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Backward recursion in the continuous functionals

Spector’s bar recursion BRg,h,ϕ : ρ∗ → σ is defined by

BRg,h,ϕ(s) =σ

{
g(s) if ϕ(ŝ) < len(s)

hs(λx . BR
g,h,ϕ(s ∗ x)) otherwise

Recursion

input s : X∗ a finite sequence;

recursive calls made over all one-element extensions s ∗ x of s;

g assigns base values to the recursion.

Termination

ŝ := λk.

{
s(k) if k < |s|
0 otherwise

i.e. a canonical embedding of s into ρN;

ϕ : ρN → N controls the recursion, terminating it when Spector’s point
ϕ(ŝ) is less than the length of the input i.e. ϕ(ŝ) < len(s) holds.
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Backward recursion in the continuous functionals

Bar recursion exists in continuous models by a standard argument:

1. Extend. If BR(s0) = ⊥ there exists an infinite sequence s0 ≺ s1 ≺ s2 ≺ . . .
satisfying

ϕ(ŝi) ≥ len(si) and si+1 = si ∗ xi and BR(si+1) = ⊥

2. Limit. Let α : ρN be the domain-theoretic limit of the si i.e.

α :=
⊔
i∈N

si = λk . sk+1(k)

3. Continuity. The value of ϕ(α) depends only on some finite initial
segment [α(0), . . . , α(N − 1)] of its argument.

Take any M ≥ N,ϕ(α) + 1. Then

ϕ(ŝM ) =︸︷︷︸
continuity: N ≤M

ϕ(α) < ϕ(α) + 1 ≤M ≤ len(sM )
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Backward recursion in the continuous functionals

What is so useful about bar recursion? One answer: self-reference.

Suppose Q(s, i) is some predicate on ρ∗ × N, and that whenever

∀k < len(s) Q(s, k)

we can compute an extension as : ρ such that

∀k < len(s ∗ as) Q(s ∗ as, k).

Then bar recursion allows us to compute a chain [] ≺ s1 ≺ s2 ≺ . . . ≺ sM with

∀k < len(si) Q(si, k)

for each i, and moreover sM is a leaf with ϕ(ŝM ) < len(sM ) therefore we have

Q(sM , ϕ(ŝM ))

We will see why this in important in Part 2!
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Backward recursion in the continuous functionals

Symmetric bar recursion sBRg,h,ϕ : ρ† → σ is defined by

sBRg,h,ϕ(u) =σ

g(u) if ϕ(û) ∈ dom(u)

hs(λx . sBR
φ,b,ϕ( u⊕ (ϕ(û), x) )) otherwise

Recursion

input u : ρ† a finite partial function;

recursive calls made over one-element domain-theoretic extensions
u⊕ (ϕ(û), x) of u;

g assigns base values to the recursion.

Termination

û := λk.

{
u(k) if k ∈ dom(u)

0 otherwise
, a canonical embedding of u into ρN;

ϕ : ρN → N controls recursion, terminating when Spector’s point is in the
domain of u i.e. ϕ(û) ∈ dom(u) holds.
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Backward recursion in the continuous functionals

Need to adapt standard argument:

1. Extend. If sBR(u0) = ⊥ there exists an infinite sequence
u0 @ u1 @ u2 @ . . . satisfying

ni := ϕ(ûi) /∈ dom(ui) and ui+1 = ui ⊕ (ni, xi) and sBR(ui+1) = ⊥

2. Limit. Let α : N→ ρ⊥ be the domain-theoretic limit of the ui i.e.

α :=
⊔
i∈N

ui = λk .

{
ui(k)(k) where i(k) least s.t. k ∈ dom(ui(k))

undefined if no such index exists.

Let α̂ : ρN denote the canonical extenion:

α̂ = λk .

{
ui(k)(k) where i(k) least s.t. k ∈ dom(ui(k))

0ρ if no such index exists.
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Backward recursion in the continuous functionals

3. Continuity. The value of ϕ(α̂) depends only on some finite initial
segment [α̂(0), . . . , α̂(N − 1)] of its argument.

Take any M ≥ N,ϕ(α̂) + 1. Since α =
⊔
ui there exists some I such that

∀i < M(uI(i) = α(i)), or equivalently, ∀i < M(ûI(i) = α̂(i))

which implies that

nI := ϕ(ûI) =︸︷︷︸
continuity: N ≤M

ϕ(α̂) < ϕ(α̂) + 1 ≤M.

Since nI /∈ dom(uI) and nI < M we have nI /∈ dom(α). But

uI+1 = uI ⊕ (nI , xI),

and since uI+1 @ α we have nI ∈ dom(α), a contradiction.

