
Higman’s lemma The computational content of Nash-William’s proof

A Constructive Proof of Higman’s Lemma

Thomas Powell

Queen Mary, University of London

CL&C’12
University of Warwick, 8 July 2012

Higman’s lemma The computational content of Nash-William’s proof

Overview of paper

‘Applying Gödel’s Dialectica interpretation to obtain a
constructive proof of Higman’s lemma.’

1 Use the Dialectica interpretation to obtain a constructive
version of the classical ‘minimal bad sequence’ proof of
Higman’s lemma.

2 Extract a program for finding emdedded pairs in sequences of
words, and attempt to understand how it works.

3 Present a case study in which formal program extraction is
carried out intuitively - output presented as a mathematical
proof.

4 Provide some insight into constructive aspects of WQO theory.

Higman’s lemma The computational content of Nash-William’s proof

Overview of paper

‘Applying Gödel’s Dialectica interpretation to obtain a
constructive proof of Higman’s lemma.’

1 Use the Dialectica interpretation to obtain a constructive
version of the classical ‘minimal bad sequence’ proof of
Higman’s lemma.

2 Extract a program for finding emdedded pairs in sequences of
words, and attempt to understand how it works.

3 Present a case study in which formal program extraction is
carried out intuitively - output presented as a mathematical
proof.

4 Provide some insight into constructive aspects of WQO theory.

Higman’s lemma The computational content of Nash-William’s proof

Overview of paper

‘Applying Gödel’s Dialectica interpretation to obtain a
constructive proof of Higman’s lemma.’

1 Use the Dialectica interpretation to obtain a constructive
version of the classical ‘minimal bad sequence’ proof of
Higman’s lemma.

2 Extract a program for finding emdedded pairs in sequences of
words, and attempt to understand how it works.

3 Present a case study in which formal program extraction is
carried out intuitively - output presented as a mathematical
proof.

4 Provide some insight into constructive aspects of WQO theory.

Higman’s lemma The computational content of Nash-William’s proof

Overview of paper

‘Applying Gödel’s Dialectica interpretation to obtain a
constructive proof of Higman’s lemma.’

1 Use the Dialectica interpretation to obtain a constructive
version of the classical ‘minimal bad sequence’ proof of
Higman’s lemma.

2 Extract a program for finding emdedded pairs in sequences of
words, and attempt to understand how it works.

3 Present a case study in which formal program extraction is
carried out intuitively - output presented as a mathematical
proof.

4 Provide some insight into constructive aspects of WQO theory.

Higman’s lemma The computational content of Nash-William’s proof

Overview of paper

‘Applying Gödel’s Dialectica interpretation to obtain a
constructive proof of Higman’s lemma.’

1 Use the Dialectica interpretation to obtain a constructive
version of the classical ‘minimal bad sequence’ proof of
Higman’s lemma.

2 Extract a program for finding emdedded pairs in sequences of
words, and attempt to understand how it works.

3 Present a case study in which formal program extraction is
carried out intuitively - output presented as a mathematical
proof.

4 Provide some insight into constructive aspects of WQO theory.

Higman’s lemma The computational content of Nash-William’s proof

Overview of talk

1 State Higman’s lemma and present its classical proof.

2 Give a very informal account of how we can extract
constructive content from this proof using the Dialectica
interpretation.

Important things not in talk!

Details of the Dialectica interpretation.

Statement of the extracted program.

A comparison with programs extracted using other methods.

Higman’s lemma The computational content of Nash-William’s proof

Overview of talk

1 State Higman’s lemma and present its classical proof.

2 Give a very informal account of how we can extract
constructive content from this proof using the Dialectica
interpretation.

Important things not in talk!

Details of the Dialectica interpretation.

Statement of the extracted program.

A comparison with programs extracted using other methods.

Higman’s lemma The computational content of Nash-William’s proof

Overview of talk

1 State Higman’s lemma and present its classical proof.

2 Give a very informal account of how we can extract
constructive content from this proof using the Dialectica
interpretation.

Important things not in talk!

Details of the Dialectica interpretation.

Statement of the extracted program.

A comparison with programs extracted using other methods.

Higman’s lemma The computational content of Nash-William’s proof

Overview of talk

1 State Higman’s lemma and present its classical proof.

2 Give a very informal account of how we can extract
constructive content from this proof using the Dialectica
interpretation.

Important things not in talk!

Details of the Dialectica interpretation.

Statement of the extracted program.

A comparison with programs extracted using other methods.

Higman’s lemma The computational content of Nash-William’s proof

Overview of talk

1 State Higman’s lemma and present its classical proof.

2 Give a very informal account of how we can extract
constructive content from this proof using the Dialectica
interpretation.

Important things not in talk!

Details of the Dialectica interpretation.

Statement of the extracted program.

A comparison with programs extracted using other methods.

Higman’s lemma The computational content of Nash-William’s proof

Overview of talk

1 State Higman’s lemma and present its classical proof.

2 Give a very informal account of how we can extract
constructive content from this proof using the Dialectica
interpretation.

Important things not in talk!

Details of the Dialectica interpretation.

Statement of the extracted program.

A comparison with programs extracted using other methods.

Higman’s lemma The computational content of Nash-William’s proof

Contents

1 Higman’s lemma

2 The computational content of Nash-William’s proof

Higman’s lemma The computational content of Nash-William’s proof

Well-Quasi-Orders

A preorder ≤X on X is a reflexive, transitive binary relation.
Define a sequence (xi)i∈N in X to be bad if we have xi �X xj for
all i < j . It is good otherwise.

WQO (Definition 1). A preorder (X ,≤X) is a well-quasi-order
(WQO) if all sequences in X are good i.e. for all sequences (xi)i∈N
we have xi ≤X xj for some i < j .

A is a WQO whenever A is finite: in any infinite sequence at
least one element of A appears twice.

(N,≤) is a WQO: by well foundedness of N there can be no
infinite decreasing chains x0 > x1 >

(N, |) is not a WQO: The prime numbers 2, 3, 5, . . . form an
infinite bad sequence.

Higman’s lemma The computational content of Nash-William’s proof

Well-Quasi-Orders

A preorder ≤X on X is a reflexive, transitive binary relation.
Define a sequence (xi)i∈N in X to be bad if we have xi �X xj for
all i < j . It is good otherwise.

WQO (Definition 1). A preorder (X ,≤X) is a well-quasi-order
(WQO) if all sequences in X are good i.e. for all sequences (xi)i∈N
we have xi ≤X xj for some i < j .

A is a WQO whenever A is finite: in any infinite sequence at
least one element of A appears twice.

