{M}}=u_{M}$ and

$$
\begin{aligned}
\operatorname{App}\left(u_{M}\right) & \equiv \forall i \in \operatorname{dom}\left(u_{M}\right) A\left(i, u_{M}(i), q\left(\hat{U}_{u_{M}}\right)\right) \\
& \Rightarrow A\left(\varphi\left(\hat{u}_{M}\right), \hat{u}_{M}\left(\varphi\left(\hat{u}_{M}\right)\right), q\left(\hat{u}_{M}\right)\right) .
\end{aligned}
$$

Thus $F_{X, \varphi, q}=\mathrm{U}_{u_{0}}=\ldots=\mathrm{U}_{u_{M}}=\hat{u}_{M}$ is a sufficiently good approximation.

If $\operatorname{App}\left(u_{0}\right)$ there exists a sequence $u_{0} \sqsubset u_{1} \sqsubset \ldots$ of progressively better approximations:

$$
n_{u}:=\varphi\left(\hat{u}_{i}\right) \notin \operatorname{dom}\left(u_{i}\right) \quad \text { and } \quad u_{i+1}=u_{i} \oplus\left(n_{u_{i}}, a_{u_{i}}\right) \quad \text { and } \quad \operatorname{App}\left(u_{i+1}\right) .
$$

But at some point we reach a leaf $\varphi\left(\hat{u}_{M}\right) \in \operatorname{dom}\left(u_{M}\right)$, and then $\mathrm{U}_{u_{M}}=u_{M}$ and

$$
\begin{aligned}
\operatorname{App}\left(u_{M}\right) & \equiv \forall i \in \operatorname{dom}\left(u_{M}\right) A\left(i, u_{M}(i), q\left(\hat{U}_{u_{M}}\right)\right) \\
& \Rightarrow A\left(\varphi\left(\hat{u}_{M}\right), \hat{u}_{M}\left(\varphi\left(\hat{u}_{M}\right)\right), q\left(\hat{u}_{M}\right)\right) .
\end{aligned}
$$

Thus $F_{X, \varphi, q}=\mathrm{U}_{u_{0}}=\ldots=\mathrm{U}_{u_{M}}=\hat{u}_{M}$ is a sufficiently good approximation.
Theorem. U_{\emptyset} is a sufficiently good approximation to a choice sequence.
Corollary (Oliva/P. 2015). If PA $+\mathrm{AC} \vdash P$ then $\mathrm{T}_{\lambda_{\mathrm{sBR}}} \vdash \forall y\left|P^{N}\right|_{y}^{t}$, where $\mathrm{T}_{\lambda_{\mathrm{sBR}}}$ is the system of primitive recursive functionals in all finite types together with symmetric bar recursion.

The computational interpretation of countable choice

Summary

In order to give a general computational interpretation to countable choice, need:

> Gödel's T + backward recursion.

Spector's original bar recursion is one possibility.

In order to give a general computational interpretation to countable choice, need:
Gödel's T + backward recursion.

Spector's original bar recursion is one possibility.

What advantage does symmetric bar recursion have?
control parameter $\varphi \approx$ proof-theoretic environment
Spector only cares whether or not $\varphi\left(\hat{s}_{i}\right)<\operatorname{len}\left(s_{i}\right)$, and insists on building approximations sequentially. But if we care about point $n=1,000,000$ do we really need to compute $n=0,1, \ldots, 999,999$ first?

Symmetric bar recursion uses φ to drive the construction of the approximation.

We would expect symmetric bar recursion to produce algorithms that are (a) more efficient and (b) more intuitive.

Outline

(1) Backward recursion in the continuous functionals
(2) The computational interpretation of countable choice
(3) Backward recursion as a learning realizer

Let us consider a countable sequence of instances of Σ_{1}^{0}-LEM:

$$
\forall n^{\mathbb{N}}\left(\exists x^{\mathbb{N}} P_{n}(x) \vee \forall y \neg P_{n}(y)\right)
$$

where $P_{n}(x)$ is quantifier-free. The finitary intepretation is

$$
\forall n, p^{\mathbb{N} \rightarrow \mathbb{N}} \exists x\left(P_{n}(x) \vee \neg P_{n}(p(x))\right)
$$

