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Outline of talk

Introduction. Describe the general theme.

Part I. Proof theoretic analysis of termination methods

Recall some well-known results from classical proof theory and
rewriting theory.

Show how they can be brought together to obtain new complexity
results.

Part II. Higher-order rewriting and other topics

Discuss notions of complexity at higher-types.

Suggest some directions in which progress could be made.
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Term rewrite systems

The set of terms T (V,F) over some countable set of variables V and
set of function symbols F is defined by

T (V,F) := x ∈ V | f(t1, . . . , tn) for f ∈ F

A rewrite rule l→ r is a relation between terms such that l is not a
variable, and all variables occuring in r also occur in l. A term rewrite
system R is a set of rewrite rules.

The rewrite relation →R is the least relation containing R satisfying

(i) if s→R t and σ is a substitution, then sσ →R tσ,

(ii) if s→R t and f ∈ F then f(. . . , s, . . .)→R f(. . . , t, . . .).

We will typically write → instead of →R.

Thomas Powell (Innsbruck) Complexity of rewrite systems 4 December 2014 3 / 32



Suppose we are given an arbitrary term rewrite system R

l1 → r1

· · ·
ln → rn

Important questions

1 Is R terminating?

2 Is R confluent?

3 What is the complexity of R?

R //

)))i)i
)i)i

)i)i
)i)i

)i)i
)i)i

)i)i
computable criterion // answer

???
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Example: Multiset path order (MPO)

We say that s <mpo t = g(t1, . . . , tn) relative to some well-founded
precedence ≺ on function symbols if either

1 s ≤mpo ti some i = 1, . . . , n;

2 s = f(s1, . . . , sm) with f ≺ g and s1, . . . , sm <mpo t;

3 s = g(s1, . . . , sn), s1, . . . , sn <mpo t and
(s1, . . . , sn)�mul (t1, . . . , tn).

Theorem (Hofbauer)

If the rules of R are reducing under <mpo, then R is terminating and
its derivational complexity is bounded by some primitive recursive
function.
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R1


+(0,m)→ m

+(s(n),m)→ s(+(n,m))

×(0,m)→ 0

×(s(n),m)→ +(×(n,m),m)

R1 is reducing under <mpo w.r.t. s ≺ + ≺ ×.

R2

{
f(0,m)→ g(m)

f(s(n),m)→ h(n,m, f(n,m))

R2 is reducing under <mpo w.r.t. g, h ≺ f .

In both examples we use that (n,m)�mul (s(n),m).
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Example: Lexicographic path ordering (LPO)

We say that s <lpo t = g(t1, . . . , tn) relative to some well-founded
precedence ≺ on function symbols if either

1 s ≤mpo ti some i = 1, . . . , n;

2 s = f(s1, . . . , sm) with f ≺ g and s1, . . . , sm <mpo t;

3 s = g(s1, . . . , sn), s1, . . . , sn <mpo t and
(s1, . . . , sn)�lex (t1, . . . , tn).

Theorem (Weiermann)

If the rules of R are reducing under <lpo, then R is terminating and its
derivational complexity is bounded by some multiply recursive
function.
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R3


A(0,m)→ s(m)

A(s(n),m)→ A(n, 1)

A(s(n), s(m))→ A(n,A(s(n),m))

R3 is not reducing under <mpo, but since
(n,A(s(n),m))�lex (s(n), s(m)) it is reducing under �lex.

R4

{
f(0,m)→ g(m)

f(s(n),m)→ h(n,m, f(n, p(n,m, f(n,m))))

R4 is only reducing under <lpo, but actually has primitive recursive
complexity...
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Application: Complexity analysis of programs

program P //___ TRS R // criterion // complexity bound

How do we design the translation P → R so that it is
complexity preserving?

For a given programming language, what is the correct abstract
representation (constraint rewriting, higher-order...)?

We want criteria which capture a rich variety of programs, and
which guarantee feasible computations.
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Application: Computability theory

function f // TRS R // criterion // complexity bound

Can we infer something about the behaviour of a function from its
defining equation?

What about higher-order functionals?

Here our interest is not restricted to feasible computations, but to
all kinds of complexity classes: primitive recursive, multiply
recursive and beyond... (bar recursive?)
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Part I. Proof theoretic analysis of termination methods
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Theorem. For all integers n there exists some prime p ≥ n.

Implicit bound in Euclid’s proof: p(n) ≤ n! + 1.

Theorem. For all terms t in R there exists some N such that all
rewrite sequence starting from t have length ≤ N .

Can we find a concrete bound in termination proof: N(t) ≤ f(|t|)?

multiset path ordering⇒ primitive recursive d. c.

lexicographic path ordering⇒ multiply recursive d. c.
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General challenge:

termination proof technique ⇒ upper bound on complexity

G. Kreisel “What more do we know if we have a proved a theorem by
restricted means than if we merely know that it is true?”

