Bar recursion over finite partial functions

Thomas Powell (joint work with Paulo Oliva)

University of Innsbruck

CCC 2015 Kochel am See, Germany 15 September 2015

Thomas Powell (Innsbruck) B

・ロト ・回ト ・ヨト ・ヨト

Outline

1 Backward recursion in the continuous functionals

æ

・ロト ・日ト ・ヨト ・ヨト

Spector's bar recursion $\mathsf{BR}^{g,h,\varphi}\colon\rho^*\to\sigma$ is defined by

$$\mathsf{BR}^{g,h,\varphi}(s) =_{\sigma} \begin{cases} g(s) & \text{if } \varphi(\hat{s}) < \operatorname{len}(s) \\ h_s(\lambda x \cdot \mathsf{BR}^{g,h,\varphi}(s * x)) & \text{otherwise} \end{cases}$$

(日) (四) (王) (王) (王)

Spector's bar recursion $\mathsf{BR}^{g,h,\varphi}\colon\rho^*\to\sigma$ is defined by

$$\mathsf{BR}^{g,h,\varphi}(s) =_{\sigma} \begin{cases} g(s) & \text{if } \varphi(\hat{s}) < \operatorname{len}(s) \\ h_s(\lambda x \, . \, \mathsf{BR}^{g,h,\varphi}(s * x)) & \text{otherwise} \end{cases}$$

RECURSION

- input $s: X^*$ a finite sequence;
- recursive calls made over all one-element extensions s * x of s;
- g assigns base values to the recursion.

Spector's bar recursion $\mathsf{BR}^{g,h,\varphi}: \rho^* \to \sigma$ is defined by

$$\mathsf{BR}^{g,h,\varphi}(s) =_{\sigma} \begin{cases} g(s) & \text{if } \varphi(\hat{s}) < \operatorname{len}(s) \\ h_s(\lambda x \cdot \mathsf{BR}^{g,h,\varphi}(s * x)) & \text{otherwise} \end{cases}$$

RECURSION

- input $s: X^*$ a finite sequence;
- recursive calls made over all one-element extensions s * x of s;

• g assigns base values to the recursion.

TERMINATION

•
$$\hat{s} := \lambda k. \begin{cases} s(k) & \text{if } k < |s| \\ 0 & \text{otherwise} \end{cases}$$
 i.e. a canonical embedding of s into $\rho^{\mathbb{N}}$;

• $\varphi: \rho^{\mathbb{N}} \to \mathbb{N}$ controls the recursion, terminating it when Spector's point $\varphi(\hat{s})$ is less than the length of the input i.e. $\varphi(\hat{s}) < \operatorname{len}(s)$ holds.

イロト イヨト イヨト イヨト 三日

Backward recursion in the continuous functionals

Bar recursion exists in continuous models by a standard argument:

(日) (종) (종) (종) (종) (종)

Bar recursion exists in continuous models by a standard argument:

1. EXTEND. If $BR(s_0) = \bot$ there exists an infinite sequence $s_0 \prec s_1 \prec s_2 \prec \ldots$ satisfying

 $\varphi(\hat{s}_i) \ge \operatorname{len}(s_i)$ and $s_{i+1} = s_i * x_i$ and $\mathsf{BR}(s_{i+1}) = \bot$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Backward recursion in the continuous functionals

Bar recursion exists in continuous models by a standard argument:

1. EXTEND. If $BR(s_0) = \bot$ there exists an infinite sequence $s_0 \prec s_1 \prec s_2 \prec \ldots$ satisfying

 $\varphi(\hat{s}_i) \ge \operatorname{len}(s_i) \quad \text{and} \quad s_{i+1} = s_i * x_i \quad \text{and} \quad \mathsf{BR}(s_{i+1}) = \bot$

2. LIMIT. Let $\alpha : \rho^{\mathbb{N}}$ be the domain-theoretic limit of the s_i i.e.

$$\alpha := \bigsqcup_{i \in \mathbb{N}} s_i = \lambda k \cdot s_{k+1}(k)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

Bar recursion exists in continuous models by a standard argument:

1. EXTEND. If $\mathsf{BR}(s_0) = \bot$ there exists an infinite sequence $s_0 \prec s_1 \prec s_2 \prec \ldots$ satisfying

 $\varphi(\hat{s}_i) \ge \operatorname{len}(s_i)$ and $s_{i+1} = s_i * x_i$ and $\mathsf{BR}(s_{i+1}) = \bot$

2. LIMIT. Let $\alpha : \rho^{\mathbb{N}}$ be the domain-theoretic limit of the s_i i.e.

$$\alpha := \bigsqcup_{i \in \mathbb{N}} s_i = \lambda k \cdot s_{k+1}(k)$$

3. CONTINUITY. The value of $\varphi(\alpha)$ depends only on some finite initial segment $[\alpha(0), \ldots, \alpha(N-1)]$ of its argument.

Take any $M \ge N, \varphi(\alpha) + 1$. Then

$$\varphi(\hat{s}_M) \underbrace{=}_{\text{continuity: } N \leq M} \varphi(\alpha) < \varphi(\alpha) + 1 \leq M \leq \text{len}(s_M)$$

Thomas Powell (Innsbruck)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

What is so useful about bar recursion? One answer: self-reference.