Let us consider a countable sequence of instances of Σ_{1}^{0}-LEM:

$$
\forall n^{\mathbb{N}}\left(\exists x^{\mathbb{N}} P_{n}(x) \vee \forall y \neg P_{n}(y)\right)
$$

where $P_{n}(x)$ is quantifier-free. The finitary intepretation is

$$
\forall n, p^{\mathbb{N} \rightarrow \mathbb{N}} \exists x\left(P_{n}(x) \vee \neg P_{n}(p(x))\right)
$$

This is realized by

$$
X_{n, p}:= \begin{cases}0 & \text { if } \neg P_{n}(p(0)) \\ p(0) & \text { otherwise }\end{cases}
$$

in other words, the realizer decides which branch of the standard Herbrand disjunction holds:

$$
\left[P_{n}(0) \vee \neg P_{n}(p(0))\right] \vee\left[P_{n}(p(0)) \vee P_{n}(p(p(0)))\right]
$$

By axiom of choice there exists a comprehension $f: \mathbb{N} \rightarrow \rho$ such that

$$
\forall n\left(P_{n}(f(n)) \vee \forall y \neg P_{n}(y)\right) .
$$

The finitary interpretation is

$$
\forall \varphi, q \exists f\left(P_{\varphi f}(f(\varphi f)) \vee \neg P_{\varphi f}(q f)\right)
$$

i.e. there exists an approximation f to a comprehesion function which works for $q f$ at point φf.

By axiom of choice there exists a comprehension $f: \mathbb{N} \rightarrow \rho$ such that

$$
\forall n\left(P_{n}(f(n)) \vee \forall y \neg P_{n}(y)\right) .
$$

The finitary interpretation is

$$
\forall \varphi, q \exists f\left(P_{\varphi f}(f(\varphi f)) \vee \neg P_{\varphi f}(q f)\right)
$$

i.e. there exists an approximation f to a comprehesion function which works for $q f$ at point φf.

This is realized by $F_{\varphi, q}:=\hat{U}_{\emptyset}^{X, \varphi, q}$ or $\hat{\mathbf{E}}_{[]}^{X, \varphi, q}$ where X is realizer to Σ_{1}^{0}-LEM on previous slide.

The standard realizer \hat{E}_{s} of comprehension, using Spector's bar recursion, is well-known and widely studied. So let's look at the symmetric realizer:

$$
\hat{\mathrm{U}}_{u}= \begin{cases}\hat{u} & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \hat{U}_{u \oplus\left(n_{u}, a_{u}\right)} & \text { otherwise }\end{cases}
$$

where $n_{u}:=\varphi(\hat{u})$ and

$$
a_{u}:=X_{n_{u}, \lambda x \cdot q\left(\hat{U}_{u \oplus\left(n_{u}, x\right)}\right)}= \begin{cases}0 & \text { if } \neg P_{n_{u}}\left(q\left(\hat{\mathrm{U}}_{u \oplus\left(n_{u}, 0\right)}\right)\right) \\ q\left(\hat{\mathrm{U}}_{u \oplus\left(n_{u}, 0\right)}\right) & \text { otherwise }\end{cases}
$$

The standard realizer \hat{E}_{s} of comprehension, using Spector's bar recursion, is well-known and widely studied. So let's look at the symmetric realizer:

$$
\hat{\mathbf{U}}_{u}= \begin{cases}\hat{u} & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \hat{\mathrm{U}}_{u \oplus\left(n_{u}, a_{u}\right)} & \text { otherwise }\end{cases}
$$

where $n_{u}:=\varphi(\hat{u})$ and

$$
a_{u}:=X_{n_{u}, \lambda x \cdot q\left(\hat{U}_{u \oplus\left(n_{u}, x\right)}\right)}= \begin{cases}0 & \text { if } \neg P_{n_{u}}\left(q\left(\hat{\mathrm{U}}_{u \oplus\left(n_{u}, 0\right)}\right)\right) \\ q\left(\hat{\mathrm{U}}_{u \oplus\left(n_{u}, 0\right)}\right) & \text { otherwise }\end{cases}
$$

Note $\left.\varphi\left(u \widehat{\oplus\left(n_{u}\right.}, 0\right)\right)=\varphi(\hat{u})=n_{u} \in \operatorname{dom}\left(u \oplus\left(n_{u}, 0\right)\right)$, therefore

$$
\left.\hat{\mathrm{U}}_{u \oplus\left(n_{u}, 0\right)}=u \widehat{\oplus\left(n_{u}\right.}, 0\right)=\hat{u}
$$