Techniques such as proof interpretations - which analyse the logical
structure of proofs - provide us with a powerful tool for tackling this
problem, and have great potential for both:

Obtaining new complexity results;

Understanding why termination techniques yield the complexity
bounds that they do.
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In one line, a proof interpretation is a formal translation acting on the
logical structure of proofs. E.g. Gödel’s Dialectica interpretation.

Of particular interest are (combinations of) interpretations that
directly realize ∀∃-formulas.

A→ ∀n∃mB0(n,m)

⇒ ∀n(A→ ∃mB0(n,m))

⇒ ∀n(∃ε app(Aε)→ ∃mB0(n,m))

⇒ ∀ε, n∃m(app(Aε)→ B0(n,m))

⇒ ∃f∀ε, n(app(Aε)→ B0(n, fε(n)))

where A↔ ∃ε app(Aε) for app(Aε) universal.

The computational complexity of fε is determined by the
proof-theoretic complexity of A.
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Classic results of 20th century proof theory (Gödel 1958,
Parsons 1972):

PA ` ∀n∃mA0(n,m)⇒∃f ∈ Fε0∀nA0(n, f(n))

f in system T

...

IΣ2 ` ∀n∃mA0(n,m)⇒∃f ∈ Fωω∀nA0(n, f(n))

f multiply recursive

IΣ1 ` ∀n∃mA0(n,m)⇒∃f ∈ Fω∀nA0(n, f(n))

f primitive recursive
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Application to program complexity (Buchholz 1994):

Step 1. Any finite rewrite system R reducing under <mpo or <lpo uses
only a (finitely branching) approximation <k

mpo, <k
lpo of these

orderings, where k depends on R.

Step 2. <k
mpo is provably well-founded in IΣ1, while <k

lpo is provably
well-founded in IΣ2.

Result.

multiset path ordering (IΣ1)⇒ N(t) ≤ f(|t|) for f ∈ Fω

lexicographic path ordering (IΣ2)⇒ N(t) ≤ f(|t|) for f ∈ Fωω
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Very rough explanation...

Want to prove t1, . . . , tn well-founded w.r.t. < then (t1, . . . , tn)
well-founded w.r.t. �mul/�lex.

(t1, . . . , tj−1, t
′
1, . . . , t

′
m, tj+1, . . . , tn)�mul (t1, . . . , tj−1, tj , tj+1, . . . , tn)

(t1, . . . , tj−1, t
′
j , sj+1, . . . , sn︸ ︷︷ ︸

‘uncontrolled’

)�lex (t1, . . . , tj−1, tj , tj+1, . . . , tn)

Need a universal quantification to deal with uncontrolled terms in �lex:

B(tj−1) :≡ ∀sj+1, . . . , sn[(t1, . . . , tj−1, t
′
j , sj+1, . . . , sn) w.f.]

Causes a one-step shift up the arithmetic hierarchy!
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The last few decades has seen great advances in proof theoretic
techniques and their application in mathematics and computer science.

In particular, meta-theorems of the form

T ` A⇒ ∃t ∈ F(t interprets A)

have become increasingly refined and sophisticated, and oriented
towards practical as opposed to foundational results.

QUESTION:

Can we develop new and interesting meta-theorems (along the lines of
Buchholz ’94, but not necessarily restricted to path orders!) which
capture families of termination proofs and can be used to derive
corresponding complexity bounds in a uniform way?
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A generalised path order

Suppose that � is some arbitrary extension to tuples of an ordering <
on terms. Let <� be the corresonding path order built up inductively
from �, and <k

� its k-approximation.

Proposition

If well-foundedness of � is provable in IΣn, then well-foundedness of
<k
� is provable in IΣn.

Corollary

If the TRS R is terminating by <�, then it is terminating by <k
� for

some k, and therefore N(t) ≤ f(|t|) for some f ∈ Fωn .

In fact, with a little effort, we can extract an explicit term Φk(t)
witnessing well-foundedness of <k

� from which we can construct f .
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Let Φk : T → T ∗ be defined by Φk(x) = [] for variables x, and

Φ
k

(g(t)) = ⊕
s<kg(t)


Φ(ti) if s ≤k ti
Φ3(f, s, Φ̄1(g, t,Φ(t),Φ2(g,Φ3|f≺g)|s∈d′∧s�gt, Φ3|f≺g, s)) if s = f(s) ∧ f ≺ g

Φ2(g, s, Φ̄1(g, t, Φ(t),Φ2(g, Φ3|f≺g)|s∈d′∧s�gt,Φ3|f≺g, s),Φ3|f≺g) if s = g(s)


∗ [g(t)]

where each of Φi for i = 1, 2, 3 are recursively defined elements of Tn−1

(details omitted!). Then for all terms t, if s ≤k
� t then s ∈ Φk(t).

Unsurprisingly, extracted term quite complex! But we have something
concrete to analyse: Crucial point is that exact parameters of the path
order, along with any additional restrictions imposed, will result in
corresponding changes to the term Φ.
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Suppose that well-foundedness of � is provable in IΣ1. We already
know that if R is terminating by <� then N(t) ≤ f(t) for some
primitive recursive f .

