
Bar recursion over finite partial functions

Thomas Powell
(joint work with Paulo Oliva)

University of Innsbruck

CCC 2015
Kochel am See, Germany

15 September 2015

Thomas Powell (Innsbruck) Bar recursion over partial functions 1 / 32

Backward recursion in the continuous functionals

Outline

1 Backward recursion in the continuous functionals

2 The computational interpretation of countable choice

3 Backward recursion as a learning realizer

Thomas Powell (Innsbruck) Bar recursion over partial functions 2 / 32

Backward recursion in the continuous functionals

Spector’s bar recursion BRg,h,ϕ : ρ∗ → σ is defined by

BRg,h,ϕ(s) =σ

{
g(s) if ϕ(ŝ) < len(s)

hs(λx . BR
g,h,ϕ(s ∗ x)) otherwise

Recursion

input s : X∗ a finite sequence;

recursive calls made over all one-element extensions s ∗ x of s;

g assigns base values to the recursion.

Termination

ŝ := λk.

{
s(k) if k < |s|
0 otherwise

i.e. a canonical embedding of s into ρN;

ϕ : ρN → N controls the recursion, terminating it when Spector’s point
ϕ(ŝ) is less than the length of the input i.e. ϕ(ŝ) < len(s) holds.

Thomas Powell (Innsbruck) Bar recursion over partial functions 3 / 32

Backward recursion in the continuous functionals

Spector’s bar recursion BRg,h,ϕ : ρ∗ → σ is defined by

BRg,h,ϕ(s) =σ

{
g(s) if ϕ(ŝ) < len(s)

hs(λx . BR
g,h,ϕ(s ∗ x)) otherwise

Recursion

input s : X∗ a finite sequence;

recursive calls made over all one-element extensions s ∗ x of s;

g assigns base values to the recursion.

Termination

ŝ := λk.

{
s(k) if k < |s|
0 otherwise

i.e. a canonical embedding of s into ρN;

ϕ : ρN → N controls the recursion, terminating it when Spector’s point
ϕ(ŝ) is less than the length of the input i.e. ϕ(ŝ) < len(s) holds.

Thomas Powell (Innsbruck) Bar recursion over partial functions 3 / 32

Backward recursion in the continuous functionals

Spector’s bar recursion BRg,h,ϕ : ρ∗ → σ is defined by

BRg,h,ϕ(s) =σ

{
g(s) if ϕ(ŝ) < len(s)

hs(λx . BR
g,h,ϕ(s ∗ x)) otherwise

Recursion

input s : X∗ a finite sequence;

recursive calls made over all one-element extensions s ∗ x of s;

g assigns base values to the recursion.

Termination

ŝ := λk.

{
s(k) if k < |s|
0 otherwise

i.e. a canonical embedding of s into ρN;

ϕ : ρN → N controls the recursion, terminating it when Spector’s point
ϕ(ŝ) is less than the length of the input i.e. ϕ(ŝ) < len(s) holds.

Thomas Powell (Innsbruck) Bar recursion over partial functions 3 / 32

Backward recursion in the continuous functionals

Bar recursion exists in continuous models by a standard argument:

1. Extend. If BR(s0) = ⊥ there exists an infinite sequence s0 ≺ s1 ≺ s2 ≺ . . .
satisfying

ϕ(ŝi) ≥ len(si) and si+1 = si ∗ xi and BR(si+1) = ⊥

2. Limit. Let α : ρN be the domain-theoretic limit of the si i.e.

α :=
⊔
i∈N

si = λk . sk+1(k)

3. Continuity. The value of ϕ(α) depends only on some finite initial
segment [α(0), . . . , α(N − 1)] of its argument.

Take any M ≥ N,ϕ(α) + 1. Then

ϕ(ŝM) =︸︷︷︸
continuity: N ≤M

ϕ(α) < ϕ(α) + 1 ≤M ≤ len(sM)

Thomas Powell (Innsbruck) Bar recursion over partial functions 4 / 32

Backward recursion in the continuous functionals

Bar recursion exists in continuous models by a standard argument:

1. Extend. If BR(s0) = ⊥ there exists an infinite sequence s0 ≺ s1 ≺ s2 ≺ . . .
satisfying

ϕ(ŝi) ≥ len(si) and si+1 = si ∗ xi and BR(si+1) = ⊥

2. Limit. Let α : ρN be the domain-theoretic limit of the si i.e.

α :=
⊔
i∈N

si = λk . sk+1(k)

3. Continuity. The value of ϕ(α) depends only on some finite initial
segment [α(0), . . . , α(N − 1)] of its argument.

Take any M ≥ N,ϕ(α) + 1. Then

ϕ(ŝM) =︸︷︷︸
continuity: N ≤M

ϕ(α) < ϕ(α) + 1 ≤M ≤ len(sM)

Thomas Powell (Innsbruck) Bar recursion over partial functions 4 / 32

Backward recursion in the continuous functionals

Bar recursion exists in continuous models by a standard argument:

1. Extend. If BR(s0) = ⊥ there exists an infinite sequence s0 ≺ s1 ≺ s2 ≺ . . .
satisfying

ϕ(ŝi) ≥ len(si) and si+1 = si ∗ xi and BR(si+1) = ⊥

2. Limit. Let α : ρN be the domain-theoretic limit of the si i.e.

α :=
⊔
i∈N

si = λk . sk+1(k)

3. Continuity. The value of ϕ(α) depends only on some finite initial
segment [α(0), . . . , α(N − 1)] of its argument.

Take any M ≥ N,ϕ(α) + 1. Then

ϕ(ŝM) =︸︷︷︸
continuity: N ≤M

ϕ(α) < ϕ(α) + 1 ≤M ≤ len(sM)

Thomas Powell (Innsbruck) Bar recursion over partial functions 4 / 32

Backward recursion in the continuous functionals

Bar recursion exists in continuous models by a standard argument:

1. Extend. If BR(s0) = ⊥ there exists an infinite sequence s0 ≺ s1 ≺ s2 ≺ . . .
satisfying

ϕ(ŝi) ≥ len(si) and si+1 = si ∗ xi and BR(si+1) = ⊥

2. Limit. Let α : ρN be the domain-theoretic limit of the si i.e.

α :=
⊔
i∈N

si = λk . sk+1(k)

3. Continuity. The value of ϕ(α) depends only on some finite initial
segment [α(0), . . . , α(N − 1)] of its argument.

Take any M ≥ N,ϕ(α) + 1. Then

ϕ(ŝM) =︸︷︷︸
continuity: N ≤M

ϕ(α) < ϕ(α) + 1 ≤M ≤ len(sM)

Thomas Powell (Innsbruck) Bar recursion over partial functions 4 / 32

Backward recursion in the continuous functionals

What is so useful about bar recursion? One answer: self-reference.

