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Gödel’s system T

First conceived in 1941: an early type theory. Now standard
calculus of primitive recursion in all finite types. In a nutshell:

Types := B | N | ρ× τ | ρ∗ | ρ→ τ

Basic constants and axioms i.e. 0, S , combinators for
λ-abstraction...

Primitive recursion for each type:

Rρ(n)
ρ
=

{
y if n = 0

zn−1(Rρ(n − 1)) otherwise

Stronger than ordinary primitive recursion! RN→N defines
Ackermann function.

Higher-type equality treated as fully extensional
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Computational interpretation of subsystems of
mathematics

Functional interpretation of Peano arithmetic (Gödel 1958)

Classical logic 7→ λ-calculus
Induction 7→ primitive recursion Rρ

}
System T

Functional interpretation of classical analysis (Spector 1962)

Countable choice 7→ Spector’s bar recursion
}

Extension of T

Key point

This is a general pattern which varies according to proof
interpretation, formulation of choice and mode of bar recursion.
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Classical logic 7→ λ-calculus
Induction 7→ primitive recursion Rρ

}
System T

Functional interpretation of classical analysis (Spector 1962)

Countable choice 7→ Spector’s bar recursion
}

Extension of T

Key point

This is a general pattern which varies according to proof
interpretation, formulation of choice and mode of bar recursion.



Introduction Two classes of bar recursive functionals The open recursive functionals Concluding remarks

Bar recursion

Generalisation of primitive recursion to well-founded trees T :

Bρ,τ (sρ
∗
) :=

{
Ys if s is a leaf of T

Zs(λx . Bρ,τ (s ∗ x)) otherwise

Much stronger than even Gödel primitive recursion!

Fact (Escardó/Oliva/Powell 2011)

Gödel primitive recursion equivalent to finite form of Bρ,τ with
branches of fixed length:

Bfin
ρ,τ (sρ

∗
) :=

{
Ys if |s| ≥ n

Zs(λx . Bfin
ρ,τ (s ∗ x)) otherwise
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Classical logic 7→ λ-calculus
Induction 7→ primitive recursion Rρ

}
System T

Functional interpretation of classical analysis (Spector 1962)

Dependent choice 7→ Spector’s bar recursion
}

Extension of T

Key point

This is a general framework that encompasses a variety of
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Computational interpretation of subsystems of
mathematics

Realizability interpretation of Peano arithmetic

Classical logic 7→ λ-calculus
Induction 7→ primitive recursion Rρ

}
System T

Realizability interpretation of classical analysis (Berardi et al. 1998)

Countable choice 7→ BBC functional
}

Extension of T

Key point

This is a general framework that encompasses a variety of
computational interpretations of analysis.
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Computational interpretation of subsystems of
mathematics

Realizability interpretation of Peano arithmetic

Classical logic 7→ λ-calculus
Induction 7→ primitive recursion Rρ

}
System T

Realizability interpretation of classical analysis (Berger/Oliva 2005)

Dependent choice 7→ modified bar recursion
}

Extension of T

Key point

This is a general framework that encompasses a variety of
computational interpretations of analysis.
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Computational interpretation of subsystems of
mathematics

Realizability interpretation of Peano arithmetic

Classical logic 7→ λ-calculus
Induction 7→ primitive recursion Rρ

}
System T

Realizability interpretation of classical analysis (Berger 2004)

Open induction 7→ open recursion
}

Extension of T

Key point

This is a general framework that encompasses a variety of
computational interpretations of analysis.
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Quick aside: Extensions of system T in other contexts

Higher-type computability theory (Gandy/Hyland 1977). In
the type structure of continuous functionals, the bar-recursive
functional Γ defined by

Γ(sN
∗
)

N
= Z (s ∗ 0 ∗ λn . Γ(s ∗ (n + 1)))

has a recursive associate but is not Kleene computable, even in the
FAN functional (more on this later!).