(N,≤) is a WQO: by well foundedness of N there can be no
infinite decreasing chains x0 > x1 >

(N, |) is not a WQO: The prime numbers 2, 3, 5, . . . form an
infinite bad sequence.

Higman’s lemma The computational content of Nash-William’s proof

Well-Quasi-Orders

A preorder ≤X on X is a reflexive, transitive binary relation.
Define a sequence (xi)i∈N in X to be bad if we have xi �X xj for
all i < j . It is good otherwise.

WQO (Definition 1). A preorder (X ,≤X) is a well-quasi-order
(WQO) if all sequences in X are good i.e. for all sequences (xi)i∈N
we have xi ≤X xj for some i < j .

A is a WQO whenever A is finite: in any infinite sequence at
least one element of A appears twice.

(N,≤) is a WQO: by well foundedness of N there can be no
infinite decreasing chains x0 > x1 >

(N, |) is not a WQO: The prime numbers 2, 3, 5, . . . form an
infinite bad sequence.

Higman’s lemma The computational content of Nash-William’s proof

Well-Quasi-Orders

A preorder ≤X on X is a reflexive, transitive binary relation.
Define a sequence (xi)i∈N in X to be bad if we have xi �X xj for
all i < j . It is good otherwise.

WQO (Definition 1). A preorder (X ,≤X) is a well-quasi-order
(WQO) if all sequences in X are good i.e. for all sequences (xi)i∈N
we have xi ≤X xj for some i < j .

A is a WQO whenever A is finite: in any infinite sequence at
least one element of A appears twice.

(N,≤) is a WQO: by well foundedness of N there can be no
infinite decreasing chains x0 > x1 >

(N, |) is not a WQO: The prime numbers 2, 3, 5, . . . form an
infinite bad sequence.

Higman’s lemma The computational content of Nash-William’s proof

Well-Quasi-Orders

A preorder ≤X on X is a reflexive, transitive binary relation.
Define a sequence (xi)i∈N in X to be bad if we have xi �X xj for
all i < j . It is good otherwise.

WQO (Definition 1). A preorder (X ,≤X) is a well-quasi-order
(WQO) if all sequences in X are good i.e. for all sequences (xi)i∈N
we have xi ≤X xj for some i < j .

A is a WQO whenever A is finite: in any infinite sequence at
least one element of A appears twice.

(N,≤) is a WQO: by well foundedness of N there can be no
infinite decreasing chains x0 > x1 >

(N, |) is not a WQO: The prime numbers 2, 3, 5, . . . form an
infinite bad sequence.

Higman’s lemma The computational content of Nash-William’s proof

There are many alternative ways to characterise WQOs:

WQO (Definition 2). (X ,≤X) is a WQO iff all sequences (xi)i∈N
in X have an infinite increasing subsequence
xg0 ≤ xg1 ≤ xg2 ≤

For A finite, by the infinite pigeonhole principle for any infinite
sequence in A at least one element appears infinitely often.

Given (xi)i∈N in N, define g0 such that
xg0 := min{xk : k ∈ N}

Define g(i + 1) > gi such that xg(i+1) := min{xk : k > gi}.

Then we must have xg0 ≤ xg1 ≤

Higman’s lemma The computational content of Nash-William’s proof

There are many alternative ways to characterise WQOs:

WQO (Definition 2). (X ,≤X) is a WQO iff all sequences (xi)i∈N
in X have an infinite increasing subsequence
xg0 ≤ xg1 ≤ xg2 ≤

For A finite, by the infinite pigeonhole principle for any infinite
sequence in A at least one element appears infinitely often.

Given (xi)i∈N in N, define g0 such that
xg0 := min{xk : k ∈ N}

Define g(i + 1) > gi such that xg(i+1) := min{xk : k > gi}.

Then we must have xg0 ≤ xg1 ≤

Higman’s lemma The computational content of Nash-William’s proof

There are many alternative ways to characterise WQOs:

WQO (Definition 2). (X ,≤X) is a WQO iff all sequences (xi)i∈N
in X have an infinite increasing subsequence
xg0 ≤ xg1 ≤ xg2 ≤

For A finite, by the infinite pigeonhole principle for any infinite
sequence in A at least one element appears infinitely often.

Given (xi)i∈N in N, define g0 such that
xg0 := min{xk : k ∈ N}

Define g(i + 1) > gi such that xg(i+1) := min{xk : k > gi}.

Then we must have xg0 ≤ xg1 ≤

Higman’s lemma The computational content of Nash-William’s proof

Building new WQOs

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

X a WQO ⇒ (xi)i∈N has an infinite increasing subsequence
xg0 ≤X xg1 ≤X xg2 ≤

Y a WQO ⇒ the sequence (ygi)i∈N has ygi ≤Y ygj for some i < j .

Therefore (xgi , ygi) ≤X×Y (xgj , ygj). �

Higman’s lemma The computational content of Nash-William’s proof

Building new WQOs

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

X a WQO ⇒ (xi)i∈N has an infinite increasing subsequence
xg0 ≤X xg1 ≤X xg2 ≤

Y a WQO ⇒ the sequence (ygi)i∈N has ygi ≤Y ygj for some i < j .

Therefore (xgi , ygi) ≤X×Y (xgj , ygj). �

Higman’s lemma The computational content of Nash-William’s proof

Building new WQOs

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

X a WQO ⇒ (xi)i∈N has an infinite increasing subsequence
xg0 ≤X xg1 ≤X xg2 ≤

Y a WQO ⇒ the sequence (ygi)i∈N has ygi ≤Y ygj for some i < j .

Therefore (xgi , ygi) ≤X×Y (xgj , ygj). �

Higman’s lemma The computational content of Nash-William’s proof

Building new WQOs

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

X a WQO ⇒ (xi)i∈N has an infinite increasing subsequence
xg0 ≤X xg1 ≤X xg2 ≤

Y a WQO ⇒ the sequence (ygi)i∈N has ygi ≤Y ygj for some i < j .

Therefore (xgi , ygi) ≤X×Y (xgj , ygj). �

Higman’s lemma The computational content of Nash-William’s proof

Building new WQOs

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

X a WQO ⇒ (xi)i∈N has an infinite increasing subsequence
xg0 ≤X xg1 ≤X xg2 ≤

Y a WQO ⇒ the sequence (ygi)i∈N has ygi ≤Y ygj for some i < j .