Suppose Q(s, i) is some predicate on ρ∗ × N, and that whenever

∀k < len(s) Q(s, k)

we can compute an extension as : ρ such that

∀k < len(s ∗ as) Q(s ∗ as, k).

Then bar recursion allows us to compute a chain [] ≺ s1 ≺ s2 ≺ . . . ≺ sM with

∀k < len(si) Q(si, k)

for each i, and moreover sM is a leaf with ϕ(ŝM) < len(sM) therefore we have

Q(sM , ϕ(ŝM))

We will see why this in important in Part 2!

Thomas Powell (Innsbruck) Bar recursion over partial functions 5 / 32

Backward recursion in the continuous functionals

Symmetric bar recursion sBRg,h,ϕ : ρ† → σ is defined by

sBRg,h,ϕ(u) =σ

g(u) if ϕ(û) ∈ dom(u)

hs(λx . sBR
φ,b,ϕ(u⊕ (ϕ(û), x))) otherwise

Recursion

input u : ρ† a finite partial function;

recursive calls made over one-element domain-theoretic extensions
u⊕ (ϕ(û), x) of u;

g assigns base values to the recursion.

Termination

û := λk.

{
u(k) if k ∈ dom(u)

0 otherwise
, a canonical embedding of u into ρN;

ϕ : ρN → N controls recursion, terminating when Spector’s point is in the
domain of u i.e. ϕ(û) ∈ dom(u) holds.

Thomas Powell (Innsbruck) Bar recursion over partial functions 6 / 32

Backward recursion in the continuous functionals

Symmetric bar recursion sBRg,h,ϕ : ρ† → σ is defined by

sBRg,h,ϕ(u) =σ

{
g(u) if ϕ(û) ∈ dom(u)

hs(λx . sBR
φ,b,ϕ(u⊕ (ϕ(û), x))) otherwise

Recursion

input u : ρ† a finite partial function;

recursive calls made over one-element domain-theoretic extensions
u⊕ (ϕ(û), x) of u;

g assigns base values to the recursion.

Termination

û := λk.

{
u(k) if k ∈ dom(u)

0 otherwise
, a canonical embedding of u into ρN;

ϕ : ρN → N controls recursion, terminating when Spector’s point is in the
domain of u i.e. ϕ(û) ∈ dom(u) holds.

Thomas Powell (Innsbruck) Bar recursion over partial functions 6 / 32

Backward recursion in the continuous functionals

Symmetric bar recursion sBRg,h,ϕ : ρ† → σ is defined by

sBRg,h,ϕ(u) =σ

{
g(u) if ϕ(û) ∈ dom(u)

hs(λx . sBR
φ,b,ϕ(u⊕ (ϕ(û), x))) otherwise

Recursion

input u : ρ† a finite partial function;

recursive calls made over one-element domain-theoretic extensions
u⊕ (ϕ(û), x) of u;

g assigns base values to the recursion.

Termination

û := λk.

{
u(k) if k ∈ dom(u)

0 otherwise
, a canonical embedding of u into ρN;

ϕ : ρN → N controls recursion, terminating when Spector’s point is in the
domain of u i.e. ϕ(û) ∈ dom(u) holds.

Thomas Powell (Innsbruck) Bar recursion over partial functions 6 / 32

Backward recursion in the continuous functionals

Need to adapt standard argument:

1. Extend. If sBR(u0) = ⊥ there exists an infinite sequence
u0 @ u1 @ u2 @ . . . satisfying

ni := ϕ(ûi) /∈ dom(ui) and ui+1 = ui ⊕ (ni, xi) and sBR(ui+1) = ⊥

2. Limit. Let α : N→ ρ⊥ be the domain-theoretic limit of the ui i.e.

α :=
⊔
i∈N

ui = λk .

{
ui(k)(k) where i(k) least s.t. k ∈ dom(ui(k))

undefined if no such index exists.

Let α̂ : ρN denote the canonical extenion:

α̂ = λk .

{
ui(k)(k) where i(k) least s.t. k ∈ dom(ui(k))

0ρ if no such index exists.

Thomas Powell (Innsbruck) Bar recursion over partial functions 7 / 32

Backward recursion in the continuous functionals

Need to adapt standard argument:

1. Extend. If sBR(u0) = ⊥ there exists an infinite sequence
u0 @ u1 @ u2 @ . . . satisfying

ni := ϕ(ûi) /∈ dom(ui) and ui+1 = ui ⊕ (ni, xi) and sBR(ui+1) = ⊥

2. Limit. Let α : N→ ρ⊥ be the domain-theoretic limit of the ui i.e.

α :=
⊔
i∈N

ui = λk .

{
ui(k)(k) where i(k) least s.t. k ∈ dom(ui(k))

undefined if no such index exists.

Let α̂ : ρN denote the canonical extenion:

α̂ = λk .

{
ui(k)(k) where i(k) least s.t. k ∈ dom(ui(k))

0ρ if no such index exists.

Thomas Powell (Innsbruck) Bar recursion over partial functions 7 / 32

Backward recursion in the continuous functionals

Need to adapt standard argument:

1. Extend. If sBR(u0) = ⊥ there exists an infinite sequence
u0 @ u1 @ u2 @ . . . satisfying

ni := ϕ(ûi) /∈ dom(ui) and ui+1 = ui ⊕ (ni, xi) and sBR(ui+1) = ⊥

2. Limit. Let α : N→ ρ⊥ be the domain-theoretic limit of the ui i.e.

α :=
⊔
i∈N

ui = λk .

{
ui(k)(k) where i(k) least s.t. k ∈ dom(ui(k))

undefined if no such index exists.

Let α̂ : ρN denote the canonical extenion:

α̂ = λk .

{
ui(k)(k) where i(k) least s.t. k ∈ dom(ui(k))

0ρ if no such index exists.

Thomas Powell (Innsbruck) Bar recursion over partial functions 7 / 32

Backward recursion in the continuous functionals

3. Continuity. The value of ϕ(α̂) depends only on some finite initial
segment [α̂(0), . . . , α̂(N − 1)] of its argument.