Game theory (Escardo/Oliva 2010). The product of selection
functions ips defined by

ips(sρ
∗
)

N
= s @ λn . εn(λx . q(ips(tn ∗ x)))

for tn = 〈ips(s)0, . . . , ips(s)n−1〉 computes optimal strategies in a
class of unbounded sequential games.
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Summary

We have a large collection of recursively defined extensions of the
primitive recursive functions, including (but not confined to)

Spector’s bar recursion

Gandy-Hyland Γ functional

Modified bar recursion

Symmetric BBC functional

Open and update recursion

Products of selection functions

These are important in proof theory, computability theory, game
theory etc.
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Key question

How do these forms of recursion relate to one another? In
particular, which ones are primitive recursively equivalent?

Why do we care about this?

Establishing relationship between relevant extensions of
system T gives us an insight into how programs extracted
from proofs compare.

Extensions of T are important objects in mathematical logic,
and it’s always good to know things about important classes
of objects.

An elegant mathematical problem...
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Spector’s general form of bar recursion

Has defining axiom (for arbitrary types ρ, τ):

GBRφ,r ,ϕρ,τ (sρ
∗
)
τ
=

{
r(s) if ϕ(s ∗ 0) < |s|
φs(λxρ . GBR(s ∗ x)) otherwise

where ϕ : ρN → N. Recursion over an explicitly defined tree: s a
leaf iff ϕ(s ∗ 0) < |s|.

In any model of GBR, this tree must be well-founded i.e. any
infinite sequence α : ρN must satisfy

∃N[ϕ([α](N) ∗ 0) < N].

Clearly not the case in full set-theoretic model: so in particular
GBR not primitive recursive.
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Models of GBR

Bar recursion typically requires some kind of continuity axiom*:

Cont : ∀ϕρN→N, αρ
N∃N∀β([α](N) = [β](N)→ ϕ(α) = ϕ(β))

i.e. functionals of type ρN → N only require a finite amount of
information.

GBR(〈〉) n.d.⇒ GBR(〈x0〉) n.d.⇒ GBR(〈x0, x1〉) n.d.⇒ . . .

dependent choice ⇒ ∃α∀nGBR([α](n)) n.d.

But for N ′ = max{N, ϕ(α) + 1} have ϕ([α](N ′)) = ϕ(α) < N ′

therefore GBR([α](N ′)) = r([α](N ′)) defined (contradiction!).

* But not always: strongly majorizable functionals a model of GBR
(Bezem 1985)
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Explicit product of selection functions EPS/Spector’s weak
bar recursion

Has defining axiom

EPSε,q,ϕρ (s)
ρN
=

{
0 if ϕ(s ∗ 0) < |s|
as ∗ EPS(s ∗ as) otherwise

where as = εs(λx . q(s ∗ x ∗ EPS(s ∗ x))).

Form of Spector’s bar recursion most commonly encountered
in proof theory.

A special case of GBRρ,τ for τ = ρN.

Sufficient to solve Dialectica interpretation of double negation
shift, so PA + AC 7→ T + EPS.

Also naturally computes optimal strategies in a class of
unbounded sequential games (Oliva/Escardo 2010).
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Tidying up explicit bar recursion

Until recently, most of the (many!) known variants of Spector’s
bar recursion were known to be equivalent to either GBR or EPS
(thanks mainly to Luckhardt 1973, Bezem 1988, Escardó/Oliva
2010).

Theorem (Oliva/P. 2012)

EPS primitive recursively defines GBR, and so T + ‘weak’ bar
recursion is actually as strong as T + general bar recursion

Corollary. Essentially all known extensions of system T based on a
variant of Spector’s bar recursion are equivalent.
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Pause for a moment...

Definition

F primitive recursively defines G over ∆ if for each ρ there exists a
closed term t ∈ T and type ρ′ such that t(Fρ′) satisfies the
defining axiom of Gρ, provably in T + ∆.

e.g. GBR defines EPS:

GBRφ,r ,ϕ
ρ,ρN

(s) =

{
r(s) if ϕ(s ∗ 0) < |s|
φs(λxρ . GBR(s ∗ x)) otherwise.