Therefore (xgi , ygi) ≤X×Y (xgj , ygj). �

Higman’s lemma The computational content of Nash-William’s proof

Higman’s lemma

Given a preorder (X ,≤X) we can define a preorder (X ∗,≤X∗) on
words over X via the embeddability relation:

〈x0, . . . , xm−1〉 ≤X∗
〈
x ′0, . . . , x

′
n−1

〉
if there is a strictly increasing map f : [m]→ [n] with xi ≤X x ′fi for
all i < m.

Higman’s Lemma (Higman, 1952). If (X ,≤X) is a WQO then
so is (X ∗,≤X∗).

Higman’s lemma The computational content of Nash-William’s proof

Higman’s lemma

Given a preorder (X ,≤X) we can define a preorder (X ∗,≤X∗) on
words over X via the embeddability relation:

〈x0, . . . , xm−1〉 ≤X∗
〈
x ′0, . . . , x

′
n−1

〉
if there is a strictly increasing map f : [m]→ [n] with xi ≤X x ′fi for
all i < m.

Higman’s Lemma (Higman, 1952). If (X ,≤X) is a WQO then
so is (X ∗,≤X∗).

Higman’s lemma The computational content of Nash-William’s proof

Classical proof of Higman’s lemma

Proof (Nash-Williams, 1963). Suppose that (ui)i∈N is a bad
sequence in X ∗. Using dependent choice, construct a
minimal bad sequence (vi)i∈N as follows:

1 v0 extends to a bad sequence, but no prefix y C v0 extends to
a bad sequence;

2 given v0, . . . , vn−1, choose vn such that v0, . . . , vn−1, vn

extends to a bad sequence, but v0, . . . , vn−1, y does not for
any prefix y C vn.

(vi)i∈N bad sequence, minimal under the lexicographic ordering on
(X ∗)ω.

Higman’s lemma The computational content of Nash-William’s proof

Classical proof of Higman’s lemma

Proof (Nash-Williams, 1963). Suppose that (ui)i∈N is a bad
sequence in X ∗. Using dependent choice, construct a
minimal bad sequence (vi)i∈N as follows:

1 v0 extends to a bad sequence, but no prefix y C v0 extends to
a bad sequence;

2 given v0, . . . , vn−1, choose vn such that v0, . . . , vn−1, vn

extends to a bad sequence, but v0, . . . , vn−1, y does not for
any prefix y C vn.

(vi)i∈N bad sequence, minimal under the lexicographic ordering on
(X ∗)ω.

Higman’s lemma The computational content of Nash-William’s proof

Classical proof of Higman’s lemma

Proof (Nash-Williams, 1963). Suppose that (ui)i∈N is a bad
sequence in X ∗. Using dependent choice, construct a
minimal bad sequence (vi)i∈N as follows:

1 v0 extends to a bad sequence, but no prefix y C v0 extends to
a bad sequence;

2 given v0, . . . , vn−1, choose vn such that v0, . . . , vn−1, vn

extends to a bad sequence, but v0, . . . , vn−1, y does not for
any prefix y C vn.

(vi)i∈N bad sequence, minimal under the lexicographic ordering on
(X ∗)ω.

Higman’s lemma The computational content of Nash-William’s proof

Classical proof of Higman’s lemma

Proof (Nash-Williams, 1963). Suppose that (ui)i∈N is a bad
sequence in X ∗. Using dependent choice, construct a
minimal bad sequence (vi)i∈N as follows:

1 v0 extends to a bad sequence, but no prefix y C v0 extends to
a bad sequence;

2 given v0, . . . , vn−1, choose vn such that v0, . . . , vn−1, vn

extends to a bad sequence, but v0, . . . , vn−1, y does not for
any prefix y C vn.

(vi)i∈N bad sequence, minimal under the lexicographic ordering on
(X ∗)ω.

Higman’s lemma The computational content of Nash-William’s proof

Classical proof of Higman’s lemma

Each vi must be non-empty, so we can write vi = ṽi ∗ xi .

X a WQO ⇒ (xi)i∈N has an infinite increasing subsequence
xg0 ≤X xg1 ≤X xg2 ≤

But then the sequence

v0, . . . , vg0−1, ṽg0, ṽg1, ṽg2, . . .

is bad, contradicting minimality of (vi)i∈N. �

Higman’s lemma The computational content of Nash-William’s proof

Classical proof of Higman’s lemma

Each vi must be non-empty, so we can write vi = ṽi ∗ xi .

X a WQO ⇒ (xi)i∈N has an infinite increasing subsequence
xg0 ≤X xg1 ≤X xg2 ≤

But then the sequence

v0, . . . , vg0−1, ṽg0, ṽg1, ṽg2, . . .

is bad, contradicting minimality of (vi)i∈N. �

Higman’s lemma The computational content of Nash-William’s proof

Classical proof of Higman’s lemma

Each vi must be non-empty, so we can write vi = ṽi ∗ xi .

X a WQO ⇒ (xi)i∈N has an infinite increasing subsequence
xg0 ≤X xg1 ≤X xg2 ≤

But then the sequence

v0, . . . , vg0−1, ṽg0, ṽg1, ṽg2, . . .

is bad, contradicting minimality of (vi)i∈N. �

Higman’s lemma The computational content of Nash-William’s proof

Bounds for the length bad sequences

Given a WQO (X ,≤X) can we produce an explicit functional Γ
satisfying

∀x ∈ Xω∃i < j ≤ Γ(x)(xi ≤X xj)?

For any (xi)i∈N in A we have xi = xj for some i < j ≤ |A|+ 1.

For any (xi)i∈N in N we have xi ≤ xj for some i < j ≤ x0 + 2
(the maximum length of a bad sequence x0 > x1 > . . . is
x0 + 1).

Challenge: Analyse the classical proof of Higman’s lemma to
extract a program ΓX∗ bounding bad sequences in (X ∗,≤∗), for
arbitrary WQOs (X ,≤X)?

Higman’s lemma The computational content of Nash-William’s proof

Bounds for the length bad sequences

Given a WQO (X ,≤X) can we produce an explicit functional Γ
satisfying

∀x ∈ Xω∃i < j ≤ Γ(x)(xi ≤X xj)?

For any (xi)i∈N in A we have xi = xj for some i < j ≤ |A|+ 1.

For any (xi)i∈N in N we have xi ≤ xj for some i < j ≤ x0 + 2
(the maximum length of a bad sequence x0 > x1 > . . . is
x0 + 1).

Challenge: Analyse the classical proof of Higman’s lemma to
extract a program ΓX∗ bounding bad sequences in (X ∗,≤∗), for
arbitrary WQOs (X ,≤X)?

Higman’s lemma The computational content of Nash-William’s proof

Bounds for the length bad sequences

Given a WQO (X ,≤X) can we produce an explicit functional Γ
satisfying

∀x ∈ Xω∃i < j ≤ Γ(x)(xi ≤X xj)?