Take any M ≥ N,ϕ(α̂) + 1. Since α =
⊔
ui there exists some I such that

∀i < M(uI(i) = α(i)), or equivalently, ∀i < M(ûI(i) = α̂(i))

which implies that

nI := ϕ(ûI) =︸︷︷︸
continuity: N ≤M

ϕ(α̂) < ϕ(α̂) + 1 ≤M.

Since nI /∈ dom(uI) and nI < M we have nI /∈ dom(α). But

uI+1 = uI ⊕ (nI , xI),

and since uI+1 @ α we have nI ∈ dom(α), a contradiction.

Therefore nI = ϕ(ûI) ∈ dom(uI).

Thomas Powell (Innsbruck) Bar recursion over partial functions 8 / 32

Backward recursion in the continuous functionals

Summary: Two ways of achieving self-reference

Spector’s bar recursion

BRg,h,ϕ(s) =σ

{
g(s) if ϕ(ŝ) < len(s)

hs(λx . BR
g,h,ϕ(s ∗ x)) otherwise

makes recursive calls over the tree s0 ≺ s1 ≺ s2 ≺ . . . until it reaches a leaf sM
such that ϕ(ˆsM) < len(sM). This tree is well-founded in continuous models.

Symmetric bar recursion generalises this idea:

BRg,h,ϕ(u) =σ

{
g(u) if ϕ(û) ∈ dom(u)

hs(λx . BR
φ,b,ϕ(u⊕ (ϕ(û), x))) otherwise

making recursive calls over the tree u0 @ u1 @ u2 @ . . . until it reaches a leaf
uM such that ϕ(ûM) ∈ dom(uM). This tree is well-founded in continuous
models.

Thomas Powell (Innsbruck) Bar recursion over partial functions 9 / 32

Backward recursion in the continuous functionals

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).

Theorem 1. BR is primitive recursively definable from sBR, provably in
E-HAω (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

Theorem 2. sBR is primitive recursively definable from BR, provably in
E-HAω + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

Corollary 1. Both the Kleene-Kreisel continuous functionals Cω and the
strongly majorizable functionals Mω are a model of sBR.

Corollary 2. The tree u0 @ u1 @ u2 . . . with leaves ui ∈ dom(ûi) is
well-founded in any model of E-HAω + sBR, including Cω and Mω.

Corollary 3. sBR is S1-S9 computable in Cω, and thus strictly weaker than
modified bar recursion/Gandy-Hyland Γ functional.

Thomas Powell (Innsbruck) Bar recursion over partial functions 10 / 32

Backward recursion in the continuous functionals

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).

Theorem 1. BR is primitive recursively definable from sBR, provably in
E-HAω (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

Theorem 2. sBR is primitive recursively definable from BR, provably in
E-HAω + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

Corollary 1. Both the Kleene-Kreisel continuous functionals Cω and the
strongly majorizable functionals Mω are a model of sBR.

Corollary 2. The tree u0 @ u1 @ u2 . . . with leaves ui ∈ dom(ûi) is
well-founded in any model of E-HAω + sBR, including Cω and Mω.

Corollary 3. sBR is S1-S9 computable in Cω, and thus strictly weaker than
modified bar recursion/Gandy-Hyland Γ functional.

Thomas Powell (Innsbruck) Bar recursion over partial functions 10 / 32

Backward recursion in the continuous functionals

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).

Theorem 1. BR is primitive recursively definable from sBR, provably in
E-HAω (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

Theorem 2. sBR is primitive recursively definable from BR, provably in
E-HAω + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

Corollary 1. Both the Kleene-Kreisel continuous functionals Cω and the
strongly majorizable functionals Mω are a model of sBR.

Corollary 2. The tree u0 @ u1 @ u2 . . . with leaves ui ∈ dom(ûi) is
well-founded in any model of E-HAω + sBR, including Cω and Mω.

Corollary 3. sBR is S1-S9 computable in Cω, and thus strictly weaker than
modified bar recursion/Gandy-Hyland Γ functional.

Thomas Powell (Innsbruck) Bar recursion over partial functions 10 / 32

Backward recursion in the continuous functionals

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).

Theorem 1. BR is primitive recursively definable from sBR, provably in
E-HAω (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

Theorem 2. sBR is primitive recursively definable from BR, provably in
E-HAω + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

Corollary 1. Both the Kleene-Kreisel continuous functionals Cω and the
strongly majorizable functionals Mω are a model of sBR.

Corollary 2. The tree u0 @ u1 @ u2 . . . with leaves ui ∈ dom(ûi) is
well-founded in any model of E-HAω + sBR, including Cω and Mω.

Corollary 3. sBR is S1-S9 computable in Cω, and thus strictly weaker than
modified bar recursion/Gandy-Hyland Γ functional.

Thomas Powell (Innsbruck) Bar recursion over partial functions 10 / 32

Backward recursion in the continuous functionals

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).

Theorem 1. BR is primitive recursively definable from sBR, provably in
E-HAω (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

Theorem 2. sBR is primitive recursively definable from BR, provably in
E-HAω + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

Corollary 1. Both the Kleene-Kreisel continuous functionals Cω and the
strongly majorizable functionals Mω are a model of sBR.

Corollary 2. The tree u0 @ u1 @ u2 . . . with leaves ui ∈ dom(ûi) is
well-founded in any model of E-HAω + sBR, including Cω and Mω.

Corollary 3. sBR is S1-S9 computable in Cω, and thus strictly weaker than
modified bar recursion/Gandy-Hyland Γ functional.

Thomas Powell (Innsbruck) Bar recursion over partial functions 10 / 32

Backward recursion in the continuous functionals

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).

Theorem 1. BR is primitive recursively definable from sBR, provably in
E-HAω (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

Theorem 2. sBR is primitive recursively definable from BR, provably in
E-HAω + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

Corollary 1. Both the Kleene-Kreisel continuous functionals Cω and the
strongly majorizable functionals Mω are a model of sBR.

Corollary 2. The tree u0 @ u1 @ u2 . . . with leaves ui ∈ dom(ûi) is
well-founded in any model of E-HAω + sBR, including Cω and Mω.

Corollary 3. sBR is S1-S9 computable in Cω, and thus strictly weaker than
modified bar recursion/Gandy-Hyland Γ functional.

Thomas Powell (Innsbruck) Bar recursion over partial functions 10 / 32

The computational interpretation of countable choice

Outline

1 Backward recursion in the continuous functionals

2 The computational interpretation of countable choice

3 Backward recursion as a learning realizer

Thomas Powell (Innsbruck) Bar recursion over partial functions 11 / 32

The computational interpretation of countable choice

What is the computational meaning of a Π3-theorem?