Suppose Q(s, i) is some predicate on $\rho^* \times \mathbb{N}$, and that whenever

 $\forall k < \operatorname{len}(s) \ Q(s,k)$

we can compute an extension $a_s: \rho$ such that

$$\forall k < \operatorname{len}(s * a_s) \ Q(s * a_s, k).$$

Then bar recursion allows us to compute a chain $[] \prec s_1 \prec s_2 \prec \ldots \prec s_M$ with

 $\forall k < \operatorname{len}(s_i) \ Q(s_i, k)$

for each i, and moreover s_M is a leaf with $\varphi(\hat{s}_M) < \operatorname{len}(s_M)$ therefore we have

$$Q(s_M, \varphi(\hat{s}_M))$$

We will see why this in important in Part 2!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Symmetric bar recursion $\mathsf{sBR}^{g,h,\varphi} \colon \rho^{\dagger} \to \sigma$ is defined by

$$\mathsf{sBR}^{g,h,\varphi}(u) =_{\sigma} \begin{cases} g(u) & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ h_s(\lambda x \cdot \mathsf{sBR}^{\phi,b,\varphi}(\underbrace{u \oplus (\varphi(\hat{u}), x)})) & \text{otherwise} \end{cases}$$

<ロ> (四) (四) (三) (三) (三)

Symmetric bar recursion $\mathsf{sBR}^{g,h,\varphi}: \rho^{\dagger} \to \sigma$ is defined by

$$\mathsf{sBR}^{g,h,\varphi}(u) =_{\sigma} \begin{cases} g(u) & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ h_s(\lambda x \, . \, \mathsf{sBR}^{\phi,b,\varphi}(u \oplus (\varphi(\hat{u}), x))) & \text{otherwise} \end{cases}$$

RECURSION

- input $u \colon \rho^{\dagger}$ a finite partial function;
- recursive calls made over one-element domain-theoretic extensions $u \oplus (\varphi(\hat{u}), x)$ of u;
- $\bullet~g$ assigns base values to the recursion.

イロト イヨト イヨト イヨト 三日

Symmetric bar recursion $\mathsf{sBR}^{g,h,\varphi}: \rho^{\dagger} \to \sigma$ is defined by

$$\mathsf{sBR}^{g,h,\varphi}(u) =_{\sigma} \begin{cases} g(u) & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ h_s(\lambda x \, . \, \mathsf{sBR}^{\phi,b,\varphi}(u \oplus (\varphi(\hat{u}), x))) & \text{otherwise} \end{cases}$$

RECURSION

- input $u: \rho^{\dagger}$ a finite partial function;
- recursive calls made over one-element domain-theoretic extensions $u \oplus (\varphi(\hat{u}), x)$ of u;
- $\bullet~g$ assigns base values to the recursion.

TERMINATION

•
$$\hat{u} := \lambda k. \begin{cases} u(k) & \text{if } k \in \operatorname{dom}(u) \\ 0 & \text{otherwise} \end{cases}$$
, a canonical embedding of u into $\rho^{\mathbb{N}}$;

• $\varphi: \rho^{\mathbb{N}} \to \mathbb{N}$ controls recursion, terminating when Spector's point is in the *domain* of u i.e. $\varphi(\hat{u}) \in \operatorname{dom}(u)$ holds.

・ロン ・四 と ・ 日 と ・ 日

Need to adapt standard argument:

Need to adapt standard argument:

1. EXTEND. If $sBR(u_0) = \bot$ there exists an infinite sequence $u_0 \sqsubset u_1 \sqsubset u_2 \sqsubset \ldots$ satisfying

 $n_i := \varphi(\hat{u}_i) \notin \operatorname{dom}(u_i) \quad \text{and} \quad u_{i+1} = u_i \oplus (n_i, x_i) \quad \text{and} \quad \mathsf{sBR}(u_{i+1}) = \bot$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

Need to adapt standard argument:

1. EXTEND. If $sBR(u_0) = \bot$ there exists an infinite sequence $u_0 \sqsubset u_1 \sqsubset u_2 \sqsubset \ldots$ satisfying

 $n_i := \varphi(\hat{u}_i) \notin \operatorname{dom}(u_i) \quad \text{and} \quad u_{i+1} = u_i \oplus (n_i, x_i) \quad \text{and} \quad \mathsf{sBR}(u_{i+1}) = \bot$

2. LIMIT. Let $\alpha \colon \mathbb{N} \to \rho_{\perp}$ be the domain-theoretic limit of the u_i i.e.

$$\alpha := \bigsqcup_{i \in \mathbb{N}} u_i = \lambda k \cdot \begin{cases} u_{i(k)}(k) & \text{where } i(k) \text{ least s.t. } k \in \operatorname{dom}(u_{i(k)}) \\ \text{undefined} & \text{if no such index exists.} \end{cases}$$

Let $\hat{\alpha}: \rho^{\mathbb{N}}$ denote the canonical extension:

$$\hat{\alpha} = \lambda k \cdot \begin{cases} u_{i(k)}(k) & \text{where } i(k) \text{ least s.t. } k \in \operatorname{dom}(u_{i(k)}) \\ 0_{\rho} & \text{if no such index exists.} \end{cases}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 -

3. CONTINUITY. The value of $\varphi(\hat{\alpha})$ depends only on some finite initial segment $[\hat{\alpha}(0), \ldots, \hat{\alpha}(N-1)]$ of its argument.

Take any $M \ge N, \varphi(\hat{\alpha}) + 1$. Since $\alpha = \bigsqcup u_i$ there exists some I such that

$$\forall i < M(u_I(i) = \alpha(i)), \text{ or equivalently, } \forall i < M(\hat{u}_I(i) = \hat{\alpha}(i))$$

which implies that

$$n_I := \varphi(\hat{u}_I) \underbrace{=}_{\text{continuity: } N \leq M} \varphi(\hat{\alpha}) < \varphi(\hat{\alpha}) + 1 \leq M.$$

Since $n_I \notin \operatorname{dom}(u_I)$ and $n_I < M$ we have $n_I \notin \operatorname{dom}(\alpha)$. But

$$u_{I+1} = u_I \oplus (n_I, x_I),$$

and since $u_{I+1} \sqsubset \alpha$ we have $n_I \in \text{dom}(\alpha)$, a contradiction.

Therefore $n_I = \varphi(\hat{u}_I) \in \operatorname{dom}(u_I)$.

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

SUMMARY: TWO WAYS OF ACHIEVING SELF-REFERENCE

Spector's bar recursion

$$\mathsf{BR}^{g,h,\varphi}(s) =_{\sigma} \begin{cases} g(s) & \text{if } \varphi(\hat{s}) < \operatorname{len}(s) \\ h_s(\lambda x \cdot \mathsf{BR}^{g,h,\varphi}(s * x)) & \text{otherwise} \end{cases}$$

makes recursive calls over the tree $s_0 \prec s_1 \prec s_2 \prec \ldots$ until it reaches a leaf s_M such that $\varphi(\hat{s}_M) < \operatorname{len}(s_M)$. This tree is well-founded in continuous models.