For any (xi)i∈N in A we have xi = xj for some i < j ≤ |A|+ 1.

For any (xi)i∈N in N we have xi ≤ xj for some i < j ≤ x0 + 2
(the maximum length of a bad sequence x0 > x1 > . . . is
x0 + 1).

Challenge: Analyse the classical proof of Higman’s lemma to
extract a program ΓX∗ bounding bad sequences in (X ∗,≤∗), for
arbitrary WQOs (X ,≤X)?

Higman’s lemma The computational content of Nash-William’s proof

Bounds for the length bad sequences

Given a WQO (X ,≤X) can we produce an explicit functional Γ
satisfying

∀x ∈ Xω∃i < j ≤ Γ(x)(xi ≤X xj)?

For any (xi)i∈N in A we have xi = xj for some i < j ≤ |A|+ 1.

For any (xi)i∈N in N we have xi ≤ xj for some i < j ≤ x0 + 2
(the maximum length of a bad sequence x0 > x1 > . . . is
x0 + 1).

Challenge: Analyse the classical proof of Higman’s lemma to
extract a program ΓX∗ bounding bad sequences in (X ∗,≤∗), for
arbitrary WQOs (X ,≤X)?

Higman’s lemma The computational content of Nash-William’s proof

Why Higman’s Lemma?

It has a short, elegant classical proof based on a non-trivial
combinatorial idea.

Minimal bad sequence argument important building block in
theory of WQOs, lies behind Kruskal’s theorem.

Higman’s lemma has practical implications - termination
proofs in rewriting systems.

Extensively studied in logic and proof theory.

Higman’s lemma The computational content of Nash-William’s proof

Why Higman’s Lemma?

It has a short, elegant classical proof based on a non-trivial
combinatorial idea.

Minimal bad sequence argument important building block in
theory of WQOs, lies behind Kruskal’s theorem.

Higman’s lemma has practical implications - termination
proofs in rewriting systems.

Extensively studied in logic and proof theory.

Higman’s lemma The computational content of Nash-William’s proof

Why Higman’s Lemma?

It has a short, elegant classical proof based on a non-trivial
combinatorial idea.

Minimal bad sequence argument important building block in
theory of WQOs, lies behind Kruskal’s theorem.

Higman’s lemma has practical implications - termination
proofs in rewriting systems.

Extensively studied in logic and proof theory.

Higman’s lemma The computational content of Nash-William’s proof

Why Higman’s Lemma?

It has a short, elegant classical proof based on a non-trivial
combinatorial idea.

Minimal bad sequence argument important building block in
theory of WQOs, lies behind Kruskal’s theorem.

Higman’s lemma has practical implications - termination
proofs in rewriting systems.

Extensively studied in logic and proof theory.

Higman’s lemma The computational content of Nash-William’s proof

Why Higman’s Lemma?

It has a short, elegant classical proof based on a non-trivial
combinatorial idea.

Minimal bad sequence argument important building block in
theory of WQOs, lies behind Kruskal’s theorem.

Higman’s lemma has practical implications - termination
proofs in rewriting systems.

Extensively studied in logic and proof theory.

Higman’s lemma The computational content of Nash-William’s proof

Contents

1 Higman’s lemma

2 The computational content of Nash-William’s proof

Higman’s lemma The computational content of Nash-William’s proof

Methods of program extraction

Inductive definitions Reformulation of Nash-Williams’ proof using
inductive definition of WQO by Coquand and Fridlender (1993),
extended to Kruskal’s theorem by Seisenberger (2001).

A-translation and realizability Formal program extraction carried
out by Murthy (1990), improved and implemented in Minlog by
Seisenberger (2003).

Negative translation and Dialectica interpretation

Maps formulas A to (classically equivalent) formulas
∃x∀yAD(x , y).

If PAω ` A then there exists closed term t ∈ T s.t.
T ` AD(t, y).

Higman’s lemma The computational content of Nash-William’s proof

Methods of program extraction

Inductive definitions Reformulation of Nash-Williams’ proof using
inductive definition of WQO by Coquand and Fridlender (1993),
extended to Kruskal’s theorem by Seisenberger (2001).

A-translation and realizability Formal program extraction carried
out by Murthy (1990), improved and implemented in Minlog by
Seisenberger (2003).

Negative translation and Dialectica interpretation

Maps formulas A to (classically equivalent) formulas
∃x∀yAD(x , y).

If PAω ` A then there exists closed term t ∈ T s.t.
T ` AD(t, y).

Higman’s lemma The computational content of Nash-William’s proof

Methods of program extraction

Inductive definitions Reformulation of Nash-Williams’ proof using
inductive definition of WQO by Coquand and Fridlender (1993),
extended to Kruskal’s theorem by Seisenberger (2001).

A-translation and realizability Formal program extraction carried
out by Murthy (1990), improved and implemented in Minlog by
Seisenberger (2003).

Negative translation and Dialectica interpretation

Maps formulas A to (classically equivalent) formulas
∃x∀yAD(x , y).

If PAω ` A then there exists closed term t ∈ T s.t.
T ` AD(t, y).

Higman’s lemma The computational content of Nash-William’s proof

Methods of program extraction

Inductive definitions Reformulation of Nash-Williams’ proof using
inductive definition of WQO by Coquand and Fridlender (1993),
extended to Kruskal’s theorem by Seisenberger (2001).

A-translation and realizability Formal program extraction carried
out by Murthy (1990), improved and implemented in Minlog by
Seisenberger (2003).

Negative translation and Dialectica interpretation

Maps formulas A to (classically equivalent) formulas
∃x∀yAD(x , y).

If PAω ` A then there exists closed term t ∈ T s.t.
T ` AD(t, y).

Higman’s lemma The computational content of Nash-William’s proof

Dialectica interpretation

Π2-formulas

∀xX∃y Y A(x , y)
ND7→ f X→Y . ∀x A(x , fx).

Can directly extract programs from classical proofs of Π2 theorems.
How do we interpret ineffective lemmas used in the proof?

Σ2-formulas

∃xX∀y Y B(x , y)
N7→ ¬¬∃x∀y B(x , y)

↔ ∀ϕX→Y ∃x B(x , ϕx)

D7→ F (X→Y)→X . ∀ϕA(Fϕ,ϕ(Fϕ)).

ϕ specifies how x is going to be used in a computation and F
constructs an ‘approximation’ to x based on ϕ.

Higman’s lemma The computational content of Nash-William’s proof

Dialectica interpretation

Π2-formulas

∀xX∃y Y A(x , y)
ND7→ f X→Y . ∀x A(x , fx).