P :≡ ∀aρ∃xσ∀yτA(a, x, y)

In general we cannot hope to produce a direct computable witness for ∃x. But
suppose we double negate and Skolemize:

¬P ↔ ∃a∀x∃y¬A(a, x, y)

↔ ∃a, pσ→τ∀x¬A(a, x, p(x))

¬¬P ↔ ∀a, p∃x¬¬A(a, x, p(x))

↔ ∀a, p∃x A(a, x, p(x))

We can typically extract some indirect computable witness

X : ρ→ (σ → τ)→ σ

for ∃x in ¬¬P , i.e.
∀a, p A(a,Xa,p, p(Xa,p)).

Thomas Powell (Innsbruck) Bar recursion over partial functions 12 / 32

The computational interpretation of countable choice

What is the computational meaning of a Π3-theorem?

P :≡ ∀aρ∃xσ∀yτA(a, x, y)

In general we cannot hope to produce a direct computable witness for ∃x. But
suppose we double negate and Skolemize:

¬P ↔ ∃a∀x∃y¬A(a, x, y)

↔ ∃a, pσ→τ∀x¬A(a, x, p(x))

¬¬P ↔ ∀a, p∃x¬¬A(a, x, p(x))

↔ ∀a, p∃x A(a, x, p(x))

We can typically extract some indirect computable witness

X : ρ→ (σ → τ)→ σ

for ∃x in ¬¬P , i.e.
∀a, p A(a,Xa,p, p(Xa,p)).

Thomas Powell (Innsbruck) Bar recursion over partial functions 12 / 32

The computational interpretation of countable choice

What is the computational meaning of a Π3-theorem?

P :≡ ∀aρ∃xσ∀yτA(a, x, y)

In general we cannot hope to produce a direct computable witness for ∃x. But
suppose we double negate and Skolemize:

¬P ↔ ∃a∀x∃y¬A(a, x, y)

↔ ∃a, pσ→τ∀x¬A(a, x, p(x))

¬¬P ↔ ∀a, p∃x¬¬A(a, x, p(x))

↔ ∀a, p∃x A(a, x, p(x))

We can typically extract some indirect computable witness

X : ρ→ (σ → τ)→ σ

for ∃x in ¬¬P , i.e.
∀a, p A(a,Xa,p, p(Xa,p)).

Thomas Powell (Innsbruck) Bar recursion over partial functions 12 / 32

The computational interpretation of countable choice

In the statement
∀a∃x∀yA(a, x, y),

x is an ideal object which works for all y. On the other hand, in the statement

∀a, p∃xA(a, x, p(x))

x is a finitary approximation to ideal object, which works for just p(x). The
function p can be seen as determining the size, or ‘quality’, of this
approximation.

I There exists an ideal object x which works for all y.

I ′ For arbitrary p, there is an approximation x to an ideal object which
works for p(x).

Over classical logic I ↔ I ′ , but I ′ is intuitionistically weak enough to
admit a computational interpretation.

Thomas Powell (Innsbruck) Bar recursion over partial functions 13 / 32

The computational interpretation of countable choice

Example

By the least element principle we can prove

P :≡ ∀f : N→ N ∃x ∈ N ∀y ∈ N . f(x) ≤ f(y).

However, there is no computable witness F : (N→ N)→ N for ∃x.

But over
classical logic P is equivalent to

∀f, p : N→ N ∃x f(x) ≤ f(p(x)).

and ∃x must be witnessed for some x ≤ p(f(0))(0), else we’d have

f(0) > f(p(0)) > f(p(2)(0)) > . . . > f(p(f(0))(0)) > f(p(f(0)+1)(0))︸ ︷︷ ︸
f(0) + 1 times

≥ 0

Various choices of p yield e.g.

∃x ∀y ∈ [0, 1000000] . f(x) ≤ f(y)

∃x ∀y ∈ [2x, 22
2x

] . f(x) ≤ f(y)

Thomas Powell (Innsbruck) Bar recursion over partial functions 14 / 32

The computational interpretation of countable choice

Example

By the least element principle we can prove

P :≡ ∀f : N→ N ∃x ∈ N ∀y ∈ N . f(x) ≤ f(y).

However, there is no computable witness F : (N→ N)→ N for ∃x. But over
classical logic P is equivalent to

∀f, p : N→ N ∃x f(x) ≤ f(p(x)).

and ∃x must be witnessed for some x ≤ p(f(0))(0), else we’d have

f(0) > f(p(0)) > f(p(2)(0)) > . . . > f(p(f(0))(0)) > f(p(f(0)+1)(0))︸ ︷︷ ︸
f(0) + 1 times

≥ 0

Various choices of p yield e.g.

∃x ∀y ∈ [0, 1000000] . f(x) ≤ f(y)

∃x ∀y ∈ [2x, 22
2x

] . f(x) ≤ f(y)

Thomas Powell (Innsbruck) Bar recursion over partial functions 14 / 32

The computational interpretation of countable choice

Example

By the least element principle we can prove

P :≡ ∀f : N→ N ∃x ∈ N ∀y ∈ N . f(x) ≤ f(y).

However, there is no computable witness F : (N→ N)→ N for ∃x. But over
classical logic P is equivalent to

∀f, p : N→ N ∃x f(x) ≤ f(p(x)).

and ∃x must be witnessed for some x ≤ p(f(0))(0), else we’d have

f(0) > f(p(0)) > f(p(2)(0)) > . . . > f(p(f(0))(0)) > f(p(f(0)+1)(0))︸ ︷︷ ︸
f(0) + 1 times

≥ 0

Various choices of p yield e.g.

∃x ∀y ∈ [0, 1000000] . f(x) ≤ f(y)

∃x ∀y ∈ [2x, 22
2x

] . f(x) ≤ f(y)

Thomas Powell (Innsbruck) Bar recursion over partial functions 14 / 32

The computational interpretation of countable choice

A well-known technique of extracting computable witnesses for negated
theorems in this way is:

Tclass ` P ⇒︸︷︷︸
negative translation

Tint ` PN ⇒︸︷︷︸
Dialectica interpretation

Tλ ` ∀y|PN |ty

Theorem (Gödel, 1930s). If PA ` P then Tλ ` ∀y|PN |ty, where Tλ is the
system of primitive recursive functionals in all finite types.