The standard realizer $\hat{\mathbf{E}}_{s}$ of comprehension, using Spector's bar recursion, is well-known and widely studied. So let's look at the symmetric realizer:

$$
\hat{\mathbf{U}}_{u}= \begin{cases}\hat{u} & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \hat{\mathrm{U}}_{u \oplus\left(n_{u}, a_{u}\right)} & \text { otherwise }\end{cases}
$$

where $n_{u}:=\varphi(\hat{u})$ and

$$
a_{u}= \begin{cases}0 & \text { if } \neg P_{n_{u}}(q(\hat{u})) \\ q(\hat{u}) & \text { otherwise }\end{cases}
$$

Note $\left.\varphi\left(u \widehat{\oplus\left(n_{u}\right.}, 0\right)\right)=\varphi(\hat{u})=n_{u} \in \operatorname{dom}\left(u \oplus\left(n_{u}, 0\right)\right)$, therefore

$$
\left.\hat{\mathrm{U}}_{u \oplus\left(n_{u}, 0\right)}=u \widehat{\oplus\left(n_{u}\right.}, 0\right)=\hat{u} .
$$

The standard realizer \hat{E}_{s} of comprehension, using Spector's bar recursion, is well-known and widely studied. So let's look at the symmetric realizer:

$$
\hat{\mathrm{U}}_{u}= \begin{cases}\hat{u} & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \hat{\mathrm{U}}_{u \oplus\left(n_{u}, 0\right)} & \text { if } \neg P_{n_{u}}(q(\hat{u})) \\ \hat{\mathrm{U}}_{u \oplus\left(n_{u}, q(\hat{u})\right)} & \text { otherwise }\end{cases}
$$

where $n_{u}:=\varphi(\hat{u})$.
Note $\left.\varphi\left(u \widehat{\oplus\left(n_{u}\right.}, 0\right)\right)=\varphi(\hat{u})=n_{u} \in \operatorname{dom}\left(u \oplus\left(n_{u}, 0\right)\right)$, therefore

$$
\left.\hat{\mathrm{U}}_{u \oplus\left(n_{u}, 0\right)}=u \widehat{\left(n_{u}\right.}, 0\right)=\hat{u} .
$$

The standard realizer $\hat{\mathbf{E}}_{s}$ of comprehension, using Spector's bar recursion, is well-known and widely studied. So let's look at the symmetric realizer:

$$
\hat{\mathrm{U}}_{u}= \begin{cases}\hat{u} & \text { if } \varphi(\hat{u}) \in \operatorname{dom}(u) \vee \neg P_{n_{u}}(q(\hat{u})) \\ \hat{\mathrm{U}}_{u \oplus\left(n_{u}, q(\hat{u})\right)} & \text { otherwise }\end{cases}
$$

where $n_{u}:=\varphi(\hat{u})$.

Start with $u_{0}:=\emptyset$ and let $n_{0}:=\varphi\left(\hat{u}_{0}\right)$:

$$
\hat{u}_{0}=0,0,0, \ldots
$$

If $n_{0} \in \emptyset$ or $\neg P_{n_{0}}\left(q\left(\hat{u}_{0}\right)\right)$ then we're done. Otherwise update as $u_{1}:=\left(n_{0}, q\left(\hat{u}_{0}\right)\right)$:

$$
\hat{u}_{1}=0,0, \ldots, 0, \underbrace{q\left(\hat{u}_{0}\right)}_{n_{0}}, 0, \ldots
$$

If $n_{1}:=\varphi\left(\hat{u}_{1}\right) \in\left\{n_{0}\right\}$ or $\neg P_{n_{1}}\left(q\left(\hat{u}_{1}\right)\right)$ we're done. Otherwise update as $u_{2}:=\left(n_{0}, a_{0}\right) \oplus\left(n_{1}, q\left(\hat{u}_{1}\right)\right):$

$$
\hat{u}_{2}=0,0, \ldots, 0, \underbrace{q\left(\hat{u}_{0}\right)}_{n_{0}}, 0, \ldots, 0, \underbrace{q\left(\hat{u}_{1}\right)}_{n_{1}}, 0, \ldots
$$