Symmetric bar recursion generalises this idea:

 $\mathsf{BR}^{g,h,\varphi}(u) =_{\sigma} \begin{cases} g(u) & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ h_s(\lambda x \, . \, \mathsf{BR}^{\phi,b,\varphi}(u \oplus (\varphi(\hat{u}), x))) & \text{otherwise} \end{cases}$

making recursive calls over the tree $u_0 \sqsubset u_1 \sqsubset u_2 \sqsubset \ldots$ until it reaches a leaf u_M such that $\varphi(\hat{u}_M) \in \operatorname{dom}(u_M)$. This tree is well-founded in continuous models.

・ロ・・西・・ヨ・ ・日・ ・ロ・

THEOREM 1. BR is primitive recursively definable from sBR, provably in $E-HA^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

イロト スピト スヨト スヨト 三日

THEOREM 1. BR is primitive recursively definable from sBR, provably in $E-HA^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

THEOREM 2. sBR is primitive recursively definable from BR, provably in E-HA $^\omega$ + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

<ロ> (四) (四) (三) (三) (三) (三)

THEOREM 1. BR is primitive recursively definable from sBR, provably in $E-HA^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

THEOREM 2. sBR is primitive recursively definable from BR, provably in E-HA $^\omega$ + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

COROLLARY 1. Both the Kleene-Kreisel continuous functionals \mathcal{C}^{ω} and the strongly majorizable functionals \mathcal{M}^{ω} are a model of sBR.

イロト イヨト イヨト イヨト 三日

THEOREM 1. BR is primitive recursively definable from sBR, provably in $E-HA^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

THEOREM 2. sBR is primitive recursively definable from BR, provably in E-HA^{ω} + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

COROLLARY 1. Both the Kleene-Kreisel continuous functionals \mathcal{C}^{ω} and the strongly majorizable functionals \mathcal{M}^{ω} are a model of sBR.

COROLLARY 2. The tree $u_0 \sqsubset u_1 \sqsubset u_2 \ldots$ with leaves $u_i \in \text{dom}(\hat{u}_i)$ is well-founded in any model of $\mathsf{E}-\mathsf{HA}^{\omega} + \mathsf{sBR}$, including \mathcal{C}^{ω} and \mathcal{M}^{ω} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

THEOREM 1. BR is primitive recursively definable from sBR, provably in $E-HA^{\omega}$ (extensional Heyting arithmetic in all finite types).

Proof. Straightforward.

THEOREM 2. sBR is primitive recursively definable from BR, provably in E-HA $^\omega$ + DC.

Proof. Fairly complex. Need to move up a type level to define sBR.

COROLLARY 1. Both the Kleene-Kreisel continuous functionals \mathcal{C}^{ω} and the strongly majorizable functionals \mathcal{M}^{ω} are a model of sBR.

COROLLARY 2. The tree $u_0 \sqsubset u_1 \sqsubset u_2 \ldots$ with leaves $u_i \in \text{dom}(\hat{u}_i)$ is well-founded in any model of $\mathsf{E}-\mathsf{HA}^{\omega} + \mathsf{sBR}$, including \mathcal{C}^{ω} and \mathcal{M}^{ω} .

COROLLARY 3. sBR is S1-S9 computable in C^{ω} , and thus strictly weaker than modified bar recursion/Gandy-Hyland Γ functional.

Outline

2 The computational interpretation of countable choice

ackward recursion as a learning realizer

What is the computational meaning of a Π_3 -theorem?

$$P :\equiv \forall a^{\rho} \exists x^{\sigma} \forall y^{\tau} A(a, x, y)$$

What is the computational meaning of a Π_3 -theorem?

$$P :\equiv \forall a^{\rho} \exists x^{\sigma} \forall y^{\tau} A(a, x, y)$$

In general we cannot hope to produce a direct computable witness for $\exists x$. But suppose we double negate and Skolemize:

$$\neg P \leftrightarrow \exists a \forall x \exists y \neg A(a, x, y) \\ \leftrightarrow \exists a, p^{\sigma \to \tau} \forall x \neg A(a, x, p(x)) \\ \neg \neg P \leftrightarrow \forall a, p \exists x \neg \neg A(a, x, p(x)) \\ \leftrightarrow \forall a, p \exists x \ A(a, x, p(x)) \end{cases}$$

What is the computational meaning of a Π_3 -theorem?

$$P :\equiv \forall a^{\rho} \exists x^{\sigma} \forall y^{\tau} A(a, x, y)$$

In general we cannot hope to produce a direct computable witness for $\exists x$. But suppose we double negate and Skolemize:

$$\neg P \leftrightarrow \exists a \forall x \exists y \neg A(a, x, y) \\ \leftrightarrow \exists a, p^{\sigma \to \tau} \forall x \neg A(a, x, p(x)) \\ \neg \neg P \leftrightarrow \forall a, p \exists x \neg \neg A(a, x, p(x)) \\ \leftrightarrow \forall a, p \exists x \ A(a, x, p(x)) \end{cases}$$

We can typically extract some *indirect* computable witness

$$X \colon \rho \to (\sigma \to \tau) \to \sigma$$

for $\exists x \text{ in } \neg \neg P$, i.e.

$$\forall a, p \ A(a, X_{a,p}, p(X_{a,p})).$$

In the statement

 $\forall a \exists x \forall y A(a,x,y),$

x is an ideal object which works for all y. On the other hand, in the statement

 $\forall a,p \exists x A(a,x,p(x))$

x is a finitary approximation to ideal object, which works for just p(x). The function p can be seen as determining the size, or 'quality', of this approximation.

I There exists an ideal object x which works for all y.

 $\lfloor I' \rfloor$ For arbitrary p, there is an approximation x to an ideal object which works for p(x).