Corollary. If
PA ` ∀aρ∃xσ∀yτA(a, x, y),

then there is a primitive recursive functional X : ρ→ (σ → τ)→ σ satisfying

∀a, pσ→τA(a,Xa,p, p(Xa,p))

and an algorithm for formally extracting such an X from the proof.

Thomas Powell (Innsbruck) Bar recursion over partial functions 15 / 32

The computational interpretation of countable choice

What is the computational content of the axiom of countable choice?

AC : ∀nN∃xρ∀yσA(n, x, y)→ ∃fN→ρ∀n, yA(n, f(n), y).

First, let’s interpret the premise and conclusion seperately:

∀n, pρ→σ∃x A(n, x, p(x))→ ∀ϕρ
N→N, qρ

N→σ∃f A(ϕ(f), f(ϕ(f)), q(f))

Premise: For each n there exists a finitary (pointwise) approximation x to
the ideal object which works for p(x).

Conclusion: There exists a finitary (global) approximation f to the ideal
choice sequence which works for q(f) at point ϕ(f).

∀XN→(ρ→σ)→ρ∀ϕ, q∃f︸ ︷︷ ︸ [∀n, p A(n,Xn,p, p(Xn,p))→ A(ϕ(f), f(ϕ(f)), q(f))].

Comp. Interpretation: For any pointwise realizer X of the premise of AC,
and parameters ϕ, q, there is a global approximation f to a choice sequence in
ϕ and q.

Thomas Powell (Innsbruck) Bar recursion over partial functions 16 / 32

The computational interpretation of countable choice

What is the computational content of the axiom of countable choice?

AC : ∀nN∃xρ∀yσA(n, x, y)→ ∃fN→ρ∀n, yA(n, f(n), y).

First, let’s interpret the premise and conclusion seperately:

∀n, pρ→σ∃x A(n, x, p(x))→ ∀ϕρ
N→N, qρ

N→σ∃f A(ϕ(f), f(ϕ(f)), q(f))

Premise: For each n there exists a finitary (pointwise) approximation x to
the ideal object which works for p(x).

Conclusion: There exists a finitary (global) approximation f to the ideal
choice sequence which works for q(f) at point ϕ(f).

∀XN→(ρ→σ)→ρ∀ϕ, q∃f︸ ︷︷ ︸ [∀n, p A(n,Xn,p, p(Xn,p))→ A(ϕ(f), f(ϕ(f)), q(f))].

Comp. Interpretation: For any pointwise realizer X of the premise of AC,
and parameters ϕ, q, there is a global approximation f to a choice sequence in
ϕ and q.

Thomas Powell (Innsbruck) Bar recursion over partial functions 16 / 32

The computational interpretation of countable choice

What is the computational content of the axiom of countable choice?

AC : ∀nN∃xρ∀yσA(n, x, y)→ ∃fN→ρ∀n, yA(n, f(n), y).

First, let’s interpret the premise and conclusion seperately:

∀n, pρ→σ∃x A(n, x, p(x))→ ∀ϕρ
N→N, qρ

N→σ∃f A(ϕ(f), f(ϕ(f)), q(f))

Premise: For each n there exists a finitary (pointwise) approximation x to
the ideal object which works for p(x).

Conclusion: There exists a finitary (global) approximation f to the ideal
choice sequence which works for q(f) at point ϕ(f).

∀XN→(ρ→σ)→ρ∀ϕ, q∃f︸ ︷︷ ︸ [∀n, p A(n,Xn,p, p(Xn,p))→ A(ϕ(f), f(ϕ(f)), q(f))].

Comp. Interpretation: For any pointwise realizer X of the premise of AC,
and parameters ϕ, q, there is a global approximation f to a choice sequence in
ϕ and q.

Thomas Powell (Innsbruck) Bar recursion over partial functions 16 / 32

The computational interpretation of countable choice

For an arbitrary sequence s : ρ∗ define an extension s � Es using bar recursion:

Es =

{
s if ϕ(ŝ) < len(s)

Es∗as otherwise.

where as := Xlen(s),λx.q(Ês∗x)
.

Suppose that ŝ is an approximation to a choice sequence which works for q(Ês)
at all points i < len(s):

App(s) : ∀i < len(s) A(i, s(i), q(Ês))

but ϕ(ŝ) ≥ len(s). Then since A(len(s),

as︷ ︸︸ ︷
Xlen(s),λx.q(Ês∗x)

,

p(as)︷ ︸︸ ︷
q(Ês∗as)) holds we

have Es = Es∗as and
App(s)⇒ App(s ∗ as)

i.e. we can build a better approximation ŝ ∗ as, which works for q(Ês∗as) at all
points i < len(s) + 1.

Thomas Powell (Innsbruck) Bar recursion over partial functions 17 / 32

The computational interpretation of countable choice

If App(s0) there exists a sequence s0 ≺ s1 ≺ . . . of progressively better
approximations:

ϕ(ŝi) ≥ len(si) and si+1 = si ∗ asi and App(si+1) and Esi = Esi+1 .

But at some point we reach a leaf ϕ(ŝM) < len(sM), and then EsM = sM and

App(sM) ≡ ∀i < len(sM) A(i, sM (i), q(ÊsM))

⇒ A(ϕ(ŝM), ŝM (ϕ(ŝM)), q(ŝM)).

Thus FX,ϕ,q = Es0 = . . . = EsM = ŝM is a sufficiently good approximation.

Theorem. Ê[] is a sufficiently good approximation to a choice sequence.

Corollary (Spector 1962). If PA + AC ` P then TλBR
` ∀y|PN |ty, where

TλBR
is the system of primitive recursive functionals in all finite types

together with Spector’s bar recursion.

Thomas Powell (Innsbruck) Bar recursion over partial functions 18 / 32

The computational interpretation of countable choice

If App(s0) there exists a sequence s0 ≺ s1 ≺ . . . of progressively better
approximations:

ϕ(ŝi) ≥ len(si) and si+1 = si ∗ asi and App(si+1) and Esi = Esi+1 .

But at some point we reach a leaf ϕ(ŝM) < len(sM), and then EsM = sM and

App(sM) ≡ ∀i < len(sM) A(i, sM (i), q(ÊsM))

⇒ A(ϕ(ŝM), ŝM (ϕ(ŝM)), q(ŝM)).

Thus FX,ϕ,q = Es0 = . . . = EsM = ŝM is a sufficiently good approximation.