Therefore nI = ϕ(ûI) ∈ dom(uI).
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Backward recursion in the continuous functionals

Summary: Two ways of achieving self-reference

Spector’s bar recursion

BRg,h,ϕ(s) =σ

{
g(s) if ϕ(ŝ) < len(s)

hs(λx . BR
g,h,ϕ(s ∗ x)) otherwise

makes recursive calls over the tree s0 ≺ s1 ≺ s2 ≺ . . . until it reaches a leaf sM
such that ϕ( ˆsM ) < len(sM ). This tree is well-founded in continuous models.

Symmetric bar recursion generalises this idea:

BRg,h,ϕ(u) =σ

{
g(u) if ϕ(û) ∈ dom(u)

hs(λx . BR
φ,b,ϕ(u⊕ (ϕ(û), x))) otherwise

making recursive calls over the tree u0 @ u1 @ u2 @ . . . until it reaches a leaf
uM such that ϕ(ûM ) ∈ dom(uM ). This tree is well-founded in continuous
models.
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Backward recursion in the continuous functionals

Some facts about symmetric bar recursion, taken from (Oliva/P. 2015).

Theorem 1. BR is primitive recursively definable from sBR, provably in
E-HAω (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

Theorem 2. sBR is primitive recursively definable from BR, provably in
E-HAω + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

Corollary 1. Both the Kleene-Kreisel continuous functionals Cω and the
strongly majorizable functionals Mω are a model of sBR.

Corollary 2. The tree u0 @ u1 @ u2 . . . with leaves ui ∈ dom(ûi) is
well-founded in any model of E-HAω + sBR, including Cω and Mω.

Corollary 3. sBR is S1-S9 computable in Cω, and thus strictly weaker than
modified bar recursion/Gandy-Hyland Γ functional.
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The computational interpretation of countable choice

What is the computational meaning of a Π3-theorem?

P :≡ ∀aρ∃xσ∀yτA(a, x, y)

In general we cannot hope to produce a direct computable witness for ∃x. But
suppose we double negate and Skolemize:

¬P ↔ ∃a∀x∃y¬A(a, x, y)

↔ ∃a, pσ→τ∀x¬A(a, x, p(x))

¬¬P ↔ ∀a, p∃x¬¬A(a, x, p(x))

↔ ∀a, p∃x A(a, x, p(x))

We can typically extract some indirect computable witness

X : ρ→ (σ → τ)→ σ

for ∃x in ¬¬P , i.e.
∀a, p A(a,Xa,p, p(Xa,p)).
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The computational interpretation of countable choice

In the statement
∀a∃x∀yA(a, x, y),

x is an ideal object which works for all y. On the other hand, in the statement

∀a, p∃xA(a, x, p(x))

x is a finitary approximation to ideal object, which works for just p(x). The
function p can be seen as determining the size, or ‘quality’, of this
approximation.

I There exists an ideal object x which works for all y.

I ′ For arbitrary p, there is an approximation x to an ideal object which
works for p(x).

Over classical logic I ↔ I ′ , but I ′ is intuitionistically weak enough to
admit a computational interpretation.
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The computational interpretation of countable choice

Example

By the least element principle we can prove

P :≡ ∀f : N→ N ∃x ∈ N ∀y ∈ N . f(x) ≤ f(y).

However, there is no computable witness F : (N→ N)→ N for ∃x.

But over
classical logic P is equivalent to

∀f, p : N→ N ∃x f(x) ≤ f(p(x)).

and ∃x must be witnessed for some x ≤ p(f(0))(0), else we’d have

f(0) > f(p(0)) > f(p(2)(0)) > . . . > f(p(f(0))(0)) > f(p(f(0)+1)(0))︸ ︷︷ ︸
f(0) + 1 times

≥ 0

Various choices of p yield e.g.

∃x ∀y ∈ [0, 1000000] . f(x) ≤ f(y)

∃x ∀y ∈ [2x, 22
2x

] . f(x) ≤ f(y)
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The computational interpretation of countable choice

A well-known technique of extracting computable witnesses for negated
theorems in this way is:

Tclass ` P ⇒︸︷︷︸
negative translation

Tint ` PN ⇒︸︷︷︸
Dialectica interpretation

Tλ ` ∀y|PN |ty

Theorem (Gödel, 1930s). If PA ` P then Tλ ` ∀y|PN |ty, where Tλ is the
system of primitive recursive functionals in all finite types.