If $n_{2}:=\varphi\left(\hat{u}_{2}\right) \in\left\{n_{0}, n_{1}\right\}$ or $\neg P_{n_{2}}\left(q\left(\hat{u}_{2}\right)\right)$ we're done. Otherwise update again...

$$
\hat{u}_{3}=0,0, \ldots, 0, \underbrace{q\left(\hat{u}_{2}\right)}_{n_{2}}, 0, \ldots, 0, \underbrace{q\left(\hat{u}_{0}\right)}_{n_{0}}, 0, \ldots, 0, \underbrace{q\left(\hat{u}_{1}\right)}_{n_{1}}, 0, \ldots
$$

We have an increasing sequence of approximations $u_{0} \sqsubset u_{1} \sqsubset u_{2} \sqsubset \ldots$ satisfying

$$
\forall k \in \operatorname{dom}\left(u_{i}\right) P_{k}\left(u_{i}(k)\right)
$$

Eventually must hit a point M such that $n_{M} \notin \operatorname{dom}\left(u_{M}\right)$ and

$$
\neg P_{n_{M}}\left(q\left(\hat{u}_{M}\right)\right),
$$

or $n_{M} \in \operatorname{dom}\left(u_{M}\right)$ and thus

$$
P_{n_{M}}\left(u_{M}\left(n_{M}\right)\right),
$$

i.e. $\left(\right.$ recall $\left.n_{M}=\varphi\left(\hat{u}_{M}\right)\right)$:

$$
P_{\varphi\left(\hat{u}_{M}\right)}\left(\hat{u}_{M}\left(\varphi\left(\hat{u}_{M}\right)\right)\right) \vee \neg P_{\varphi\left(\hat{u}_{M}\right)}\left(q\left(\hat{u}_{M}\right)\right)
$$

and so \hat{u}_{M} is a sufficiently good approximation to a comprehension function.

Symmetric Bar Recursion \approx LEARNing Procedure

By $\mathcal{L}_{\varphi, q, P}$ we mean the following algorithm:
$\operatorname{TEST}(u): \quad$ Does $\varphi(\hat{u}) \in \operatorname{dom}(u) \vee \neg P_{\varphi(\hat{u})}(q(\hat{u}))$ hold?
YES \rightsquigarrow Terminate.

NO \rightsquigarrow Update with new information: $u \rightarrow u \oplus(\varphi(\hat{u}), q(\hat{u}))$

Symmetric Bar Recursion \approx LEARning Procedure

By $\mathcal{L}_{\varphi, q, P}$ we mean the following algorithm:
$\operatorname{TEST}(u): \quad$ Does $\varphi(\hat{u}) \in \operatorname{dom}(u) \vee \neg P_{\varphi(\hat{u})}(q(\hat{u}))$ hold?

YES \rightsquigarrow Terminate.

NO \rightsquigarrow Update with new information: $u \rightarrow u \oplus(\varphi(\hat{u}), q(\hat{u}))$

Proposition. Suppose that in PA we can derive

$$
\forall x\left[\mathrm{CA}\left(P_{x}\right) \rightarrow \exists y A_{0}(x, y)\right]
$$

Then there is some learning procedure $\mathcal{L}_{\varphi, q, P_{x}}$ and a primitive recursive function g such that

$$
\forall x A_{0}\left(x, g\left(\mathcal{L}_{\varphi, q, P_{x}}, x\right)\right)
$$

Example. In PA we can derive

$$
\forall H^{(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}}\left[\mathrm{CA}\left(P_{F}\right) \rightarrow \exists \alpha^{\mathbb{N} \rightarrow \mathbb{N}}, \beta^{\mathbb{N} \rightarrow \mathbb{N}}, i^{\mathbb{N}}(\alpha(i) \neq \beta(i) \wedge H \alpha=H \beta)\right] .
$$

Example. In PA we can derive

$$
\forall H^{(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}}\left[\mathrm{CA}\left(P_{F}\right) \rightarrow \exists \alpha^{\mathbb{N} \rightarrow \mathbb{N}}, \beta^{\mathbb{N} \rightarrow \mathbb{N}}, i^{\mathbb{N}}(\alpha(i) \neq \beta(i) \wedge H \alpha=H \beta)\right] .
$$