What if there are additional restrictions on R? e.g.

maxf∈F (arity(f)) ≤ k;

|F | ≤ k;

g(t) with t ∈ Sn...

Will these guarantee that f ∈ Am for some m? Can we design new
criteria which induce feasible derivational complexity?
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It would be very interesting to devise extensions � of the multiset
ordering such that

well-foundedness of � is provable in IΣ1,

<� admits new TRSs R not admitted by �mul e.g. single nested
recursion:

f(0, n)→ g(n)

f(s(n),m)→ h(n,m, f(n, p(n,m, f(n,m))))

This would enlarge the class of primitive recursive schemata which
could be automatically verified as primitive recursive, and both
reobtain and extend classic results of recursion theory.

Idea originally due to A. Weiermann (unpublished), who uses ordinal
analysis to verify complexity. Proof interpretations potentially offer a
smoother means of extending path orders and verifying complexity
bound.
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Method bears close connections with alternative approaches that deal
explicitly with ordinal analysis or monotone assingments.

Nevertheless, focusing on the precise formalization of termination
arguments and appealing to proof-theoretic meta-theorems has several
advantages.

Reveals on a deep, structural level why a termination proofs
produces a certain complexity bound, and encourages a uniform
and general way of thinking about these proofs.

Great potential for new applications in the analysis of a wider
range of termination methods, building on substantial amount of
work done in last 20 years.

Can simultaneously work towards new complexity bounds while
developing broadly applicable results in proof theory.
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Example

Most existing applications of proof theory focus on obtaining primitive
recursive bounds. On the other hand, many termination methods
induce multiply recursive complexity.

IΣ2
//

��

multiply recursive

��
BΣ2

///o/o/o ?

��

?

��

KBOoo o/ o/ o/ o/ o/ o/ o/

IΣ1
// primitive recursive

Can Parsons’ result be extended in an interesting way to systems
between IΣ1 and IΣ2?
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Part II. Higher-order rewriting and other topics
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program P //___ TRS R // criterion // complexity bound

What if P is a higher-type program? For termination, the following
approach has been shown successful:

higher-order program P flattening //______ first-order TRS R ///o/o/o

However, de-functionalisation is not generally complexity preserving, so
technique does not seen to work for complexity analysis.
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Question

How can we determine the complexity of higher-order term rewrite
systems?

Problem: What do we even mean by the complexity of a higher-order
term?

map : (Nat→ Nat)→ List(Nat)→ List(Nat)

map f []→ []

map f (x : xs)→ (f x) : (map f xs)

fold : Nat→ (Nat→ Nat)→ List(Nat)→ List(Nat)

fold a f []→ a

fold a f (x : xs)→ f x (fold a f xs)
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Higher-order polynomial interpretations (Baillot, Dal-Lago 2012)

The functional map is interpreted as a higher-type polynomial
[map] : (N→ N)→ N→ N. It is shown that whenever [f ] : N→ N has a
polynomial interpretation, map f : List(Nat)→ List(Nat) is a
polynomial time program.

A more intricate analysis deals with fold - if f has a polynomial
interpretation and satisfies an additional termination criterion (i.e. size
restriction), then fold a f : List(Nat)→ List(Nat) a polynomial time
program.

Summary: Certain higher-order functionals yield polynomial time
programs whenever their function arguments are of a suitably
restricted complexity.
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Static cost analysis (Danner, Paykin, Royer 2013)

A compositional complexity measure ‖t‖ is assigned to higher-type
functionals, based on 〈cost,potential〉 pairs - the cost of evaluating t
together with the cost of using t. For example, the cost of
λx.t : Nat→ Nat is 1, but its potential describes the complexity of
t[x→ n] for all possible numerals.

mapc(f, 0) = 0 mapc(f, n+ 1) = (fp(1))c + mapc(f, n)

mapp(f, 0) = 0 mapp(f, n+ 1) = 1 + mapp(f, n)

Summary: The complexity of any program t in system T is defined
by induction over the structure of t. Further analysis the resulting
recursive equations for complexity can produce an upper bound for
arbitrary input e.g.

mapc(f, n) = n · (fp(1))c.
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Question

Can we build on these ideas and provide some kind of automated
complexity analysis that captures a rich variety of programs?

Jounnaud et al. have generalised recursive path orders to
higher-order rewrite systems? Can these be refined to provide an
upper bound on complexity as in the first order case?

A powerful method of automated termination analysis (e.g. Giesl
et al.) is to examine so called ‘symbolic evaluation graphs’, which
represent all possible evaluations of a program in a finite way.
Could a similar technique work for complexity?

But perhaps a completely new approach is needed...
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Conclusion
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Powerful criteria for capturing the complexity of abstract models of
computational such as rewrite systems would be of significance in both

the automated complexity analysis of programs,

establishing e.g. closure properties in computability theory.

There are a wealth of techniques from

classic proof theory,

traditional (first-order) rewriting theory

that could be potentially adapted for this purpose.
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