Corollary. If
PA ` ∀aρ∃xσ∀yτA(a, x, y),

then there is a primitive recursive functional X : ρ→ (σ → τ)→ σ satisfying

∀a, pσ→τA(a,Xa,p, p(Xa,p))

and an algorithm for formally extracting such an X from the proof.
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The computational interpretation of countable choice

What is the computational content of the axiom of countable choice?

AC : ∀nN∃xρ∀yσA(n, x, y)→ ∃fN→ρ∀n, yA(n, f(n), y).

First, let’s interpret the premise and conclusion seperately:

∀n, pρ→σ∃x A(n, x, p(x))→ ∀ϕρ
N→N, qρ

N→σ∃f A(ϕ(f), f(ϕ(f)), q(f))

Premise: For each n there exists a finitary (pointwise) approximation x to
the ideal object which works for p(x).

Conclusion: There exists a finitary (global) approximation f to the ideal
choice sequence which works for q(f) at point ϕ(f).

∀XN→(ρ→σ)→ρ∀ϕ, q∃f︸ ︷︷ ︸ [∀n, p A(n,Xn,p, p(Xn,p))→ A(ϕ(f), f(ϕ(f)), q(f))].

Comp. Interpretation: For any pointwise realizer X of the premise of AC,
and parameters ϕ, q, there is a global approximation f to a choice sequence in
ϕ and q.
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The computational interpretation of countable choice

For an arbitrary sequence s : ρ∗ define an extension s � Es using bar recursion:

Es =

{
s if ϕ(ŝ) < len(s)

Es∗as otherwise.

where as := Xlen(s),λx.q(Ês∗x)
.

Suppose that ŝ is an approximation to a choice sequence which works for q(Ês)
at all points i < len(s):

App(s) : ∀i < len(s) A(i, s(i), q(Ês))

but ϕ(ŝ) ≥ len(s). Then since A(len(s),

as︷ ︸︸ ︷
Xlen(s),λx.q(Ês∗x)

,

p(as)︷ ︸︸ ︷
q(Ês∗as)) holds we

have Es = Es∗as and
App(s)⇒ App(s ∗ as)

i.e. we can build a better approximation ŝ ∗ as, which works for q(Ês∗as) at all
points i < len(s) + 1.
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The computational interpretation of countable choice

If App(s0) there exists a sequence s0 ≺ s1 ≺ . . . of progressively better
approximations:

ϕ(ŝi) ≥ len(si) and si+1 = si ∗ asi and App(si+1) and Esi = Esi+1 .

But at some point we reach a leaf ϕ(ŝM ) < len(sM ), and then EsM = sM and

App(sM ) ≡ ∀i < len(sM ) A(i, sM (i), q(ÊsM ))

⇒ A(ϕ(ŝM ), ŝM (ϕ(ŝM )), q(ŝM )).

Thus FX,ϕ,q = Es0 = . . . = EsM = ŝM is a sufficiently good approximation.

Theorem. Ê[] is a sufficiently good approximation to a choice sequence.

Corollary (Spector 1962). If PA + AC ` P then TλBR
` ∀y|PN |ty, where

TλBR
is the system of primitive recursive functionals in all finite types

together with Spector’s bar recursion.
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Thus FX,ϕ,q = Es0 = . . . = EsM = ŝM is a sufficiently good approximation.
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The computational interpretation of countable choice

For an arbitrary partial function u : ρ† define an extension u @ Uu as:

Uu =

{
u if ϕ(û) ∈ dom(u)

Us∗(nu,au) otherwise

where nu := ϕ(û) and au := Xnu,λx.q(Ûu⊕(nu,x))
.

Suppose that û is an approximation to a choice sequence which works for
q(Ûu) at all points i ∈ dom(u):

App(u) : ∀i ∈ dom(u) A(i, u(i), q(Ûu))

but ϕ(û) /∈ dom(u). Then since A(nu,

au︷ ︸︸ ︷
Xnu,λx.q(Ûu⊕(nu,x))

,

p(au)︷ ︸︸ ︷
q(Ûu⊕(nu,au))) holds

we have Uu = Uu⊕(nu,au) and

App(u)⇒ App(u⊕ (nu, au))

i.e. we can build a better approximation ̂u⊕ (nu, au), which works for
q(Ûu⊕(nu,au)) at all points i ∈ dom(u) ∪ {nu}.
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The computational interpretation of countable choice

If App(u0) there exists a sequence u0 @ u1 @ . . . of progressively better
approximations:

nu := ϕ(ûi) /∈ dom(ui) and ui+1 = ui ⊕ (nui
, aui

) and App(ui+1).