Can directly extract programs from classical proofs of Π2 theorems.
How do we interpret ineffective lemmas used in the proof?

Σ2-formulas

∃xX∀y Y B(x , y)
N7→ ¬¬∃x∀y B(x , y)

↔ ∀ϕX→Y ∃x B(x , ϕx)

D7→ F (X→Y)→X . ∀ϕA(Fϕ,ϕ(Fϕ)).

ϕ specifies how x is going to be used in a computation and F
constructs an ‘approximation’ to x based on ϕ.

Higman’s lemma The computational content of Nash-William’s proof

Dialectica interpretation

Π2-formulas

∀xX∃y Y A(x , y)
ND7→ f X→Y . ∀x A(x , fx).

Can directly extract programs from classical proofs of Π2 theorems.
How do we interpret ineffective lemmas used in the proof?

Σ2-formulas

∃xX∀y Y B(x , y)
N7→ ¬¬∃x∀y B(x , y)

↔ ∀ϕX→Y ∃x B(x , ϕx)

D7→ F (X→Y)→X . ∀ϕA(Fϕ,ϕ(Fϕ)).

ϕ specifies how x is going to be used in a computation and F
constructs an ‘approximation’ to x based on ϕ.

Higman’s lemma The computational content of Nash-William’s proof

In the proof of Higman’s lemma, the assumption X is a WQO is
used in the sense of Definition 2 i.e. the following ineffective form:

MS[X] : ∀xXω∃gN→N∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj)

↓
∀x , ϕN

N→N∃g∀i < j ≤ ϕg(gi < gj ∧ xgi ≤X xgj)
↓

MS[X]′ : ∃G∀x , ϕ∀i < j ≤ ϕ(G x
ϕ)(Gi < Gj ∧ xGi ≤X xGj)

WQO (definition 3). (X ,≤X) is a WQO iff there exists G
realizing MS[X]′ i.e. for all sequences (xi)i∈N in X have arbitrary
high quality approximations to infinite increasing sequences.

Higman’s lemma The computational content of Nash-William’s proof

In the proof of Higman’s lemma, the assumption X is a WQO is
used in the sense of Definition 2 i.e. the following ineffective form:

MS[X] : ∀xXω∃gN→N∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj)
↓

∀x , ϕN
N→N∃g∀i < j ≤ ϕg(gi < gj ∧ xgi ≤X xgj)

↓
MS[X]′ : ∃G∀x , ϕ∀i < j ≤ ϕ(G x

ϕ)(Gi < Gj ∧ xGi ≤X xGj)

WQO (definition 3). (X ,≤X) is a WQO iff there exists G
realizing MS[X]′ i.e. for all sequences (xi)i∈N in X have arbitrary
high quality approximations to infinite increasing sequences.

Higman’s lemma The computational content of Nash-William’s proof

In the proof of Higman’s lemma, the assumption X is a WQO is
used in the sense of Definition 2 i.e. the following ineffective form:

MS[X] : ∀xXω∃gN→N∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj)
↓

∀x , ϕN
N→N∃g∀i < j ≤ ϕg(gi < gj ∧ xgi ≤X xgj)

↓
MS[X]′ : ∃G∀x , ϕ∀i < j ≤ ϕ(G x

ϕ)(Gi < Gj ∧ xGi ≤X xGj)

WQO (definition 3). (X ,≤X) is a WQO iff there exists G
realizing MS[X]′ i.e. for all sequences (xi)i∈N in X have arbitrary
high quality approximations to infinite increasing sequences.

Higman’s lemma The computational content of Nash-William’s proof

In the proof of Higman’s lemma, the assumption X is a WQO is
used in the sense of Definition 2 i.e. the following ineffective form:

MS[X] : ∀xXω∃gN→N∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj)
↓

∀x , ϕN
N→N∃g∀i < j ≤ ϕg(gi < gj ∧ xgi ≤X xgj)

↓
MS[X]′ : ∃G∀x , ϕ∀i < j ≤ ϕ(G x

ϕ)(Gi < Gj ∧ xGi ≤X xGj)

WQO (definition 3). (X ,≤X) is a WQO iff there exists G
realizing MS[X]′ i.e. for all sequences (xi)i∈N in X have arbitrary
high quality approximations to infinite increasing sequences.

Higman’s lemma The computational content of Nash-William’s proof

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

1 X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj).

2 Y a WQO⇒ ∃i < j ≤ ΓY (yg)(ygi ≤Y ygj).

Therefore ∃i < j ≤ ΓY (yg)(〈xgi , ygi 〉 ≤X×Y 〈xgj , ygj〉).

g ineffectively constructed, but only really need an approximation
of g up to ΓY (yg).

Higman’s lemma The computational content of Nash-William’s proof

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

1 X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj).

2 Y a WQO⇒ ∃i < j ≤ ΓY (yg)(ygi ≤Y ygj).

Therefore ∃i < j ≤ ΓY (yg)(〈xgi , ygi 〉 ≤X×Y 〈xgj , ygj〉).

g ineffectively constructed, but only really need an approximation
of g up to ΓY (yg).

Higman’s lemma The computational content of Nash-William’s proof

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

1 X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj).

2 Y a WQO⇒ ∃i < j ≤ ΓY (yg)(ygi ≤Y ygj).

Therefore ∃i < j ≤ ΓY (yg)(〈xgi , ygi 〉 ≤X×Y 〈xgj , ygj〉).

g ineffectively constructed, but only really need an approximation
of g up to ΓY (yg).

Higman’s lemma The computational content of Nash-William’s proof

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

1 X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj).

2 Y a WQO⇒ ∃i < j ≤ ΓY (yg)(ygi ≤Y ygj).

Therefore ∃i < j ≤ ΓY (yg)(〈xgi , ygi 〉 ≤X×Y 〈xgj , ygj〉).

g ineffectively constructed, but only really need an approximation
of g up to ΓY (yg).

Higman’s lemma The computational content of Nash-William’s proof

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

1 X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj).

2 Y a WQO⇒ ∃i < j ≤ ΓY (yg)(ygi ≤Y ygj).

Therefore ∃i < j ≤ ΓY (yg)(〈xgi , ygi 〉 ≤X×Y 〈xgj , ygj〉).

g ineffectively constructed, but only really need an approximation
of g up to ΓY (yg).

Higman’s lemma The computational content of Nash-William’s proof

Theorem. If (X ,≤X), (Y ,≤Y) are WQOs, then so is
(X × Y ,≤X×Y).

Proof. Take (xi , yi)i∈N in X × Y .