Over classical logic $[I] \leftrightarrow [I']$, but [I'] is intuitionistically weak enough to admit a computational interpretation.

EXAMPLE

By the least element principle we can prove

$$P :\equiv \forall f \colon \mathbb{N} \to \mathbb{N} \; \exists x \in \mathbb{N} \; \forall y \in \mathbb{N} \; . \; f(x) \leq f(y).$$

However, there is no computable witness $F: (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ for $\exists x$.

<ロ> (四) (四) (三) (三) (三)

EXAMPLE

By the least element principle we can prove

$$P :\equiv \forall f \colon \mathbb{N} \to \mathbb{N} \; \exists x \in \mathbb{N} \; \forall y \in \mathbb{N} \; . \; f(x) \le f(y).$$

However, there is no computable witness $F : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ for $\exists x$. But over classical logic P is equivalent to

$$\forall f, p \colon \mathbb{N} \to \mathbb{N} \; \exists x \; f(x) \le f(p(x)).$$

and $\exists x$ must be witnessed for some $x \leq p^{(f(0))}(0)$, else we'd have

$$\underbrace{f(0) > f(p(0)) > f(p^{(2)}(0)) > \ldots > f(p^{(f(0))}(0)) > f(p^{(f(0)+1)}(0))}_{f(0) + 1 \text{ times}} \ge 0$$

f(0) + 1 times

EXAMPLE

By the least element principle we can prove

$$P :\equiv \forall f \colon \mathbb{N} \to \mathbb{N} \; \exists x \in \mathbb{N} \; \forall y \in \mathbb{N} \; . \; f(x) \le f(y).$$

However, there is no computable witness $F : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ for $\exists x$. But over classical logic P is equivalent to

$$\forall f, p \colon \mathbb{N} \to \mathbb{N} \; \exists x \; f(x) \leq f(p(x)).$$

and $\exists x$ must be witnessed for some $x \leq p^{(f(0))}(0)$, else we'd have

$$\underbrace{f(0) > f(p(0)) > f(p^{(2)}(0)) > \ldots > f(p^{(f(0))}(0)) > f(p^{(f(0)+1)}(0))}_{f(0) + 1 \text{ times}} \ge 0$$

Various choices of p yield e.g.

$$\exists x \; \forall y \in [0, 1000000] \; . \; f(x) \leq f(y)$$

$$\exists x \; \forall y \in [2^x, 2^{2^{2^x}}] \; . \; f(x) \le f(y)$$

(ロ) (四) (E) (E) (E) (E)

A well-known technique of extracting computable witnesses for negated theorems in this way is:

THEOREM (Gödel, 1930s). If $\mathsf{PA} \vdash P$ then $\mathsf{T}_{\lambda} \vdash \forall y | P^N |_y^t$, where T_{λ} is the system of primitive recursive functionals in all finite types.

COROLLARY. If

$$\mathsf{PA} \vdash \forall a^{\rho} \exists x^{\sigma} \forall y^{\tau} A(a, x, y),$$

then there is a primitive recursive functional $X: \rho \to (\sigma \to \tau) \to \sigma$ satisfying

$$\forall a, p^{\sigma \to \tau} A(a, X_{a,p}, p(X_{a,p}))$$

and an algorithm for formally extracting such an X from the proof.

What is the computational content of the axiom of countable choice?

$$\mathsf{AC} : \ \forall n^{\mathbb{N}} \exists x^{\rho} \forall y^{\sigma} A(n, x, y) \to \exists f^{\mathbb{N} \to \rho} \forall n, y A(n, f(n), y) \in \mathbb{N}$$

æ

・ロト ・西ト ・ヨト ・ヨト

What is the computational content of the axiom of countable choice?

$$\mathsf{AC}: \ \forall n^{\mathbb{N}} \exists x^{\rho} \forall y^{\sigma} A(n, x, y) \to \exists f^{\mathbb{N} \to \rho} \forall n, y A(n, f(n), y).$$

First, let's interpret the premise and conclusion seperately:

$$\forall n, p^{\rho \to \sigma} \exists x \; A(n, x, p(x)) \to \forall \varphi^{\rho^{\mathbb{N}} \to \mathbb{N}}, q^{\rho^{\mathbb{N}} \to \sigma} \exists f \; A(\varphi(f), f(\varphi(f)), q(f))$$

PREMISE: For each n there exists a finitary (pointwise) approximation x to the ideal object which works for p(x).

CONCLUSION: There exists a finitary (global) approximation f to the ideal choice sequence which works for q(f) at point $\varphi(f)$.

(日) (四) (王) (王) (王) (王)

What is the computational content of the axiom of countable choice?

$$\mathsf{AC} : \forall n^{\mathbb{N}} \exists x^{\rho} \forall y^{\sigma} A(n, x, y) \to \exists f^{\mathbb{N} \to \rho} \forall n, y A(n, f(n), y).$$

First, let's interpret the premise and conclusion seperately:

$$\forall n, p^{\rho \to \sigma} \exists x \; A(n, x, p(x)) \to \forall \varphi^{\rho^{\mathbb{N}} \to \mathbb{N}}, q^{\rho^{\mathbb{N}} \to \sigma} \exists f \; A(\varphi(f), f(\varphi(f)), q(f))$$

PREMISE: For each n there exists a finitary (pointwise) approximation x to the ideal object which works for p(x).

CONCLUSION: There exists a finitary (global) approximation f to the ideal choice sequence which works for q(f) at point $\varphi(f)$.

$$\underbrace{\forall X^{\mathbb{N} \to (\rho \to \sigma) \to \rho} \forall \varphi, q \exists f}_{} [\forall n, p \ A(n, X_{n, p}, p(X_{n, p})) \to A(\varphi(f), f(\varphi(f)), q(f))].$$

COMP. INTERPRETATION: For any pointwise realizer X of the premise of AC, and parameters φ , q, there is a global approximation f to a choice sequence in φ and q.