An algorithm for finding α, β and i can be formally extracted, which uses the following learning procedure:

Define the sequence of functions $\gamma_{i}: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
\gamma_{i}:=\lambda k \cdot \begin{cases}1 & \text { if } k \in D_{i} \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
D_{0}:=\emptyset \quad D_{i+1}:=D_{i} \cup\left\{H\left(\gamma_{i}\right)\right\} .
$$

We have $\gamma_{i}(k)=1$ iff $H\left(\gamma_{j}\right)=k$ for some $j<i$. Stop at the first point M such that $H\left(\gamma_{M}\right) \in D_{M}$. This means that for some $j<M$ have $H\left(\gamma_{j}\right)=H\left(\gamma_{M}\right)$.

Set $\alpha, \beta:=\gamma_{M}, \gamma_{j}$. These differ at point $i=H\left(\gamma_{M}\right)$.

Start with $s_{0}:=\langle \rangle$:

$$
\hat{s}_{0}=0,0,0, \ldots
$$

Search for the least $n_{0} \leq \varphi\left(s_{0}\right)$ such that $\neg P_{n_{0}}\left(q\left(\hat{s}_{0}\right)\right)$ otherwise we're done. Else, update as $s_{1}:=\left\langle 0,0, \ldots, q\left(\hat{s}_{0}\right)\right\rangle$:

$$
\hat{s}_{1}=0,0, \ldots, 0, \underbrace{q\left(\hat{s}_{0}\right)}_{n_{0}}, 0, \ldots
$$

Search for the least $n_{1} \leq \max \left(n_{0}, \varphi\left(\hat{s}_{1}\right)\right)$ with $n_{1} \leq n_{0}$ satisfying $\neg P_{n_{1}}\left(q\left(\hat{s}_{1}\right)\right)$. If $n_{1}>n_{0}$ set $s_{2}:=\left\langle 0,0, \ldots, 0, q\left(\hat{s}_{0}\right), 0, \ldots, 0, q\left(\hat{s}_{1}\right)\right\rangle$:

$$
\hat{s}_{2}=0,0, \ldots, 0, \underbrace{q\left(\hat{s}_{0}\right)}_{n_{0}}, 0, \ldots, 0, \underbrace{q\left(\hat{s}_{1}\right)}_{n_{1}}, 0, \ldots
$$

else if $n_{1}<n_{0}$ set $s_{2}:=\left\langle 0,0, \ldots, q\left(\hat{s}_{1}\right)\right\rangle$:

$$
\hat{s}_{2}=0,0, \ldots, 0, \underbrace{q\left(\hat{s}_{1}\right)}_{n_{1}}, 0, \ldots
$$

The witness $q\left(\hat{s}_{0}\right)$ for $\exists x P_{n_{0}}(x)$ is erased!

Tests indicate that, on the whole, the highly intuitive algorithm given by symmetric bar recursion performs much better than the traditional one based on Spector.
$H_{n}(\gamma)=$ least $i \leq n$ such that $\gamma i<\gamma(i+1)$, else n if none exist :

	Spector	Symmetric
$n=3$	$4 / 316$	$4 / 52$
$n=4$	$5 / 688$	$5 / 64$
$n=5$	$6 / 1444$	$6 / 76$

$$
H_{n}(\gamma)=\Pi_{i=0}^{n-1}(1+i)^{1+\gamma i}:
$$

	Spector	Symmetric
$n=3$	$577 / 2350$	$1 / 12$
$n=4$	$577 / 365700$	$1 / 12$

Directions for future research

(1) A more detailed investigation into the behaviour of programs extracted using symmetric bar recursion. Can we give concise, intuitive computational interpretations of well-known proofs which use countable choice?
(0) Have already suggested that the Dialectica interpretation of analysis is linked to learning. How are extracted programs related to those obtained using e.g. ϵ-calculus, or Aschieri-Berardi interactive learning realizability?
(Can we take advantage of symmetric bar recursion's flexibility to extend Dialectica to more general choice principles over arbitrary discrete domains:

$$
\mathrm{AC}_{D, X}: \forall d^{D} \exists x^{X} A(d, x) \rightarrow \exists f^{D \rightarrow X} \forall d A(d, f d) .
$$