But at some point we reach a leaf ϕ(ûM ) ∈ dom(uM ), and then UuM
= uM

and
App(uM ) ≡ ∀i ∈ dom(uM ) A(i, uM (i), q(ÛuM

))

⇒ A(ϕ(ûM ), ûM (ϕ(ûM )), q(ûM )).

Thus FX,ϕ,q = Uu0
= . . . = UuM

= ûM is a sufficiently good approximation.

Theorem. U∅ is a sufficiently good approximation to a choice sequence.

Corollary (Oliva/P. 2015). If PA + AC ` P then TλsBR
` ∀y|PN |ty, where

TλsBR
is the system of primitive recursive functionals in all finite types

together with symmetric bar recursion.
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The computational interpretation of countable choice

Summary

In order to give a general computational interpretation to countable choice,
need:

Gödel’s T + backward recursion.

Spector’s original bar recursion is one possibility.

What advantage does symmetric bar recursion have?

control parameter ϕ ≈ proof-theoretic environment

Spector only cares whether or not ϕ(ŝi) < len(si), and insists on building
approximations sequentially. But if we care about point n = 1, 000, 000 do we
really need to compute n = 0, 1, . . . , 999, 999 first?

Symmetric bar recursion uses ϕ to drive the construction of the
approximation.

We would expect symmetric bar recursion to produce algorithms that are (a)
more efficient and (b) more intuitive.
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Backward recursion as a learning realizer

Outline

1 Backward recursion in the continuous functionals

2 The computational interpretation of countable choice

3 Backward recursion as a learning realizer
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Backward recursion as a learning realizer

Let us consider a countable sequence of instances of Σ0
1-LEM:

∀nN(∃xNPn(x) ∨ ∀y¬Pn(y)).

where Pn(x) is quantifier-free. The finitary intepretation is

∀n, pN→N∃x(Pn(x) ∨ ¬Pn(p(x))).

This is realized by

Xn,p :=

{
0 if ¬Pn(p(0))

p(0) otherwise

in other words, the realizer decides which branch of the standard Herbrand
disjunction holds:

[Pn(0) ∨ ¬Pn(p(0))] ∨ [Pn(p(0)) ∨ Pn(p(p(0)))].
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Backward recursion as a learning realizer

By axiom of choice there exists a comprehension f : N→ ρ such that

∀n(Pn(f(n)) ∨ ∀y¬Pn(y)).

The finitary interpretation is

∀ϕ, q∃f(Pϕf (f(ϕf)) ∨ ¬Pϕf (qf))

i.e. there exists an approximation f to a comprehesion function which works
for qf at point ϕf .

This is realized by Fϕ,q := ÛX,ϕ,q∅ or ÊX,ϕ,q[] where X is realizer to Σ0
1-LEM on

previous slide.
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Backward recursion as a learning realizer

The standard realizer Ês of comprehension, using Spector’s bar recursion, is
well-known and widely studied. So let’s look at the symmetric realizer:

Ûu =

{
û if ϕ(û) ∈ dom(u)

Ûu⊕(nu,au) otherwise

where nu := ϕ(û) and

au := Xnu,λx.q(Ûu⊕(nu,x))
=

{
0 if ¬Pnu

(q(Ûu⊕(nu,0)))

q(Ûu⊕(nu,0)) otherwise

Note ϕ( ̂u⊕ (nu, 0)) = ϕ(û) = nu ∈ dom(u⊕ (nu, 0)), therefore

Ûu⊕(nu,0) = ̂u⊕ (nu, 0) = û.
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(q(Ûu⊕(nu,0)))
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Backward recursion as a learning realizer

Start with u0 := ∅ and let n0 := ϕ(û0):

û0 = 0, 0, 0, . . .

If n0 ∈ ∅ or ¬Pn0
(q(û0)) then we’re done. Otherwise update as

u1 := (n0, q(û0)):
û1 = 0, 0, . . . , 0, q(û0)︸ ︷︷ ︸

n0

, 0, . . .

If n1 := ϕ(û1) ∈ {n0} or ¬Pn1
(q(û1)) we’re done. Otherwise update as

u2 := (n0, a0)⊕ (n1, q(û1)):

û2 = 0, 0, . . . , 0, q(û0)︸ ︷︷ ︸
n0

, 0, . . . , 0, q(û1)︸ ︷︷ ︸
n1

, 0, . . .

If n2 := ϕ(û2) ∈ {n0, n1} or ¬Pn2
(q(û2)) we’re done. Otherwise update again...

û3 = 0, 0, . . . , 0, q(û2)︸ ︷︷ ︸
n2

, 0, . . . , 0, q(û0)︸ ︷︷ ︸
n0

, 0, . . . , 0, q(û1)︸ ︷︷ ︸
n1

, 0, . . .