⇒ (system T)

t(GBR)ε,q,ϕρ (s) =

{
0 if ϕ(s ∗ 0) < |s|
as ∗ t(GBR)(s ∗ as) otherwise
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Warning: Kohlenbach’s bar recursion

Not all explicit forms of bar recursion are equivalent. In his thesis
(1990) Kohlenbach considers the following, novel variant of bar
recursion:

KBRφ,r ,ϕρ,τ (s)
τ
=

{
r(s) if ϕ(s ∗ 0) = ϕ(s ∗ 1)

φs(λx . KBR(s ∗ x)) otherwise

KBR defines GBR, but does not exist in the majorizable
functionals, and therefore is not conversely definable from GBR
(else we’d contradict Bezem 1985).

Moral: Primitive recursive definability is a subtle property, and
slight variants in the defining equations can lead to fundamentally
different extensions of system T.
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Extensions of T

BBC functional

Implicit bar recursion (IPS, MBR etc.)

Spector bar recursion (GBR, EPS etc.)

Sω 6|=GBR

��

KBRMω 6|=KBR
oo

Gödel primitive recursion
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Implicit product of selection functions IPS

Has defining axiom

IPSε,qρ (s)
ρN
= s @ IPS(s ∗ as)

where @ denotes overwrite and as = εs(λx . q(IPS(s ∗ x))), and
q : ρN → N. Can equivalently define via course-of-values recursion
as

IPSε,qρ (s) = s @ λn . εtn(λx . q(IPS(tn ∗ x))).

where tn = [IPS(s)](n).

Equivalent to modified bar recursion MBR (Ber/Oli 2005),
which is in turn based on realizer of (Berardi et al. 1998).

Solves modified realizability interpretation of double negation
shift.
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Models of IPS

Unlike GBR, apparently no stopping condition. Because codomain
of q has type N, recursion over a tree implicitly well-founded by
continuity of q.

IPS(〈〉) n.d.⇒ IPS(〈x0〉) n.d.⇒ IPS(〈x0, x1〉) n.d.⇒ . . .

dependent choice ⇒ ∃α∀nIPS([α](n)) n.d.

Let N be point of continuity of q on α. Then

IPS([α](N)) = [α](N) @ εtn(λx . q(IPS(tn ∗ x)))

= [α](N) @ εtn(λx . q([α](N) @ IPS(tn ∗ x)))

= [α](N) @ εtn(λx . q(α))

which is well-defined.
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Implicit is stronger than explicit

Theorem (Berger/Oliva 2005)

IPS (or equivalently MBR) defines GBR, but neither GBR (nor
KBR) define IPS, over any theory ∆ validated by Cω.

Proof. (Sketch!)

GBR is S1-S9 computable in Cω, but IPS (of lowest type) defines
the Gandy/Hyland Γ-functional which is not S1-S9 computable in
Cω (even with FAN functional as an oracle). Since computable
functionals are closed under primitive recursion, result follows.

Can use Kleene recursion theorem in S1-S9, so why is GBR
computable but not IPS?

Can define IPS and GBR as fixpoints, but must prove totality.

Cannot prove totality of IPS because S8 rule requires objects
to be total before returning a total value.
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The Berardi-Bezem-Coquand (BBC) functional

Has defining axiom

BBCε,qρ (u)
N
= q(u @ λn . εn(λx . BBC(u ⊕ (n, x))))

where u : N→ ρ⊥ is a partial function and u ⊕ (n, x) extension of
u with value x at point n.

Compare with ‘simple’ version of IPS given by

ipsε,qρ (s)
N
= q(s @ λn . εn(λx . ips(tn ∗ x)))

where tn = [ips](n).

ips computes sequentially, BBC computes symmetrically.

Proposed in (Berardi et al. 1998) as a more direct, efficient
computational interpretation of countable choice than
Spector’s bar recursion.



Introduction Two classes of bar recursive functionals The open recursive functionals Concluding remarks

The Berardi-Bezem-Coquand (BBC) functional

Has defining axiom

BBCε,qρ (u)
N
= q(u @ λn . εn(λx . BBC(u ⊕ (n, x))))

where u : N→ ρ⊥ is a partial function and u ⊕ (n, x) extension of
u with value x at point n.