Theorem. Ê[] is a sufficiently good approximation to a choice sequence.

Corollary (Spector 1962). If PA + AC ` P then TλBR
` ∀y|PN |ty, where

TλBR
is the system of primitive recursive functionals in all finite types

together with Spector’s bar recursion.

Thomas Powell (Innsbruck) Bar recursion over partial functions 18 / 32

The computational interpretation of countable choice

For an arbitrary partial function u : ρ† define an extension u @ Uu as:

Uu =

{
u if ϕ(û) ∈ dom(u)

Us∗(nu,au) otherwise

where nu := ϕ(û) and au := Xnu,λx.q(Ûu⊕(nu,x))
.

Suppose that û is an approximation to a choice sequence which works for
q(Ûu) at all points i ∈ dom(u):

App(u) : ∀i ∈ dom(u) A(i, u(i), q(Ûu))

but ϕ(û) /∈ dom(u). Then since A(nu,

au︷ ︸︸ ︷
Xnu,λx.q(Ûu⊕(nu,x))

,

p(au)︷ ︸︸ ︷
q(Ûu⊕(nu,au))) holds

we have Uu = Uu⊕(nu,au) and

App(u)⇒ App(u⊕ (nu, au))

i.e. we can build a better approximation ̂u⊕ (nu, au), which works for
q(Ûu⊕(nu,au)) at all points i ∈ dom(u) ∪ {nu}.

Thomas Powell (Innsbruck) Bar recursion over partial functions 19 / 32

The computational interpretation of countable choice

If App(u0) there exists a sequence u0 @ u1 @ . . . of progressively better
approximations:

nu := ϕ(ûi) /∈ dom(ui) and ui+1 = ui ⊕ (nui
, aui

) and App(ui+1).

But at some point we reach a leaf ϕ(ûM) ∈ dom(uM), and then UuM
= uM

and
App(uM) ≡ ∀i ∈ dom(uM) A(i, uM (i), q(ÛuM

))

⇒ A(ϕ(ûM), ûM (ϕ(ûM)), q(ûM)).

Thus FX,ϕ,q = Uu0
= . . . = UuM

= ûM is a sufficiently good approximation.

Theorem. U∅ is a sufficiently good approximation to a choice sequence.

Corollary (Oliva/P. 2015). If PA + AC ` P then TλsBR
` ∀y|PN |ty, where

TλsBR
is the system of primitive recursive functionals in all finite types

together with symmetric bar recursion.

Thomas Powell (Innsbruck) Bar recursion over partial functions 20 / 32

The computational interpretation of countable choice

If App(u0) there exists a sequence u0 @ u1 @ . . . of progressively better
approximations:

nu := ϕ(ûi) /∈ dom(ui) and ui+1 = ui ⊕ (nui
, aui

) and App(ui+1).

But at some point we reach a leaf ϕ(ûM) ∈ dom(uM), and then UuM
= uM

and
App(uM) ≡ ∀i ∈ dom(uM) A(i, uM (i), q(ÛuM

))

⇒ A(ϕ(ûM), ûM (ϕ(ûM)), q(ûM)).

Thus FX,ϕ,q = Uu0
= . . . = UuM

= ûM is a sufficiently good approximation.

Theorem. U∅ is a sufficiently good approximation to a choice sequence.

Corollary (Oliva/P. 2015). If PA + AC ` P then TλsBR
` ∀y|PN |ty, where

TλsBR
is the system of primitive recursive functionals in all finite types

together with symmetric bar recursion.

Thomas Powell (Innsbruck) Bar recursion over partial functions 20 / 32

The computational interpretation of countable choice

Summary

In order to give a general computational interpretation to countable choice,
need:

Gödel’s T + backward recursion.

Spector’s original bar recursion is one possibility.

What advantage does symmetric bar recursion have?

control parameter ϕ ≈ proof-theoretic environment

Spector only cares whether or not ϕ(ŝi) < len(si), and insists on building
approximations sequentially. But if we care about point n = 1, 000, 000 do we
really need to compute n = 0, 1, . . . , 999, 999 first?

Symmetric bar recursion uses ϕ to drive the construction of the
approximation.

We would expect symmetric bar recursion to produce algorithms that are (a)
more efficient and (b) more intuitive.

Thomas Powell (Innsbruck) Bar recursion over partial functions 21 / 32

The computational interpretation of countable choice

Summary

In order to give a general computational interpretation to countable choice,
need:

Gödel’s T + backward recursion.

Spector’s original bar recursion is one possibility.

What advantage does symmetric bar recursion have?

control parameter ϕ ≈ proof-theoretic environment

Spector only cares whether or not ϕ(ŝi) < len(si), and insists on building
approximations sequentially. But if we care about point n = 1, 000, 000 do we
really need to compute n = 0, 1, . . . , 999, 999 first?

Symmetric bar recursion uses ϕ to drive the construction of the
approximation.

We would expect symmetric bar recursion to produce algorithms that are (a)
more efficient and (b) more intuitive.

Thomas Powell (Innsbruck) Bar recursion over partial functions 21 / 32

Backward recursion as a learning realizer

Outline

1 Backward recursion in the continuous functionals

2 The computational interpretation of countable choice

3 Backward recursion as a learning realizer

Thomas Powell (Innsbruck) Bar recursion over partial functions 22 / 32

Backward recursion as a learning realizer

Let us consider a countable sequence of instances of Σ0
1-LEM:

∀nN(∃xNPn(x) ∨ ∀y¬Pn(y)).

where Pn(x) is quantifier-free. The finitary intepretation is

∀n, pN→N∃x(Pn(x) ∨ ¬Pn(p(x))).

This is realized by

Xn,p :=

{
0 if ¬Pn(p(0))

p(0) otherwise

in other words, the realizer decides which branch of the standard Herbrand
disjunction holds:

[Pn(0) ∨ ¬Pn(p(0))] ∨ [Pn(p(0)) ∨ Pn(p(p(0)))].

Thomas Powell (Innsbruck) Bar recursion over partial functions 23 / 32

Backward recursion as a learning realizer

Let us consider a countable sequence of instances of Σ0
1-LEM:

∀nN(∃xNPn(x) ∨ ∀y¬Pn(y)).

where Pn(x) is quantifier-free. The finitary intepretation is

∀n, pN→N∃x(Pn(x) ∨ ¬Pn(p(x))).