1 X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ xgi ≤X xgj).

2 Y a WQO⇒ ∃i < j ≤ ΓY (yg)(ygi ≤Y ygj).

Therefore ∃i < j ≤ ΓY (yg)(〈xgi , ygi 〉 ≤X×Y 〈xgj , ygj〉).

g ineffectively constructed, but only really need an approximation
of g up to ΓY (yg).

Higman’s lemma The computational content of Nash-William’s proof

Constructive version. Given G satisfying MS[X]′ and ΓY

realizing well-quasi-orderedness of Y we have

∃i < j ≤ G x
ϕ(ΓY (yG x

ϕ
))(〈xi , yj〉 ≤X×Y 〈xj , yj〉)

where ϕ := λg . ΓY (yg).

Proof. We have

1 ∀i < j ≤ ϕG x
ϕ(Gi < Gj ∧ xGi ≤X xGj) i.e.

∀i < j ≤ ΓY (yG x
ϕ

)(Gi < Gj ∧ xGi ≤X xGj).

2 ∃i < j ≤ ΓY (yG x
ϕ

)(yGi ≤ yGj).

Therefore 〈xGi , yGi 〉 ≤X×Y 〈xGj , yGj〉 for Gi < Gj ≤ G (ΓY (yG x
ϕ

)).

Higman’s lemma The computational content of Nash-William’s proof

Constructive version. Given G satisfying MS[X]′ and ΓY

realizing well-quasi-orderedness of Y we have

∃i < j ≤ G x
ϕ(ΓY (yG x

ϕ
))(〈xi , yj〉 ≤X×Y 〈xj , yj〉)

where ϕ := λg . ΓY (yg).

Proof. We have

1 ∀i < j ≤ ϕG x
ϕ(Gi < Gj ∧ xGi ≤X xGj) i.e.

∀i < j ≤ ΓY (yG x
ϕ

)(Gi < Gj ∧ xGi ≤X xGj).

2 ∃i < j ≤ ΓY (yG x
ϕ

)(yGi ≤ yGj).

Therefore 〈xGi , yGi 〉 ≤X×Y 〈xGj , yGj〉 for Gi < Gj ≤ G (ΓY (yG x
ϕ

)).

Higman’s lemma The computational content of Nash-William’s proof

Constructive version. Given G satisfying MS[X]′ and ΓY

realizing well-quasi-orderedness of Y we have

∃i < j ≤ G x
ϕ(ΓY (yG x

ϕ
))(〈xi , yj〉 ≤X×Y 〈xj , yj〉)

where ϕ := λg . ΓY (yg).

Proof. We have

1 ∀i < j ≤ ϕG x
ϕ(Gi < Gj ∧ xGi ≤X xGj) i.e.

∀i < j ≤ ΓY (yG x
ϕ

)(Gi < Gj ∧ xGi ≤X xGj).

2 ∃i < j ≤ ΓY (yG x
ϕ

)(yGi ≤ yGj).

Therefore 〈xGi , yGi 〉 ≤X×Y 〈xGj , yGj〉 for Gi < Gj ≤ G (ΓY (yG x
ϕ

)).

Higman’s lemma The computational content of Nash-William’s proof

Constructive version. Given G satisfying MS[X]′ and ΓY

realizing well-quasi-orderedness of Y we have

∃i < j ≤ G x
ϕ(ΓY (yG x

ϕ
))(〈xi , yj〉 ≤X×Y 〈xj , yj〉)

where ϕ := λg . ΓY (yg).

Proof. We have

1 ∀i < j ≤ ϕG x
ϕ(Gi < Gj ∧ xGi ≤X xGj) i.e.

∀i < j ≤ ΓY (yG x
ϕ

)(Gi < Gj ∧ xGi ≤X xGj).

2 ∃i < j ≤ ΓY (yG x
ϕ

)(yGi ≤ yGj).

Therefore 〈xGi , yGi 〉 ≤X×Y 〈xGj , yGj〉 for Gi < Gj ≤ G (ΓY (yG x
ϕ

)).

Higman’s lemma The computational content of Nash-William’s proof

Higman’s Lemma. If (X ,≤X) is a WQO then so is (X ∗,≤X∗).

Proof. Suppose that u is a bad sequence in X ∗. Using dependent
choice, construct v i : (X ∗)ω and f i : (X ∗)ω → N as follows:

1 v 0 is bad but for any y C0 v 0 we have
∃i < j ≤ f 0(y)(yi ≤X∗ yj)

2 [v n−1](n) = [v n](n) and v n is bad, but for any y Cn v n we
have ∃i < j ≤ f n(y)(yi ≤X∗ yj).

(v i
i) is a bad sequence, minimal under the lexicographic ordering

on (X ∗)ω.

Higman’s lemma The computational content of Nash-William’s proof

Higman’s Lemma. If (X ,≤X) is a WQO then so is (X ∗,≤X∗).

Proof. Suppose that u is a bad sequence in X ∗. Using dependent
choice, construct v i : (X ∗)ω and f i : (X ∗)ω → N as follows:

1 v 0 is bad but for any y C0 v 0 we have
∃i < j ≤ f 0(y)(yi ≤X∗ yj)

2 [v n−1](n) = [v n](n) and v n is bad, but for any y Cn v n we
have ∃i < j ≤ f n(y)(yi ≤X∗ yj).

(v i
i) is a bad sequence, minimal under the lexicographic ordering

on (X ∗)ω.

Higman’s lemma The computational content of Nash-William’s proof

Higman’s Lemma. If (X ,≤X) is a WQO then so is (X ∗,≤X∗).

Proof. Suppose that u is a bad sequence in X ∗. Using dependent
choice, construct v i : (X ∗)ω and f i : (X ∗)ω → N as follows:

1 v 0 is bad but for any y C0 v 0 we have
∃i < j ≤ f 0(y)(yi ≤X∗ yj)

2 [v n−1](n) = [v n](n) and v n is bad, but for any y Cn v n we
have ∃i < j ≤ f n(y)(yi ≤X∗ yj).

(v i
i) is a bad sequence, minimal under the lexicographic ordering

on (X ∗)ω.

Higman’s lemma The computational content of Nash-William’s proof

Higman’s Lemma. If (X ,≤X) is a WQO then so is (X ∗,≤X∗).

Proof. Suppose that u is a bad sequence in X ∗. Using dependent
choice, construct v i : (X ∗)ω and f i : (X ∗)ω → N as follows:

1 v 0 is bad but for any y C0 v 0 we have
∃i < j ≤ f 0(y)(yi ≤X∗ yj)

2 [v n−1](n) = [v n](n) and v n is bad, but for any y Cn v n we
have ∃i < j ≤ f n(y)(yi ≤X∗ yj).