For an arbitrary sequence $s: \rho^*$ define an extension $s \leq \mathsf{E}_s$ using bar recursion:

$$\mathsf{E}_{s} = \begin{cases} s & \text{if } \varphi(\hat{s}) < \operatorname{len}(s) \\ \mathsf{E}_{s*a_{s}} & \text{otherwise.} \end{cases}$$

where $a_s := X_{\operatorname{len}(s),\lambda x.q(\hat{\mathsf{E}}_{s*x})}$.

Suppose that \hat{s} is an approximation to a choice sequence which works for $q(\hat{\mathsf{E}}_s)$ at all points $i < \operatorname{len}(s)$:

App(s) :
$$\forall i < \operatorname{len}(s) \ A(i, s(i), q(\hat{\mathsf{E}}_s))$$

but $\varphi(\hat{s}) \ge \text{len}(s)$. Then since $A(\text{len}(s), \overbrace{X_{\text{len}(s), \lambda x. q(\hat{\mathsf{E}}_{s*x})}^{a_s}}^{q(a_s)}, \overbrace{q(\hat{\mathsf{E}}_{s*a_s})}^{p(a_s)})$ holds we have $\mathsf{E}_s = \mathsf{E}_{s*a_s}$ and $App(s) \Rightarrow App(s*a_s)$

i.e. we can build a better approximation $\widehat{s * a_s}$, which works for $q(\hat{\mathsf{E}}_{s*a_s})$ at all points $i < \operatorname{len}(s) + 1$.

イロト イヨト イヨト イヨト 三日

If App (s_0) there exists a sequence $s_0 \prec s_1 \prec \ldots$ of progressively better approximations:

$$\varphi(\hat{s}_i) \ge \operatorname{len}(s_i) \quad \text{and} \quad s_{i+1} = s_i * a_{s_i} \quad \text{and} \quad \operatorname{App}(s_{i+1}) \quad \text{and} \quad \mathsf{E}_{s_i} = \mathsf{E}_{s_{i+1}}.$$

But at some point we reach a leaf $\varphi(\hat{s}_M) < \operatorname{len}(s_M)$, and then $\mathsf{E}_{s_M} = s_M$ and

$$\begin{split} \operatorname{App}(s_M) &\equiv \forall i < \operatorname{len}(s_M) \; A(i, s_M(i), q(\hat{\mathsf{E}}_{s_M})) \\ &\Rightarrow A(\varphi(\hat{s}_M), \hat{s}_M(\varphi(\hat{s}_M)), q(\hat{s}_M)). \end{split}$$

Thus $F_{X,\varphi,q} = \mathsf{E}_{s_0} = \ldots = \mathsf{E}_{s_M} = \hat{s}_M$ is a sufficiently good approximation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへの

If App (s_0) there exists a sequence $s_0 \prec s_1 \prec \ldots$ of progressively better approximations:

$$\varphi(\hat{s}_i) \ge \operatorname{len}(s_i) \quad \text{and} \quad s_{i+1} = s_i * a_{s_i} \quad \text{and} \quad \operatorname{App}(s_{i+1}) \quad \text{and} \quad \mathsf{E}_{s_i} = \mathsf{E}_{s_{i+1}}.$$

But at some point we reach a leaf $\varphi(\hat{s}_M) < \text{len}(s_M)$, and then $\mathsf{E}_{s_M} = s_M$ and

$$App(s_M) \equiv \forall i < len(s_M) \ A(i, s_M(i), q(\mathsf{E}_{s_M})) \Rightarrow A(\varphi(\hat{s}_M), \hat{s}_M(\varphi(\hat{s}_M)), q(\hat{s}_M)).$$

Thus $F_{X,\varphi,q} = \mathsf{E}_{s_0} = \ldots = \mathsf{E}_{s_M} = \hat{s}_M$ is a sufficiently good approximation.

Theorem. $\hat{\mathsf{E}}_{[]}$ is a sufficiently good approximation to a choice sequence.

COROLLARY (Spector 1962). If $\mathsf{PA} + \mathsf{AC} \vdash P$ then $\mathsf{T}_{\lambda_{\mathrm{BR}}} \vdash \forall y | P^N |_y^t$, where $\mathsf{T}_{\lambda_{\mathrm{BR}}}$ is the system of primitive recursive functionals in all finite types together with Spector's bar recursion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For an arbitrary partial function $u : \rho^{\dagger}$ define an extension $u \sqsubset \mathsf{U}_u$ as:

$$\mathsf{U}_{u} = \begin{cases} u & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \mathsf{U}_{s*(n_{u}, a_{u})} & \text{otherwise} \end{cases}$$

where $n_u := \varphi(\hat{u})$ and $a_u := X_{n_u,\lambda x.q(\hat{U}_{u \oplus (n_u,x)})}$.

Suppose that \hat{u} is an approximation to a choice sequence which works for $q(\hat{U}_u)$ at all points $i \in \text{dom}(u)$:

App
$$(u)$$
 : $\forall i \in \operatorname{dom}(u) A(i, u(i), q(\hat{\mathsf{U}}_u))$

but $\varphi(\hat{u}) \notin \operatorname{dom}(u)$. Then since $A(n_u, X_{n_u, \lambda x.q(\hat{U}_{u \oplus (n_u, x)})}, q(\hat{U}_{u \oplus (n_u, a_u)}))$ holds we have $\mathsf{U}_u = \mathsf{U}_{u \oplus (n_u, a_u)}$ and

 $\operatorname{App}(u) \Rightarrow \operatorname{App}(u \oplus (n_u, a_u))$

i.e. we can build a better approximation $u \oplus (n_u, a_u)$, which works for $q(\hat{U}_{u \oplus (n_u, a_u)})$ at all points $i \in \text{dom}(u) \cup \{n_u\}$.

