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Bar recursion

Primitive recursion: Recursion over the natural numbers. For
n ∈ N:

R(n) :=

{
y if n = 0

zn−1(R(n − 1)) otherwise

Bar recursion: Recursion over well-founded trees. For s ∈ T :

B(sX∗
) :=

{
Ys if s is a leaf

Zs(λx . B(s ∗ x)) otherwise

Bar recursion is the wrong way round: B(s) looks at the values of
B(s ∗ x) for extensions of s!
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Gödel 1958 Dialectica interpretation of arithmetic

Arithmetic (induction) 7→ System T (primitive recursion)

Spector 1962 Dialectica interpretation of analysis

Arithmetic + Countable choice 7→ System T + Bar recursion

Gandy/Hyland 1970s Γ functional - computable but not
S1-S9 definable.

Berardi/Bezem/Coquand 1998 Realizability interpretation
of choice. BBC functional (non-sequential form of bar
recursion). Game semantics.

Berger/Oliva 2005 Modified realizability interpretation of
choice via modified bar recursion. Some interdefinability
results.

Escardó/Oliva 2010- Product of selection functions.
Interdefinability results. Links with game theory made precise.
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Theme of talk

Computational aspects of bar recursion

1 Key computational features of different modes of bar
recursion.

2 The relative strength of these modes of bar recursion.

To a lesser extent: The semantics of bar recursion (links with
language of sequential games).

Why is this important?

Open questions about an important class of non-primitive
recursive functionals.

Better understand computational content of classical proofs.

Interesting mathematical problem.
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Modes of bar recursion

UR symmetric, implicit oo //

store memory via Xω ???

��

Berardi/Bezem/Coquand functional

realizability (1998)

IPS sequential, implicit oo //

T defines µSpector IPS not S1-S9 definable

��

modified bar recursion

modified realizability (2003)

EPS sequential, |s| ≥ ϕ(ŝ) oo //

ϕ constant Sω 6|= EPS

��

Spector’s bar recursion

Dialectica interpretation (1962)

PS sequential, |s| ≥ n oo //______ Gödel’s primitive recursion
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The finite product of selection functions

Idea: Sequential game with n rounds. Moves of type X , outcome
of type R.

q : X n → R determines the outcome of a play of type X n (by
instead considering q : Xω → R type independent of n).

εs : (X → R)→ X dictates a strategy for |s|th round given a
partial play sX∗

.

PSε,q,n(sX∗
)

X∗
:=

{
〈〉 if |s| ≥ n

as ∗ PS(s ∗ as) otherwise

where as := εs(λx . q(s ∗ x ∗ PS(s ∗ x))).

For |s| < n, PS(s) is the optimal continuation of (of length
n − |s|) of the play s.

PS(〈〉) is an optimal strategy for the game.
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Example 1

X = [2] ; R = N ; n = 3 ; q : [2]3 → N3 ;
εi (p[2]→N) = x maximising p(x)i

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)
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Example 2 (Noughts and Crosses)

X = {0, . . . , 8} and R = {1, 0,−1}.

X (9) encodes a game (only part of this may be relevant).

q(sX (9)
) :=


1 if first player wins

0 if players draw

−1 if second player wins

ε2i (pX→R)/ε2i+1(p) selects x maximising/minimising p(x).

PSε,q,n(〈〉) returns an ‘optimal’ play, resulting in a draw.
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Is PS well-defined?

PS well-defined (i.e. defining equations have a unique solution) in
any model of system T:

For |s| ≥ n we have PS(s) = 〈〉;

For |s| < n, if PS(s ∗ x) well-defined for all extensions s ∗ x of s,
then so is PS(s).

By induction on n
·
− |s|, PS(〈〉) is well-defined.

Remark. PS is equivalent over a weak base theory to Gödel’s
primitive recursion in all finite types.
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Properties of PS

Order. Computation carried out sequentially: value of
PS(〈〉)1 depends on the value of PS(〈〉)0 and so on.

Well-foundedness. Underlying tree given explicitly:

s a leaf⇔ |s| = n.

Models. Exists in any model of (higher-type) primitive
recursion i.e. standard set theoretic model, total continuous
functionals...

Semantics. Operation that computes optimal strategies in
finite sequential games.
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Modes of bar recursion

PS sequential, |s| ≥ n oo //___ Gödel’s primitive recursion
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Explicitly iterated product of selection functions (EPS)

Idea: Sequential game with unbounded number of rounds.

q : Xω → R determines outcome of each infinite play Xω.

εs : (X → R)→ X dictates a strategy for |s|th round given
any partial play sX∗

.

ϕ : Xω → N gives ‘relevant’ part of infinite play.