This is realized by

Xn,p :=

{
0 if ¬Pn(p(0))

p(0) otherwise

in other words, the realizer decides which branch of the standard Herbrand
disjunction holds:

[Pn(0) ∨ ¬Pn(p(0))] ∨ [Pn(p(0)) ∨ Pn(p(p(0)))].

Thomas Powell (Innsbruck) Bar recursion over partial functions 23 / 32

Backward recursion as a learning realizer

By axiom of choice there exists a comprehension f : N→ ρ such that

∀n(Pn(f(n)) ∨ ∀y¬Pn(y)).

The finitary interpretation is

∀ϕ, q∃f(Pϕf (f(ϕf)) ∨ ¬Pϕf (qf))

i.e. there exists an approximation f to a comprehesion function which works
for qf at point ϕf .

This is realized by Fϕ,q := ÛX,ϕ,q∅ or ÊX,ϕ,q[] where X is realizer to Σ0
1-LEM on

previous slide.

Thomas Powell (Innsbruck) Bar recursion over partial functions 24 / 32

Backward recursion as a learning realizer

By axiom of choice there exists a comprehension f : N→ ρ such that

∀n(Pn(f(n)) ∨ ∀y¬Pn(y)).

The finitary interpretation is

∀ϕ, q∃f(Pϕf (f(ϕf)) ∨ ¬Pϕf (qf))

i.e. there exists an approximation f to a comprehesion function which works
for qf at point ϕf .

This is realized by Fϕ,q := ÛX,ϕ,q∅ or ÊX,ϕ,q[] where X is realizer to Σ0
1-LEM on

previous slide.

Thomas Powell (Innsbruck) Bar recursion over partial functions 24 / 32

Backward recursion as a learning realizer

The standard realizer Ês of comprehension, using Spector’s bar recursion, is
well-known and widely studied. So let’s look at the symmetric realizer:

Ûu =

{
û if ϕ(û) ∈ dom(u)

Ûu⊕(nu,au) otherwise

where nu := ϕ(û) and

au := Xnu,λx.q(Ûu⊕(nu,x))
=

{
0 if ¬Pnu

(q(Ûu⊕(nu,0)))

q(Ûu⊕(nu,0)) otherwise

Note ϕ(̂u⊕ (nu, 0)) = ϕ(û) = nu ∈ dom(u⊕ (nu, 0)), therefore

Ûu⊕(nu,0) = ̂u⊕ (nu, 0) = û.

Thomas Powell (Innsbruck) Bar recursion over partial functions 25 / 32

Backward recursion as a learning realizer

The standard realizer Ês of comprehension, using Spector’s bar recursion, is
well-known and widely studied. So let’s look at the symmetric realizer:

Ûu =

{
û if ϕ(û) ∈ dom(u)

Ûu⊕(nu,au) otherwise

where nu := ϕ(û) and

au := Xnu,λx.q(Ûu⊕(nu,x))
=

{
0 if ¬Pnu

(q(Ûu⊕(nu,0)))

q(Ûu⊕(nu,0)) otherwise

Note ϕ(̂u⊕ (nu, 0)) = ϕ(û) = nu ∈ dom(u⊕ (nu, 0)), therefore

Ûu⊕(nu,0) = ̂u⊕ (nu, 0) = û.

Thomas Powell (Innsbruck) Bar recursion over partial functions 25 / 32

Backward recursion as a learning realizer

The standard realizer Ês of comprehension, using Spector’s bar recursion, is
well-known and widely studied. So let’s look at the symmetric realizer:

Ûu =

{
û if ϕ(û) ∈ dom(u)

Ûu⊕(nu,au) otherwise

where nu := ϕ(û) and

au =

{
0 if ¬Pnu(q(û))

q(û) otherwise

Note ϕ(̂u⊕ (nu, 0)) = ϕ(û) = nu ∈ dom(u⊕ (nu, 0)), therefore

Ûu⊕(nu,0) = ̂u⊕ (nu, 0) = û.

Thomas Powell (Innsbruck) Bar recursion over partial functions 25 / 32

Backward recursion as a learning realizer

The standard realizer Ês of comprehension, using Spector’s bar recursion, is
well-known and widely studied. So let’s look at the symmetric realizer:

Ûu =

û if ϕ(û) ∈ dom(u)

Ûu⊕(nu,0) if ¬Pnu
(q(û))

Ûu⊕(nu,q(û)) otherwise

where nu := ϕ(û).

Note ϕ(̂u⊕ (nu, 0)) = ϕ(û) = nu ∈ dom(u⊕ (nu, 0)), therefore

Ûu⊕(nu,0) = ̂u⊕ (nu, 0) = û.

Thomas Powell (Innsbruck) Bar recursion over partial functions 25 / 32

Backward recursion as a learning realizer

The standard realizer Ês of comprehension, using Spector’s bar recursion, is
well-known and widely studied. So let’s look at the symmetric realizer:

Ûu =

{
û if ϕ(û) ∈ dom(u) ∨ ¬Pnu(q(û))

Ûu⊕(nu,q(û)) otherwise

where nu := ϕ(û).

Thomas Powell (Innsbruck) Bar recursion over partial functions 25 / 32

Backward recursion as a learning realizer

Start with u0 := ∅ and let n0 := ϕ(û0):

û0 = 0, 0, 0, . . .

If n0 ∈ ∅ or ¬Pn0
(q(û0)) then we’re done. Otherwise update as

u1 := (n0, q(û0)):
û1 = 0, 0, . . . , 0, q(û0)︸ ︷︷ ︸

n0

, 0, . . .

If n1 := ϕ(û1) ∈ {n0} or ¬Pn1
(q(û1)) we’re done. Otherwise update as

u2 := (n0, a0)⊕ (n1, q(û1)):

û2 = 0, 0, . . . , 0, q(û0)︸ ︷︷ ︸
n0

, 0, . . . , 0, q(û1)︸ ︷︷ ︸
n1

, 0, . . .

If n2 := ϕ(û2) ∈ {n0, n1} or ¬Pn2
(q(û2)) we’re done. Otherwise update again...

û3 = 0, 0, . . . , 0, q(û2)︸ ︷︷ ︸
n2

, 0, . . . , 0, q(û0)︸ ︷︷ ︸
n0

, 0, . . . , 0, q(û1)︸ ︷︷ ︸
n1

, 0, . . .

...