If $App(u_0)$ there exists a sequence $u_0 \sqsubset u_1 \sqsubset \ldots$ of progressively better approximations:

$$n_u := \varphi(\hat{u}_i) \notin \operatorname{dom}(u_i) \text{ and } u_{i+1} = u_i \oplus (n_{u_i}, a_{u_i}) \text{ and } \operatorname{App}(u_{i+1}).$$

But at some point we reach a leaf $\varphi(\hat{u}_M) \in \operatorname{dom}(u_M)$, and then $\bigcup_{u_M} = u_M$ and

$$App(u_M) \equiv \forall i \in dom(u_M) \ A(i, u_M(i), q(\mathsf{U}_{u_M})) \Rightarrow A(\varphi(\hat{u}_M), \hat{u}_M(\varphi(\hat{u}_M)), q(\hat{u}_M)).$$

Thus $F_{X,\varphi,q} = \mathsf{U}_{u_0} = \ldots = \mathsf{U}_{u_M} = \hat{u}_M$ is a sufficiently good approximation.

イロト イヨト イヨト イヨト 三日

If $App(u_0)$ there exists a sequence $u_0 \sqsubset u_1 \sqsubset \ldots$ of progressively better approximations:

$$n_u := \varphi(\hat{u}_i) \notin \operatorname{dom}(u_i) \quad \text{and} \quad u_{i+1} = u_i \oplus (n_{u_i}, a_{u_i}) \quad \text{and} \quad \operatorname{App}(u_{i+1}).$$

But at some point we reach a leaf $\varphi(\hat{u}_M) \in \text{dom}(u_M)$, and then $\bigcup_{u_M} = u_M$ and

$$App(u_M) \equiv \forall i \in dom(u_M) \ A(i, u_M(i), q(\mathsf{U}_{u_M})) \Rightarrow A(\varphi(\hat{u}_M), \hat{u}_M(\varphi(\hat{u}_M)), q(\hat{u}_M)).$$

Thus $F_{X,\varphi,q} = \mathsf{U}_{u_0} = \ldots = \mathsf{U}_{u_M} = \hat{u}_M$ is a sufficiently good approximation.

Theorem. U_{\emptyset} is a sufficiently good approximation to a choice sequence.

COROLLARY (Oliva/P. 2015). If $\mathsf{PA} + \mathsf{AC} \vdash P$ then $\mathsf{T}_{\lambda_{\mathrm{sBR}}} \vdash \forall y | P^N |_y^t$, where $\mathsf{T}_{\lambda_{\mathrm{sBR}}}$ is the system of primitive recursive functionals in all finite types together with symmetric bar recursion.

SUMMARY

In order to give a general computational interpretation to countable choice, need:

Gödel's T + backward recursion.

Spector's original bar recursion is one possibility.

E

ヘロア 人間 ア 人間 ア 人間 ア

SUMMARY

In order to give a general computational interpretation to countable choice, need:

Gödel's T + backward recursion.

Spector's original bar recursion is one possibility.

What advantage does symmetric bar recursion have?

control parameter $\varphi \approx$ proof-theoretic environment

Spector only cares whether or not $\varphi(\hat{s}_i) < \text{len}(s_i)$, and insists on building approximations sequentially. But if we care about point n = 1,000,000 do we really need to compute $n = 0, 1, \ldots, 999,999$ first?

Symmetric bar recursion uses φ to drive the construction of the approximation.

We would expect symmetric bar recursion to produce algorithms that are (a) more efficient and (b) more intuitive.

Outline

3 Backward recursion as a learning realizer

・ロト ・回ト ・ヨト ・ヨト

Let us consider a countable sequence of instances of Σ_1^0 -LEM:

$$\forall n^{\mathbb{N}}(\exists x^{\mathbb{N}}P_n(x) \lor \forall y \neg P_n(y)).$$

where $P_n(x)$ is quantifier-free. The finitary interpretation is

$$\forall n, p^{\mathbb{N} \to \mathbb{N}} \exists x (P_n(x) \lor \neg P_n(p(x))).$$

<ロ> (四) (四) (三) (三) (三)

Let us consider a countable sequence of instances of Σ_1^0 -LEM:

$$\forall n^{\mathbb{N}}(\exists x^{\mathbb{N}}P_n(x) \lor \forall y \neg P_n(y)).$$

where $P_n(x)$ is quantifier-free. The finitary interpretation is

$$\forall n, p^{\mathbb{N} \to \mathbb{N}} \exists x (P_n(x) \lor \neg P_n(p(x))).$$

This is realized by

$$X_{n,p} := \begin{cases} 0 & \text{if } \neg P_n(p(0)) \\ p(0) & \text{otherwise} \end{cases}$$

in other words, the realizer decides which branch of the standard Herbrand disjunction holds:

$$[P_n(0) \lor \neg P_n(p(0))] \lor [P_n(p(0)) \lor P_n(p(p(0)))].$$

(ロ) (四) (E) (E) (E) (E)

By axiom of choice there exists a comprehension $f: \mathbb{N} \to \rho$ such that

```
\forall n(P_n(f(n)) \lor \forall y \neg P_n(y)).
```

The finitary interpretation is

$$\forall \varphi, q \exists f(P_{\varphi f}(f(\varphi f)) \lor \neg P_{\varphi f}(qf))$$

i.e. there exists an approximation f to a comprehesion function which works for qf at point φf .

<ロ> (四) (四) (三) (三) (三)

By axiom of choice there exists a comprehension $f \colon \mathbb{N} \to \rho$ such that

```
\forall n(P_n(f(n)) \lor \forall y \neg P_n(y)).
```

The finitary interpretation is

$$\forall \varphi, q \exists f(P_{\varphi f}(f(\varphi f)) \lor \neg P_{\varphi f}(qf))$$

i.e. there exists an approximation f to a comprehesion function which works for qf at point φf .

This is realized by $F_{\varphi,q} := \hat{\mathsf{U}}_{\emptyset}^{X,\varphi,q}$ or $\hat{\mathsf{E}}_{[]}^{X,\varphi,q}$ where X is realizer to Σ_1^0 -LEM on previous slide.