...
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Backward recursion as a learning realizer

We have an increasing sequence of approximations u0 @ u1 @ u2 @ . . .
satisfying

∀k ∈ dom(ui) Pk(ui(k))

Eventually must hit a point M such that nM /∈ dom(uM ) and

¬PnM
(q(ûM )),

or nM ∈ dom(uM ) and thus

PnM
(uM (nM )),

i.e. (recall nM = ϕ(ûM )):

Pϕ(ûM )(ûM (ϕ(ûM ))) ∨ ¬Pϕ(ûM )(q(ûM ))

and so ûM is a sufficiently good approximation to a comprehension function.
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Backward recursion as a learning realizer

Symmetric bar recursion ≈ Learning procedure

By Lϕ,q,P we mean the following algorithm:

TEST(u): Does ϕ(û) ∈ dom(u) ∨ ¬Pϕ(û)(q(û)) hold?

YES  Terminate.

NO  Update with new information: u→ u⊕ (ϕ(û), q(û))

Proposition. Suppose that in PA we can derive

∀x[CA(Px)→ ∃yA0(x, y)].

Then there is some learning procedure Lϕ,q,Px
and a primitive recursive

function g such that
∀xA0(x, g(Lϕ,q,Px

, x))
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Backward recursion as a learning realizer

Example. In PA we can derive

∀H(N→N)→N[CA(PF )→ ∃αN→N, βN→N, iN(α(i) 6= β(i) ∧Hα = Hβ)].

An algorithm for finding α, β and i can be formally extracted, which uses the
following learning procedure:

Define the sequence of functions γi : N→ N by

γi := λk .

{
1 if k ∈ Di

0 otherwise,

where
D0 := ∅ Di+1 := Di ∪ {H(γi)}.

We have γi(k) = 1 iff H(γj) = k for some j < i. Stop at the first point M such
that H(γM ) ∈ DM . This means that for some j < M have H(γj) = H(γM ).

Set α, β := γM , γj . These differ at point i = H(γM ).
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Backward recursion as a learning realizer

Start with s0 := 〈〉:
ŝ0 = 0, 0, 0, . . .

Search for the least n0 ≤ ϕ(s0) such that ¬Pn0
(q(ŝ0)) otherwise we’re done.

Else, update as s1 := 〈0, 0, . . . , q(ŝ0)〉:

ŝ1 = 0, 0, . . . , 0, q(ŝ0)︸ ︷︷ ︸
n0

, 0, . . .

Search for the least n1 ≤ max(n0, ϕ(ŝ1)) with n1 ≤ n0 satisfying ¬Pn1(q(ŝ1)).
If n1 > n0 set s2 := 〈0, 0, . . . , 0, q(ŝ0), 0, . . . , 0, q(ŝ1)〉:

ŝ2 = 0, 0, . . . , 0, q(ŝ0)︸ ︷︷ ︸
n0

, 0, . . . , 0, q(ŝ1)︸ ︷︷ ︸
n1

, 0, . . .

else if n1 < n0 set s2 := 〈0, 0, . . . , q(ŝ1)〉:

ŝ2 = 0, 0, . . . , 0, q(ŝ1)︸ ︷︷ ︸
n1

, 0, . . .

The witness q(ŝ0) for ∃xPn0(x) is erased!
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Backward recursion as a learning realizer

Tests indicate that, on the whole, the highly intuitive algorithm given by
symmetric bar recursion performs much better than the traditional one based
on Spector.

Hn(γ) = least i ≤ n such that γi < γ(i+ 1), else n if none exist :

Spector Symmetric

n = 3 4 / 316 4 / 52

n = 4 5 / 688 5 / 64

n = 5 6 / 1444 6 / 76

Hn(γ) = Πn−1
i=0 (1 + i)1+γi :

Spector Symmetric

n = 3 577 / 2350 1 / 12

n = 4 577 / 365700 1 / 12
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Backward recursion as a learning realizer

Directions for future research

1 A more detailed investigation into the behaviour of programs extracted
using symmetric bar recursion. Can we give concise, intuitive
computational interpretations of well-known proofs which use countable
choice?

2 Have already suggested that the Dialectica interpretation of analysis is
linked to learning. How are extracted programs related to those obtained
using e.g. ε-calculus, or Aschieri-Berardi interactive learning realizability?

3 Can we take advantage of symmetric bar recursion’s flexibility to extend
Dialectica to more general choice principles over arbitrary discrete
domains:

ACD,X : ∀dD∃xXA(d, x)→ ∃fD→X∀dA(d, fd).
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