Compare with ‘simple’ version of IPS given by

ipsε,qρ (s)
N
= q(s @ λn . εn(λx . ips(tn ∗ x)))

where tn = [ips](n).

ips computes sequentially, BBC computes symmetrically.

Proposed in (Berardi et al. 1998) as a more direct, efficient
computational interpretation of countable choice than
Spector’s bar recursion.



Introduction Two classes of bar recursive functionals The open recursive functionals Concluding remarks

The Berardi-Bezem-Coquand (BBC) functional

Has defining axiom

BBCε,qρ (u)
N
= q(u @ λn . εn(λx . BBC(u ⊕ (n, x))))

where u : N→ ρ⊥ is a partial function and u ⊕ (n, x) extension of
u with value x at point n.

Compare with ‘simple’ version of IPS given by

ipsε,qρ (s)
N
= q(s @ λn . εn(λx . ips(tn ∗ x)))

where tn = [ips](n).

ips computes sequentially, BBC computes symmetrically.

Proposed in (Berardi et al. 1998) as a more direct, efficient
computational interpretation of countable choice than
Spector’s bar recursion.



Introduction Two classes of bar recursive functionals The open recursive functionals Concluding remarks

A closer look at BBC...

Take a finite form where q(α) = q(α0, α1).

BBC(u)=q(u @ λn . εn(λx . BBC(u ⊕ (n, x))))

BBC(∅) = q(a, b) where
a =

b =

ips(s)=q(s @ λn . εn(λx . ips(tn ∗ x)))

ips(〈〉) = q(a, b) where
a =

b =
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The difficulty understanding BBC

BBC functional a beautiful mathematical object: gives an elegant,
symmetric computational interpretation to the axiom of choice.

But is it more efficient? Each entry has a seperate tree of
recursive calls.

How do we give a transparent proof of totality/correctness of
BBC in a standard domain-theoretic framework? (Original
paper gives BBC non-standard intentional properties)

Seemingly no obvious game semantics in sense of
Escardo/Oliva like bar recursion.

Not immediate how corresponding extension of T relates to
those based on bar recursion.
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BBC is stronger than IPS

Theorem (P. 2013)

BBC primitive recursively defines IPS over Cont + QF-BI.

Basic idea. Use BBCρN⊥
, which computes an infinite matrix and

allows us to store information about recursive calls, eliminating
independence. Shift to next column whenever making a recursive
call.

BBC(∅) = q


...

...
α0,1 α1,1 . . .
α0,0︸︷︷︸

IPS(〈〉)

α1,0 . . .


Will not go into details! Key point is that BBC somehow
‘contains’ implicit bar recursion
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Extensions of T

BBC functional

��

Implicit bar recursion (IPS, MBR etc.)

S1-S96|=MBR
��

Spector bar recursion (GBR, EPS etc.)

Sω 6|=GBR

��

KBRMω 6|=KBR
oo

Gödel primitive recursion



Introduction Two classes of bar recursive functionals The open recursive functionals Concluding remarks

Open induction: A way of reasoning about BBC

Suppose that < is a decidable, well-founded relation on ρ. Have
well-founded induction over < for arbitrary A

TI(ρ,<) : ∀xρ(∀y < xA(y)→ A(x))→ ∀xA(x).

Can lift < to a lexicographic ordering <lex on sequences ρN, where
α<lexβ :≡ ∃n([α](n) = [β](n) ∧ α(n) < β(n)). Open induction is
induction over <lex:

OI(ρ,<) : ∀αρN(∀β<lexαO(β)→ O(α))→ ∀αO(α).

However, since <lex is neither decidable nor well-founded, must
restrict O to being an open formula.

O(α) is (classically) open if it is of the form
∀nC ([α](n))→ ∃nB([α](n)).
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Open induction via the minimal bad sequence argument

Suppose that ∃α¬O(α) (α a ‘bad’ sequence). By dependent
choice construct a minimal sequence β using the rule

Given 〈β(0), . . . , β(n − 1)〉, let β(n) be such that 〈β(0), . . . , β(n)〉
extends to a bad sequence, but 〈β(0), . . . , β(n− 1), y〉 does not for
any y < β(n).