Thomas Powell (Innsbruck) Bar recursion over partial functions 26 / 32

Backward recursion as a learning realizer

We have an increasing sequence of approximations u0 @ u1 @ u2 @ . . .
satisfying

∀k ∈ dom(ui) Pk(ui(k))

Eventually must hit a point M such that nM /∈ dom(uM) and

¬PnM
(q(ûM)),

or nM ∈ dom(uM) and thus

PnM
(uM (nM)),

i.e. (recall nM = ϕ(ûM)):

Pϕ(ûM)(ûM (ϕ(ûM))) ∨ ¬Pϕ(ûM)(q(ûM))

and so ûM is a sufficiently good approximation to a comprehension function.

Thomas Powell (Innsbruck) Bar recursion over partial functions 27 / 32

Backward recursion as a learning realizer

Symmetric bar recursion ≈ Learning procedure

By Lϕ,q,P we mean the following algorithm:

TEST(u): Does ϕ(û) ∈ dom(u) ∨ ¬Pϕ(û)(q(û)) hold?

YES Terminate.

NO Update with new information: u→ u⊕ (ϕ(û), q(û))

Proposition. Suppose that in PA we can derive

∀x[CA(Px)→ ∃yA0(x, y)].

Then there is some learning procedure Lϕ,q,Px
and a primitive recursive

function g such that
∀xA0(x, g(Lϕ,q,Px

, x))

Thomas Powell (Innsbruck) Bar recursion over partial functions 28 / 32

Backward recursion as a learning realizer

Symmetric bar recursion ≈ Learning procedure

By Lϕ,q,P we mean the following algorithm:

TEST(u): Does ϕ(û) ∈ dom(u) ∨ ¬Pϕ(û)(q(û)) hold?

YES Terminate.

NO Update with new information: u→ u⊕ (ϕ(û), q(û))

Proposition. Suppose that in PA we can derive

∀x[CA(Px)→ ∃yA0(x, y)].

Then there is some learning procedure Lϕ,q,Px
and a primitive recursive

function g such that
∀xA0(x, g(Lϕ,q,Px

, x))

Thomas Powell (Innsbruck) Bar recursion over partial functions 28 / 32

Backward recursion as a learning realizer

Example. In PA we can derive

∀H(N→N)→N[CA(PF)→ ∃αN→N, βN→N, iN(α(i) 6= β(i) ∧Hα = Hβ)].

An algorithm for finding α, β and i can be formally extracted, which uses the
following learning procedure:

Define the sequence of functions γi : N→ N by

γi := λk .

{
1 if k ∈ Di

0 otherwise,

where
D0 := ∅ Di+1 := Di ∪ {H(γi)}.

We have γi(k) = 1 iff H(γj) = k for some j < i. Stop at the first point M such
that H(γM) ∈ DM . This means that for some j < M have H(γj) = H(γM).

Set α, β := γM , γj . These differ at point i = H(γM).

Thomas Powell (Innsbruck) Bar recursion over partial functions 29 / 32

Backward recursion as a learning realizer

Example. In PA we can derive

∀H(N→N)→N[CA(PF)→ ∃αN→N, βN→N, iN(α(i) 6= β(i) ∧Hα = Hβ)].

An algorithm for finding α, β and i can be formally extracted, which uses the
following learning procedure:

Define the sequence of functions γi : N→ N by

γi := λk .

{
1 if k ∈ Di

0 otherwise,

where
D0 := ∅ Di+1 := Di ∪ {H(γi)}.

We have γi(k) = 1 iff H(γj) = k for some j < i. Stop at the first point M such
that H(γM) ∈ DM . This means that for some j < M have H(γj) = H(γM).

Set α, β := γM , γj . These differ at point i = H(γM).

Thomas Powell (Innsbruck) Bar recursion over partial functions 29 / 32

Backward recursion as a learning realizer

Start with s0 := 〈〉:
ŝ0 = 0, 0, 0, . . .

Search for the least n0 ≤ ϕ(s0) such that ¬Pn0
(q(ŝ0)) otherwise we’re done.

Else, update as s1 := 〈0, 0, . . . , q(ŝ0)〉:

ŝ1 = 0, 0, . . . , 0, q(ŝ0)︸ ︷︷ ︸
n0

, 0, . . .

Search for the least n1 ≤ max(n0, ϕ(ŝ1)) with n1 ≤ n0 satisfying ¬Pn1(q(ŝ1)).
If n1 > n0 set s2 := 〈0, 0, . . . , 0, q(ŝ0), 0, . . . , 0, q(ŝ1)〉:

ŝ2 = 0, 0, . . . , 0, q(ŝ0)︸ ︷︷ ︸
n0

, 0, . . . , 0, q(ŝ1)︸ ︷︷ ︸
n1

, 0, . . .

else if n1 < n0 set s2 := 〈0, 0, . . . , q(ŝ1)〉:

ŝ2 = 0, 0, . . . , 0, q(ŝ1)︸ ︷︷ ︸
n1

, 0, . . .

The witness q(ŝ0) for ∃xPn0(x) is erased!

Thomas Powell (Innsbruck) Bar recursion over partial functions 30 / 32

Backward recursion as a learning realizer

Tests indicate that, on the whole, the highly intuitive algorithm given by
symmetric bar recursion performs much better than the traditional one based
on Spector.

Hn(γ) = least i ≤ n such that γi < γ(i+ 1), else n if none exist :

Spector Symmetric

n = 3 4 / 316 4 / 52

n = 4 5 / 688 5 / 64

n = 5 6 / 1444 6 / 76

Hn(γ) = Πn−1
i=0 (1 + i)1+γi :

Spector Symmetric

n = 3 577 / 2350 1 / 12

n = 4 577 / 365700 1 / 12

Thomas Powell (Innsbruck) Bar recursion over partial functions 31 / 32

Backward recursion as a learning realizer

Directions for future research

1 A more detailed investigation into the behaviour of programs extracted
using symmetric bar recursion. Can we give concise, intuitive
computational interpretations of well-known proofs which use countable
choice?

2 Have already suggested that the Dialectica interpretation of analysis is
linked to learning. How are extracted programs related to those obtained
using e.g. ε-calculus, or Aschieri-Berardi interactive learning realizability?

3 Can we take advantage of symmetric bar recursion’s flexibility to extend
Dialectica to more general choice principles over arbitrary discrete
domains:

ACD,X : ∀dD∃xXA(d, x)→ ∃fD→X∀dA(d, fd).

Thomas Powell (Innsbruck) Bar recursion over partial functions 32 / 32

	Backward recursion in the continuous functionals
	The computational interpretation of countable choice
	Backward recursion as a learning realizer