◆□ → ◆□ → ◆ □ → ◆ □ → ○ □

$$\hat{\mathsf{U}}_u = \begin{cases} \hat{u} & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \hat{\mathsf{U}}_{u \oplus (n_u, a_u)} & \text{otherwise} \end{cases}$$

where $n_u := \varphi(\hat{u})$ and

$$a_u := X_{n_u, \lambda x. q(\hat{U}_{u \oplus (n_u, x)})} = \begin{cases} 0 & \text{if } \neg P_{n_u}(q(\hat{U}_{u \oplus (n_u, 0)})) \\ q(\hat{U}_{u \oplus (n_u, 0)}) & \text{otherwise} \end{cases}$$

E

ヘロア 人間 ア 人間 ア 人間 ア

$$\hat{\mathsf{U}}_u = \begin{cases} \hat{u} & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \hat{\mathsf{U}}_{u \oplus (n_u, a_u)} & \text{otherwise} \end{cases}$$

where $n_u := \varphi(\hat{u})$ and

$$a_u := X_{n_u, \lambda x. q(\hat{U}_{u \oplus (n_u, x)})} = \begin{cases} 0 & \text{if } \neg P_{n_u}(q(\hat{U}_{u \oplus (n_u, 0)})) \\ q(\hat{U}_{u \oplus (n_u, 0)}) & \text{otherwise} \end{cases}$$

Note $\varphi(u \oplus (n_u, 0)) = \varphi(\hat{u}) = n_u \in \text{dom}(u \oplus (n_u, 0))$, therefore

$$\hat{\mathsf{U}}_{u\oplus(n_u,0)} = u \widehat{\oplus (n_u,0)} = \hat{u}.$$

Thomas Powell (Innsbruck)

イロト スピト スヨト スヨト 三日

$$\hat{\mathsf{U}}_{u} = \begin{cases} \hat{u} & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \hat{\mathsf{U}}_{u \oplus (n_{u}, a_{u})} & \text{otherwise} \end{cases}$$

where $n_u := \varphi(\hat{u})$ and

$$a_u = \begin{cases} 0 & \text{if } \neg P_{n_u}(q(\hat{u})) \\ q(\hat{u}) & \text{otherwise} \end{cases}$$

Note $\varphi(u \oplus (n_u, 0)) = \varphi(\hat{u}) = n_u \in \text{dom}(u \oplus (n_u, 0))$, therefore

$$\hat{\mathsf{U}}_{u\oplus(n_u,0)} = u \widehat{\oplus (n_u,0)} = \hat{u}.$$

Thomas Powell (Innsbruck)

<ロ> (四) (四) (三) (三) (三)

$$\hat{\mathsf{U}}_{u} = \begin{cases} \hat{u} & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \\ \hat{\mathsf{U}}_{u \oplus (n_{u}, 0)} & \text{if } \neg P_{n_{u}}(q(\hat{u})) \\ \hat{\mathsf{U}}_{u \oplus (n_{u}, q(\hat{u}))} & \text{otherwise} \end{cases}$$

where $n_u := \varphi(\hat{u})$.

Note $\varphi(u \oplus (n_u, 0)) = \varphi(\hat{u}) = n_u \in \text{dom}(u \oplus (n_u, 0))$, therefore

$$\hat{\mathsf{U}}_{u\oplus(n_u,0)} = u \widehat{\oplus (n_u,0)} = \hat{u}.$$

Thomas Powell (Innsbruck) Bar recursion over partial functions

イロト スピト スヨト スヨト 三日

$$\hat{\mathsf{U}}_{u} = \begin{cases} \hat{u} & \text{if } \varphi(\hat{u}) \in \operatorname{dom}(u) \lor \neg P_{n_{u}}(q(\hat{u})) \\ \hat{\mathsf{U}}_{u \oplus (n_{u}, q(\hat{u}))} & \text{otherwise} \end{cases}$$

where $n_u := \varphi(\hat{u})$.

E

ヘロア 人間 ア 人間 ア 人間 ア

Start with $u_0 := \emptyset$ and let $n_0 := \varphi(\hat{u}_0)$:

$$\hat{u}_0 = 0, 0, 0, \dots$$

If $n_0 \in \emptyset$ or $\neg P_{n_0}(q(\hat{u}_0))$ then we're done. Otherwise update as $u_1 := (n_0, q(\hat{u}_0))$: $\hat{u}_1 = 0, 0, \dots, 0, \underbrace{q(\hat{u}_0)}_{n_0}, 0, \dots$

If $n_1 := \varphi(\hat{u}_1) \in \{n_0\}$ or $\neg P_{n_1}(q(\hat{u}_1))$ we're done. Otherwise update as $u_2 := (n_0, a_0) \oplus (n_1, q(\hat{u}_1))$:

$$\hat{u}_2 = 0, 0, \dots, 0, \underbrace{q(\hat{u}_0)}_{n_0}, 0, \dots, 0, \underbrace{q(\hat{u}_1)}_{n_1}, 0, \dots$$

If $n_2 := \varphi(\hat{u}_2) \in \{n_0, n_1\}$ or $\neg P_{n_2}(q(\hat{u}_2))$ we're done. Otherwise update again...

▲□▶ ▲□▶ ▲三▶ ▲三▶ ■ 少への

We have an increasing sequence of approximations $u_0 \sqsubset u_1 \sqsubset u_2 \sqsubset \ldots$ satisfying

 $\forall k \in \operatorname{dom}(u_i) P_k(u_i(k))$

Eventually must hit a point M such that $n_M \notin \operatorname{dom}(u_M)$ and

$$\neg P_{n_M}(q(\hat{u}_M)),$$

or $n_M \in \operatorname{dom}(u_M)$ and thus

 $P_{n_M}(u_M(n_M)),$

i.e. (recall $n_M = \varphi(\hat{u}_M)$):

$$P_{\varphi(\hat{u}_M)}(\hat{u}_M(\varphi(\hat{u}_M))) \vee \neg P_{\varphi(\hat{u}_M)}(q(\hat{u}_M))$$

and so \hat{u}_M is a sufficiently good approximation to a comprehension function.