(v i
i) is a bad sequence, minimal under the lexicographic ordering

on (X ∗)ω.

Higman’s lemma The computational content of Nash-William’s proof

Higman’s Lemma. If (X ,≤X) is a WQO then so is (X ∗,≤X∗).

Proof. Suppose that u is a bad sequence in X ∗. Using dependent
choice, construct v i : (X ∗)ω and f i : (X ∗)ω → N as follows:

1 v 0 is bad but for any y C0 v 0 we have
∃i < j ≤ f 0(y)(yi ≤X∗ yj)

2 [v n−1](n) = [v n](n) and v n is bad, but for any y Cn v n we
have ∃i < j ≤ f n(y)(yi ≤X∗ yj).

(v i
i) is a bad sequence, minimal under the lexicographic ordering

on (X ∗)ω.

Higman’s lemma The computational content of Nash-William’s proof

Each v i
j must be non-empty, so we can write v i

j = ṽ i
j ∗ v̄ i

j .

X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ v̄ gi
gi ≤X v̄ gj

gj).

Therefore the sequence ψg ,v := [v g0−1](g0) ∗ (ṽ gi
gi) must be bad.

But by minimality at g0, ψ must have one element contained in a
later one before f g0(ψ).

This implies that v g(f g0(ψ)) must have one element contained in a
later one before g(f g0(ψ)) → contradiction.

Higman’s lemma The computational content of Nash-William’s proof

Each v i
j must be non-empty, so we can write v i

j = ṽ i
j ∗ v̄ i

j .

X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ v̄ gi
gi ≤X v̄ gj

gj).

Therefore the sequence ψg ,v := [v g0−1](g0) ∗ (ṽ gi
gi) must be bad.

But by minimality at g0, ψ must have one element contained in a
later one before f g0(ψ).

This implies that v g(f g0(ψ)) must have one element contained in a
later one before g(f g0(ψ)) → contradiction.

Higman’s lemma The computational content of Nash-William’s proof

Each v i
j must be non-empty, so we can write v i

j = ṽ i
j ∗ v̄ i

j .

X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ v̄ gi
gi ≤X v̄ gj

gj).

Therefore the sequence ψg ,v := [v g0−1](g0) ∗ (ṽ gi
gi) must be bad.

But by minimality at g0, ψ must have one element contained in a
later one before f g0(ψ).

This implies that v g(f g0(ψ)) must have one element contained in a
later one before g(f g0(ψ)) → contradiction.

Higman’s lemma The computational content of Nash-William’s proof

Each v i
j must be non-empty, so we can write v i

j = ṽ i
j ∗ v̄ i

j .

X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ v̄ gi
gi ≤X v̄ gj

gj).

Therefore the sequence ψg ,v := [v g0−1](g0) ∗ (ṽ gi
gi) must be bad.

But by minimality at g0, ψ must have one element contained in a
later one before f g0(ψ).

This implies that v g(f g0(ψ)) must have one element contained in a
later one before g(f g0(ψ)) → contradiction.

Higman’s lemma The computational content of Nash-William’s proof

Each v i
j must be non-empty, so we can write v i

j = ṽ i
j ∗ v̄ i

j .

X a WQO⇒ ∃g∀k∀i < j ≤ k(gi < gj ∧ v̄ gi
gi ≤X v̄ gj

gj).

Therefore the sequence ψg ,v := [v g0−1](g0) ∗ (ṽ gi
gi) must be bad.

But by minimality at g0, ψ must have one element contained in a
later one before f g0(ψ).

This implies that v g(f g0(ψ)) must have one element contained in a
later one before g(f g0(ψ)) → contradiction.

Higman’s lemma The computational content of Nash-William’s proof

Monotone sequence g and minimal bad sequence v , f ineffectively
constructed, but to obtain contradiction only need

g up to f g0(ψ),

v up to g(f g0(ψ)) and of length g(f g0(ψ)),

f g0 applied to ψ.

where ψg ,v := [v g0−1](g0) ∗ (ṽ gi
gi).

Higman’s lemma The computational content of Nash-William’s proof

Monotone sequence g and minimal bad sequence v , f ineffectively
constructed, but to obtain contradiction only need

g up to f g0(ψ),

v up to g(f g0(ψ)) and of length g(f g0(ψ)),

f g0 applied to ψ.

where ψg ,v := [v g0−1](g0) ∗ (ṽ gi
gi).

Higman’s lemma The computational content of Nash-William’s proof

Monotone sequence g and minimal bad sequence v , f ineffectively
constructed, but to obtain contradiction only need

g up to f g0(ψ),

v up to g(f g0(ψ)) and of length g(f g0(ψ)),

f g0 applied to ψ.

where ψg ,v := [v g0−1](g0) ∗ (ṽ gi
gi).

Higman’s lemma The computational content of Nash-William’s proof

Monotone sequence g and minimal bad sequence v , f ineffectively
constructed, but to obtain contradiction only need

g up to f g0(ψ),

v up to g(f g0(ψ)) and of length g(f g0(ψ)),

f g0 applied to ψ.

where ψg ,v := [v g0−1](g0) ∗ (ṽ gi
gi).

Higman’s lemma The computational content of Nash-William’s proof

Higman’s lemma (constructive version): Given any G satisfying
MS[X]′ there exists ΓX∗ : (X ∗)ω → N satisfying

∀u(X∗)ω∃i < j ≤ ΓX∗(u)(ui ≤X∗ uj).

Proof.

1 Interpret minimal bad sequence argument: find procedure for
producing ‘approximations’ to minimal bad sequences.

2 Calibrate approximations of g and minimal bad sequence
required to obtain contradiction.

3 Work backwards from contradiction to obtain bound for u.

Higman’s lemma The computational content of Nash-William’s proof

Higman’s lemma (constructive version): Given any G satisfying
MS[X]′ there exists ΓX∗ : (X ∗)ω → N satisfying

∀u(X∗)ω∃i < j ≤ ΓX∗(u)(ui ≤X∗ uj).

Proof.

1 Interpret minimal bad sequence argument: find procedure for
producing ‘approximations’ to minimal bad sequences.

2 Calibrate approximations of g and minimal bad sequence
required to obtain contradiction.

3 Work backwards from contradiction to obtain bound for u.

Higman’s lemma The computational content of Nash-William’s proof

Higman’s lemma (constructive version): Given any G satisfying
MS[X]′ there exists ΓX∗ : (X ∗)ω → N satisfying

∀u(X∗)ω∃i < j ≤ ΓX∗(u)(ui ≤X∗ uj).