Then ¬O(β) holds since ¬O(β)↔ ∀n(C ([β](n) ∧ ¬B([β](n))).

But by definition β is minimal with respect to <lex, and so
∀γ<lexβO(γ)→ O(β) is false.

Open induction has received a lot of attention in constructive
mathematics as the contrapositive of MBS. Implicitly lies behind
Kruskal’s theorem and Higman’s lemma. These are used to prove
e.g. termination of rewrite systems.
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Open recursion (Berger 2004)

For well-founded relations < on ρ can define a corresponding
recursor by:

R(ρ,<),σ(xρ)
σ
= fx(λy . R<(y) if y < x).

Provably well-founded for arbitrary types σ by TI<.

For the lexicographic ordering <lex, can define open recursor by

OR(ρ,<)(α)
N
= Fα(λn, yρ, β . OR([α](n) ∗ y @ β) if y < α(n))

By forcing σ = N the formula

O(α) :≡ [α total→ OR(α) total]

is open by Cont, therefore OR(ρ,<) provably well-founded by
OI(ρ,<).
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Computational interpretation of open induction

Theorem (Berger 2004)

Open recursion solves the modified realizability interpretation
of open induction.

Open induction proves the double negation shift over
intuitionistic logic, and the resulting open recursive realizer for
countable choice is the BBC functional.

The result: an elegant proof of totality and correctness of BBC in
the continuous functionals, and a much deeper understanding of
its recursive structure - BBC is an ‘open recursive’ functional...
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BBC is a simple instance of OR

For x , y : ρ⊥, let x < y iff x defined and y undefined. Then

u ⊕ (n, x)<lexu whenever u(n) undefined.

Let the parameter F for OR(ρ⊥,<) given by

Fu(P) := q(u @ λn . εn(λx . Pnxu))

Then can define BBCε,q(u) = ORF (u),since

BBC(u) = Fu(λn, y , v . OR([u](n) ∗ y @ v) if y < u(n))

= q(u @ λn . εn(λx . OR([u](n) ∗ x @ u) if u(n) undefined))

= q(u @ λn . εn(λx . OR(u ⊕ (n, x))))

= q(u @ λn . εn(λx . BBC(u ⊕ (n, x))))
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How strong is open recursion?

Even BBC is just a very basic instance of the schema of open
recursion. But open recursion has clear connection to proof theory
and is easier to reason about.

Theorem (P. 2013)

IPS primitive recursively defines OR(ρ,<) over Cont + QF-BI
whenever R(ρ,<) is definable in system T. In particular, IPS defines
(and is therefore equivalent to) BBC.

Basic idea. A computational form of the minimal bad sequence
argument. Idea taken from bar recursive realizer for Higman’s
lemma extracted in (P. 2012).

Again, proof quite intricate so won’t go into details!
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Extensions of T

BBC functional, open recursion
OO

��

Implicit bar recursion (IPS, MBR etc.)

S1-S96|=MBR
��

Spector bar recursion (GBR, EPS etc.)

Sω 6|=GBR

��

KBRMω 6|=KBR
oo

Gödel primitive recursion
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Summary

Combined work of several authors has resulted in:

The classification of most of the familiar bar-recursive
extensions of system T according to primitive recursive
definability.

In each case have explicit, instance-wise constructions, verified
semi-intuitionistically in E-HAω + Cont + QF-BI or weaker
theories.

My contribution includes:

The equivalence of (implicit) bar recursion and open recursion
and BBC functional.

New proofs of totality of open recursion and BBC, along with
confirmation of fact that these are stronger than Spector’s bar
recursion and non-computable in continuous functionals.
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Open questions

Have said nothing about relative strength of extensions at
level of types.

How to specific instances of recursion used to interpret axiom
of choice compare in terms of computational complexity?

Can we give a meaningful semantic comparison of bar
recursion and BBC?

Can we construct new, interesting extensions of system T that
do not belong in any of the current classes?
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Bar recursive interpretations of choice

Our results confirm that like MBR, both open recursion and BBC
are stronger than Spector’s bar recursion.