◆□ → ◆□ → ◆三 → ◆三 → 三三

Symmetric bar recursion \approx Learning procedure

By $\mathcal{L}_{\varphi,q,P}$ we mean the following algorithm:

 $\texttt{TEST}(u) \colon \texttt{Does } \varphi(\hat{u}) \in \operatorname{dom}(u) \lor \neg P_{\varphi(\hat{u})}(q(\hat{u})) \texttt{ hold?}$

YES \rightsquigarrow Terminate.

NO \rightsquigarrow Update with new information: $u
ightarrow u \oplus (arphi(\hat{u}),q(\hat{u}))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● のへの

Symmetric bar recursion \approx Learning procedure

By $\mathcal{L}_{\varphi,q,P}$ we mean the following algorithm:

 $\texttt{TEST}(u) \colon \texttt{Does } \varphi(\hat{u}) \in \operatorname{dom}(u) \vee \neg P_{\varphi(\hat{u})}(q(\hat{u})) \texttt{ hold?}$

YES \rightsquigarrow Terminate.

NO \rightsquigarrow Update with new information: $u
ightarrow u \oplus (arphi(\hat{u}),q(\hat{u}))$

PROPOSITION. Suppose that in PA we can derive

 $\forall x [\mathsf{CA}(P_x) \to \exists y A_0(x, y)].$

Then there is some learning procedure $\mathcal{L}_{\varphi,q,P_x}$ and a primitive recursive function g such that

 $\forall x A_0(x, g(\mathcal{L}_{\varphi, q, P_x}, x))$

Thomas Powell (Innsbruck)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EXAMPLE. In PA we can derive

$$\forall H^{(\mathbb{N}\to\mathbb{N})\to\mathbb{N}}[\mathsf{CA}(P_F)\to\exists\alpha^{\mathbb{N}\to\mathbb{N}},\beta^{\mathbb{N}\to\mathbb{N}},i^{\mathbb{N}}(\alpha(i)\neq\beta(i)\wedge H\alpha=H\beta)].$$

(日) (四) (분) (분) (분) (분)

EXAMPLE. In PA we can derive

$$\forall H^{(\mathbb{N}\to\mathbb{N})\to\mathbb{N}}[\mathsf{CA}(P_F)\to\exists\alpha^{\mathbb{N}\to\mathbb{N}},\beta^{\mathbb{N}\to\mathbb{N}},i^{\mathbb{N}}(\alpha(i)\neq\beta(i)\wedge H\alpha=H\beta)].$$

An algorithm for finding α , β and i can be formally extracted, which uses the following learning procedure:

Define the sequence of functions $\gamma_i \colon \mathbb{N} \to \mathbb{N}$ by

$$\gamma_i := \lambda k \ .$$
 $\begin{cases} 1 & \text{if } k \in D_i \\ 0 & \text{otherwise,} \end{cases}$

where

$$D_0 := \emptyset \qquad D_{i+1} := D_i \cup \{H(\gamma_i)\}.$$

We have $\gamma_i(k) = 1$ iff $H(\gamma_j) = k$ for some j < i. Stop at the first point M such that $H(\gamma_M) \in D_M$. This means that for some j < M have $H(\gamma_j) = H(\gamma_M)$.

Set $\alpha, \beta := \gamma_M, \gamma_j$. These differ at point $i = H(\gamma_M)$.

Start with $s_0 := \langle \rangle$:

$$\hat{s}_0 = 0, 0, 0, \dots$$

Search for the least $n_0 \leq \varphi(s_0)$ such that $\neg P_{n_0}(q(\hat{s}_0))$ otherwise we're done. Else, update as $s_1 := \langle 0, 0, \dots, q(\hat{s}_0) \rangle$:

$$\hat{s}_1 = 0, 0, \dots, 0, \underbrace{q(\hat{s}_0)}_{n_0}, 0, \dots$$

Search for the least $n_1 \leq \max(n_0, \varphi(\hat{s}_1))$ with $n_1 \leq n_0$ satisfying $\neg P_{n_1}(q(\hat{s}_1))$. If $n_1 > n_0$ set $s_2 := \langle 0, 0, \dots, 0, q(\hat{s}_0), 0, \dots, 0, q(\hat{s}_1) \rangle$:

$$\hat{s}_2 = 0, 0, \dots, 0, \underbrace{q(\hat{s}_0)}_{n_0}, 0, \dots, 0, \underbrace{q(\hat{s}_1)}_{n_1}, 0, \dots$$

else if $n_1 < n_0$ set $s_2 := \langle 0, 0, ..., q(\hat{s}_1) \rangle$:

$$\hat{s}_2 = 0, 0, \dots, 0, \underbrace{q(\hat{s}_1)}_{n_1}, 0, \dots$$

The witness $q(\hat{s}_0)$ for $\exists x P_{n_0}(x)$ is erased!

・ロト ・四ト ・ヨト ・ヨ

Tests indicate that, on the whole, the highly intuitive algorithm given by symmetric bar recursion performs much better than the traditional one based on Spector.

 $H_n(\gamma) = \text{least } i \leq n \text{ such that } \gamma i < \gamma(i+1), \text{ else } n \text{ if none exist :}$

	Spector	Symmetric
n = 3	4 / 316	4 / 52
n = 4	$5 \ / \ 688$	5 / 64
n = 5	6 / 1444	6 / 76

 $H_n(\gamma) = \prod_{i=0}^{n-1} (1+i)^{1+\gamma i}:$

	Spector	Symmetric
n = 3	577 / 2350	1 / 12
n = 4	577 / 365700	1 / 12

(日) (四) (王) (王) (王) (王)

Directions for future research

- A more detailed investigation into the behaviour of programs extracted using symmetric bar recursion. Can we give concise, intuitive computational interpretations of well-known proofs which use countable choice?
- e Have already suggested that the Dialectica interpretation of analysis is linked to learning. How are extracted programs related to those obtained using e.g. ε-calculus, or Aschieri-Berardi interactive learning realizability?
- On we take advantage of symmetric bar recursion's flexibility to extend Dialectica to more general choice principles over arbitrary discrete domains:

$$\mathsf{AC}_{D,X} \ : \ \forall d^D \exists x^X A(d,x) \to \exists f^{D \to X} \forall dA(d,fd).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・