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Theorem. There are infinitely many prime numbers.

Proof (Euclid). Suppose that p1, . . . , pm are the primes less than
n. Then p1 . . . pm + 1 has a prime factor p distinct from the pi ,
and so in particular p ≥ n.

Strengthened Theorem. For all n ∈ N there exists
p ∈ [n, p1 . . . pm + 1] such that prime(p), where p1, . . . , pm are the
prime numbers less than n.

Moral: A proof of an existential statement contains more
information than simply the truth of the statement - often it comes
with additional ‘computational content’.
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G. Kreisel, 1950s: “What more do we know if we have proved a
theorem by restricted means than if we merely know that it is true”

Proof interpretations help answer this question.

A mapping: A 7→ ∃x∀y |A|xy where |A|xy is quantifier-free;

A soundness proof: T ` A⇒ T ` ∀y |A|ty where t ∈ T can be
recursively extracted from the proof of A.

For a logical theory T interpreted in a class of functionals T:

Mathematical proof of A

 Formal proof of A in T (restricted means)

7→ Extracted t ∈ T satisfying ∀y |A|ty (computational content)
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Metatheorem A (Gödel, 1958). If PA ` A then we can extract a
(higher-type) primitive recursive functional t satisfying ∀y |A|ty .

∀∃ statements: ∀n∃mA0(n,m) interpreted as ∃f N→N∀nA0(n, fn)

Metatheorem A’. If PA ` ∀n∃mA0(n,m) then we can extract a
primitive recursive function f satisfying ∀nA0(n, fn).

Example. PA ` ∀n∃p(p ≥ n ∧ prime(p)︸ ︷︷ ︸
A0(n,p)

)

The primitive recursive function we extracted from Euclid’s proof is

f (n) = least p ∈ [n, p1 . . . pm + 1] such that prime(p)

But Euclid’s proof is (a) constructive, and (b) trivial!
Metatheorem A’ doesn’t tell us anything new here.
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Theorem. For f ∈ C [0, 1] let En,f := infp∈Pn ‖f − p‖∞. Then for
all p1, p2 ∈ Pn we have

2⋂
i=1

‖f − pi‖∞ = En,f → p1 ≡ p2.

Standard proofs due to Young (1907) and de La Vallée Poussin
(1919) can be formalised in sufficiently weak theory to guarantee
extractability of Gödel primitive recursive functional Φ satisfying

2⋂
i=1

‖f − pi‖∞ − En,f < 2−Φ(f ,n,k) → ‖p1 − p2‖∞ < 2−k .

Proof theoretic studies by U. Kohlenbach in the 1990s led to the
formal extraction of several explicit numerical results in
approximation theory that improved previously discovered bounds.
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Proof interpretations reveal their power when applied to complex,
non-constructive proofs, where they are used to extract numerical
information ‘hidden’ in the implicit logical structure of those proofs.

This application of proof interpretations to reveal new numerical
results in mathematics is the basis of the ‘proof mining’ program.

1940s Proof interpretations developed for foundational purposes
(relative consistency proofs).

1950s Kreisel suggests reorientation of proof theory for extracting
numerical information from proofs.

1990s First non-trivial results obtained in numerical analysis.

2000- Methods become increasingly sophisticated, have an impact in
ergodic theory, combinatorics, etc. No longer restricted to
‘direct’ computational content.
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How do we give a computational interpretation ∃x∀y |A|xy to A
when it is a ∀∃∀-statement? We cannot directly interpret it as

∀n∃m∀kA0(n,m, k) 7→ ∃f N→N∀n, kA0(n, f (n), k).

Example. Cauchy convergence of some sequence (xi ) can be
expressed as:

∀n∃m∀i , j ≥ m(‖xi − xj‖ < 2−n).

Theorem (Specker, 1949). There exists a computable,
increasing sequence (xi ) of rationals in [0, 1] whose rate of
convergence is non-computable i.e. there is no computable
function f : N→ N satisfying

∀n∀i , j ≥ f (n)(|xi − xj | < 2−n).
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One solution is to interpret, instead, a double negated version of
the statement. Let A ≡ ∀n∃m∀kA0(n,m, k)...

1. ¬A is logically equivalent to ∃n∀m∃k¬A0(n,m, k).

2. Interpreting the inner ∀∃-statement, ¬A is equivalent to
∃n, f N→N∀m¬A0(n,m, f (m)).

3. Then A↔ ¬¬A is equivalent to the ∀∃ statement
∀n, f ∃mA0(n,m, f (m)).

4. This is interpreted by a higher-type functional
F : N× (N→ N)→ N satisfying ∀n, fA0(n,F (n, f ), f (F (n, f ))).

Formally, this interpretation corresponds to the negative translation
combined with the Gödel Dialectica interpretation.
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Theorem. All increasing sequences in [0, 1] are Cauchy.

Proof. If not then there is some number n and function f such
that ∀m(|xm+f (m) − xm| ≥ 2−n). Define f̃ (a) = a + f (a).
Then by the pigeonhole principle we must have
|xf̃ (i+1)(0) − xf̃ (i)(0)| < 2−n for some i ≤ 2n, a contradiction.

Interpretation (i). If (xi ) is an increasing sequence in [0, 1], then
for all n the sequence experiences arbitrarily high-quality regions of
metastability relative to functions f : N→ N i.e. there is some
k ≤ f̃ (2n)(0) such that

|xi − xj | < 2−n

for all i , j ∈ [k , f (k)].

Computational content in the form of higher-type (prim. rec.)
functional F : N× (N→ N)→ N given by F (n, f ) = f̃ (2n)(0).
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Observation. The bound f̃ 2n(0) is uniform over sequences (xi )
(not surprising since [0, 1]ω compact).

Interpretation (ii). For all numbers n and functions f : N→ N we
have

|xi − xj | < 2−n

for all i , j ∈ [k , f (k)], where k ≤ f̃ 2n(0) and (xi ) is an arbitrary
increasing sequence in [0, 1].

This kind of thing is used (independently of proof
interpretations) in mathematical analysis!

‘Finitary convergence principle’ (T. Tao). If n ∈ N, f is a
function N→ N and 0 ≤ x0 ≤ . . . ≤ xM ≤ 1 for M sufficiently
large depending on n and f , then there exists
0 ≤ k ≤ k + f (k) ≤ M such that |xi − xj | ≤ 2−n for all
i , j ∈ [k , f (k)].
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‘Correspondence principle’ (maths)⇔ Proof interpretation (logic)

Infinitary or qualitative statement⇔ ∀/∃ implicitly dependent

↓ ↓
Finitary or quantitative statement⇔ ∀/∃ explicitly dependent

From around 2008 onwards, there have been several new
applications of proof interpretations in ergodic theory, where in
particular they are used to obtain finitary convergence proofs with
explicit rates of ‘metastability’.
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Logic and Foundations

Proof Theory

OO

**TTTTTTTTTTTTTTTT

vvmmmmmmmmmmmmm

Mathematics Theoretical Computer Science

My research on proof interpretations:

(i) Extensions of proof interpretations to strong theories of analysis
that include countable choice axioms.

(ii) Trying to gain a better understanding of the mathematical, or
semantic meaning of the action of proof interpretations.
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