In this sense Spector’s bar recursive interpretation of choice
remains optimal (essentially due to strength of Dialectica
interpretation over realizability).

Does not requre Cont reason about it or validate
interpretation of choice (hence all results hold in majorizable
functionals too)

But Spector’s bar recursion fairly arbitrary form of recursion
designed to extend Gödel’s consistency proof, not extract programs
from proofs: BBC and open recursion both devised partly to
address this and improve the semantics of extracted programs.
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Alternatives to Spector’s bar recursion

Can we devise new forms of recursion that are more amenable to
extracting programs from proofs in mathematical analysis, but still
computable and weaker than implicit bar recursion?

E.g. explicit form of open recursion:

Φ(αρ
N

)
σ
= F[u](N)∗0(λn < N, y , β . Φ([u](n) ∗ y @ β) if y < α(n))

where N least satisfying

ϕ[u](N)∗0(λn < N, y , β . Φ([u](n) ∗ y @ β) if y < α(n)) < N

Conjecture. Φ primitive recursively equivalent to Spector’s bar
recursion.

Could we use this to extract efficient and readable programs from
minimal-bad-sequence proofs of Higman’s lemma and Kruskal’s
theorem? New quantitative results?



Introduction Two classes of bar recursive functionals The open recursive functionals Concluding remarks

Alternatives to Spector’s bar recursion

Can we devise new forms of recursion that are more amenable to
extracting programs from proofs in mathematical analysis, but still
computable and weaker than implicit bar recursion?
E.g. explicit form of open recursion:

Φ(αρ
N

)
σ
= F[u](N)∗0(λn < N, y , β . Φ([u](n) ∗ y @ β) if y < α(n))

where N least satisfying

ϕ[u](N)∗0(λn < N, y , β . Φ([u](n) ∗ y @ β) if y < α(n)) < N

Conjecture. Φ primitive recursively equivalent to Spector’s bar
recursion.

Could we use this to extract efficient and readable programs from
minimal-bad-sequence proofs of Higman’s lemma and Kruskal’s
theorem? New quantitative results?



Introduction Two classes of bar recursive functionals The open recursive functionals Concluding remarks

Alternatives to Spector’s bar recursion

Can we devise new forms of recursion that are more amenable to
extracting programs from proofs in mathematical analysis, but still
computable and weaker than implicit bar recursion?
E.g. explicit form of open recursion:

Φ(αρ
N

)
σ
= F[u](N)∗0(λn < N, y , β . Φ([u](n) ∗ y @ β) if y < α(n))

where N least satisfying

ϕ[u](N)∗0(λn < N, y , β . Φ([u](n) ∗ y @ β) if y < α(n)) < N

Conjecture. Φ primitive recursively equivalent to Spector’s bar
recursion.

Could we use this to extract efficient and readable programs from
minimal-bad-sequence proofs of Higman’s lemma and Kruskal’s
theorem? New quantitative results?



Introduction Two classes of bar recursive functionals The open recursive functionals Concluding remarks

Relevant papers

S. Berardi, M. Bezem and T. Coquand. On the computational content of
the axiom of choice. Journal of Symbolic Logic, 63(2):600-622, 1998.

U. Berger. A computational interpretation of open induction. Proc. IEEE
Symposium on Logic in Computer Science, 326-334, 2004

U. Berger and P. Oliva. Modified bar recursion. Mathematical Structures in
Theoretical Computer Science 16(2):163-183, 2006

M. Escardo and P. Oliva. Bar recursion and products of selection functions.
Submitted for review

P. Oliva and T. Powell On Spector’s bar recursion. Mathematical Logic
Quarterly, 58:356-365, 2012

T. Powell On Bar Recursive Interpretation of Analysis. PhD thesis, Queen
Mary University of London, 2013

T. Powell The equivalence of bar recursion and open recursion. Submitted for

review


	Introduction
	System T
	Extensions of T

	Two classes of bar recursive functionals
	Explicit bar recursion
	Implicit bar recursion

	The open recursive functionals
	The BBC functional
	Open recursion

	Concluding remarks
	Summary
	Programs from proofs