Proof.

1 Interpret minimal bad sequence argument: find procedure for
producing ‘approximations’ to minimal bad sequences.

2 Calibrate approximations of g and minimal bad sequence
required to obtain contradiction.

3 Work backwards from contradiction to obtain bound for u.

Higman’s lemma The computational content of Nash-William’s proof

Higman’s lemma (constructive version): Given any G satisfying
MS[X]′ there exists ΓX∗ : (X ∗)ω → N satisfying

∀u(X∗)ω∃i < j ≤ ΓX∗(u)(ui ≤X∗ uj).

Proof.

1 Interpret minimal bad sequence argument: find procedure for
producing ‘approximations’ to minimal bad sequences.

2 Calibrate approximations of g and minimal bad sequence
required to obtain contradiction.

3 Work backwards from contradiction to obtain bound for u.

Higman’s lemma The computational content of Nash-William’s proof

Interpreting minimal bad sequence construction

Central part of program extraction! Details in paper...

System T no longer sufficient to interpret dependent choice...

dependent choice 7→ bar recursion

(product of selection functions)

Novelty: Use recently discovered product of selection functions,
form of bar recursion with natural game theoretic semantics.

Question. Can we construct direct realizer for minimal bad
sequence argument, and does it lead to a more intuitive/efficient
program?

Higman’s lemma The computational content of Nash-William’s proof

Interpreting minimal bad sequence construction

Central part of program extraction! Details in paper...

System T no longer sufficient to interpret dependent choice...

dependent choice 7→ bar recursion (product of selection functions)

Novelty: Use recently discovered product of selection functions,
form of bar recursion with natural game theoretic semantics.

Question. Can we construct direct realizer for minimal bad
sequence argument, and does it lead to a more intuitive/efficient
program?

Higman’s lemma The computational content of Nash-William’s proof

Interpreting minimal bad sequence construction

Central part of program extraction! Details in paper...

System T no longer sufficient to interpret dependent choice...

dependent choice 7→ bar recursion (product of selection functions)

Novelty: Use recently discovered product of selection functions,
form of bar recursion with natural game theoretic semantics.

Question. Can we construct direct realizer for minimal bad
sequence argument, and does it lead to a more intuitive/efficient
program?

Higman’s lemma The computational content of Nash-William’s proof

Further comments

Can we understand algorithm in qualitative terms - unwrap
the syntax and appreciate its operational behaviour?

How does it compare, both qualitatively and in terms of
efficiency to programs extracted using other methods?

It would be intructive to formalise this work in a theorem
prover, and test the extracted program on some explicit
examples.

Does our program yield any new quantitative information i.e.
new bounds for length of bad sequences?

Can we interpret general minimal bad sequence argument and
extract programs from more complex proofs like Kruskal’s
theorem?

Higman’s lemma The computational content of Nash-William’s proof

Further comments

Can we understand algorithm in qualitative terms - unwrap
the syntax and appreciate its operational behaviour?

How does it compare, both qualitatively and in terms of
efficiency to programs extracted using other methods?

It would be intructive to formalise this work in a theorem
prover, and test the extracted program on some explicit
examples.

Does our program yield any new quantitative information i.e.
new bounds for length of bad sequences?

Can we interpret general minimal bad sequence argument and
extract programs from more complex proofs like Kruskal’s
theorem?

Higman’s lemma The computational content of Nash-William’s proof

Further comments

Can we understand algorithm in qualitative terms - unwrap
the syntax and appreciate its operational behaviour?

How does it compare, both qualitatively and in terms of
efficiency to programs extracted using other methods?

It would be intructive to formalise this work in a theorem
prover, and test the extracted program on some explicit
examples.

Does our program yield any new quantitative information i.e.
new bounds for length of bad sequences?

Can we interpret general minimal bad sequence argument and
extract programs from more complex proofs like Kruskal’s
theorem?

Higman’s lemma The computational content of Nash-William’s proof

Further comments

Can we understand algorithm in qualitative terms - unwrap
the syntax and appreciate its operational behaviour?

How does it compare, both qualitatively and in terms of
efficiency to programs extracted using other methods?

It would be intructive to formalise this work in a theorem
prover, and test the extracted program on some explicit
examples.

Does our program yield any new quantitative information i.e.
new bounds for length of bad sequences?

Can we interpret general minimal bad sequence argument and
extract programs from more complex proofs like Kruskal’s
theorem?

Higman’s lemma The computational content of Nash-William’s proof

Further comments

Can we understand algorithm in qualitative terms - unwrap
the syntax and appreciate its operational behaviour?

How does it compare, both qualitatively and in terms of
efficiency to programs extracted using other methods?

It would be intructive to formalise this work in a theorem
prover, and test the extracted program on some explicit
examples.

Does our program yield any new quantitative information i.e.
new bounds for length of bad sequences?

Can we interpret general minimal bad sequence argument and
extract programs from more complex proofs like Kruskal’s
theorem?

Higman’s lemma The computational content of Nash-William’s proof

Further comments

Can we understand algorithm in qualitative terms - unwrap
the syntax and appreciate its operational behaviour?

How does it compare, both qualitatively and in terms of
efficiency to programs extracted using other methods?

It would be intructive to formalise this work in a theorem
prover, and test the extracted program on some explicit
examples.

Does our program yield any new quantitative information i.e.
new bounds for length of bad sequences?

Can we interpret general minimal bad sequence argument and
extract programs from more complex proofs like Kruskal’s
theorem?

Higman’s lemma The computational content of Nash-William’s proof

References

Higman’s lemma
G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
2:326-336. 1952
C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proc. Cambridge
Phil. Soc. 59:833-835. 1963

Constructive proofs of Higman’s lemma
U. Berger and M. Seisenberger. Applications of inductive definitions and choice
principles to program synthesis. From Sets and Types to Topology and Analysis,
Oxford Logic Guides 48:137-148. 2005.
T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural induction.
Unpublished manuscript, available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.486. 1993.
C. Murthy. Extracting constructive content from classical proofs. Ph.D. thesis ,
Cornell University. 1990.
M. Seisenberger. On the constructive content of proofs. Ph. D. thesis,
Ludwigs-Maximilians-Universität München. 2003.

Dialectica interpretation and product of selection functions
K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.
Dialectica. 12:280287. 1958.
P. Oliva and T. Powell A game-theoretic computational interpretation of proofs in
classical analysis. Preprint, available at http://arxiv.org/abs/1204.5244. 2012.

	Higman's lemma
	The computational content of Nash-William's proof