EPSε,q,ϕ(sX∗
)

Xω

:=

{
0Xω

if |s| ≥ ϕ(ŝ)

as ∗ EPS(s ∗ as) otherwise

where as := ε|s|(λx . q(s ∗ x ∗ EPS(s ∗ x))) (and ŝ := s ∗ 0).

Stopping condition now depends on s!
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Is EPS well defined?

For underlying tree to be well-founded, need property that for all

infinite sequences αXω
there must exists n such that n ≥ ϕ([̂α](n)).

Fails for e.g.

ϕ(α) := i + 1 for least i(αi = 0), 0 otherwise.

If α = λi .1 then for arbitrary n

ϕ( ̂[λi .1](n)) = ϕ(1, . . . , 1︸ ︷︷ ︸
n times

, 0, 0, . . .)

= n + 1 > n.
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Theorem. EPS exists in the total continuous functionals Cω.

CONT : ∀ϕXω→N∀αXω∃N∀β([α](N)
X∗
= [β](N)→ ϕα = ϕβ)

By CONT, ϕ([̂α](n)) = ϕα for all n ≥ N, so for n = max{N, ϕα}
we have n ≥ ϕα = ϕ([̂α](n)).

For all α there exists some n such that EPS([̂α](n)) = 0 and
therefore EPS([α](n)) well-defined.

If EPS(s ∗ x) well-defined for all extensions s ∗ x of s, then by
definition so is EPS(s).

By the principle of bar induction EPS(〈〉) is well-defined.
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Properties of EPS

Order. Like PS, computation carried out sequentially: value
of EPS(〈〉)1 depends on the value of EPS(〈〉)1 and so on.

Well-foundedness. Like PS, underlying tree given explicitly.

s a leaf⇔ |s| ≥ ϕ(ŝ) ∧ ∀t ≺ s(|t| < ϕ(t̂)).

Models. Unlike PS, well-foundedness of recursion not
provable in T. EPS exists in Cω where CONT holds, but not
in the standard model Sω.

Semantics. Operation that computes optimal strategies in
unbounded sequential games, relevant part of play α given by
ϕ(α).
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Modes of bar recursion

EPS sequential, |s| ≥ ϕ(ŝ) oo //

ϕ constant Sω 6|= EPS

��

Spector’s bar recursion

Dialectica interpretation (1962)

PS sequential, |s| ≥ n oo //_____ Gödel’s primitive recursion
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Implicitly iterated product of selection functions

Idea: Sequential game with unbounded number of rounds, but now
we forget about the control functional ϕ : Xω → N.

IPSε,q(sX∗
)

Xω

:= as ∗ IPS(s ∗ as)

where as := εs(λx . q(s ∗ x ∗ IPS(s ∗ x)).

No longer a stopping condition!
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Why is IPS well defined?

Even in Cω there are obvious instances where IPS is not
computable.

Let X = N, R = Nω, q = id: Nω → Nω and
εs(pN→N

ω
) = p(0)|s|+1 + 1.

IPS(〈〉)0
N
= ε〈〉(λx . x ∗ IPS(x))

= IPS(0)0 + 1

= ε〈0〉(λx . 0 ∗ x ∗ IPS(0 ∗ x)) + 1

= IPS(0, 0)0 + 2

. . .

= IPS(0, . . . 0︸ ︷︷ ︸
n times

)0 + n

. . .
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Theorem. IPS exists in Cω whenever the outcome type R in
q : Xω → R has type level 0 (more generally open, discrete...).

CONT : ∀qXω→R∀αXω∃N∀β([α](N)
X∗
= [β](N)→ qα = qβ)

Therefore IPS([α](N))0 = ε[α](N)(λx . q(α)) and by induction

IPS([α](N)) = λk . ε[α](N)∗tk
(λx . qα).

where tk = [IPS([α](N))](k), so IPS([α](N)) well-defined.

If IPS(s ∗ x) is well-defined for all extension s ∗ x of s, then by
definition IPS(s) is also well-defined.

By bar induction IPS(〈〉) is well-defined.
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Properties of IPS

Order. Like EPS, computation carried out sequentially: value
of IPS(〈〉)1 depends on the value of IPS(〈〉)0 and so on.

Well-foundedness. Unlike EPS, underlying tree exists
implicitly, and cannot be written down in system T.

Models. Like EPS, well-foundedness of recursion not provable
in T. IPS exists in Cω, where we require additional condition
that R has level 0.

Semantics. Operation that computes optimal strategies in
unbounded sequential games, only finite part of a play
considered by continuity of q.
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Modes of bar recursion

IPS sequential, implicit oo //
modified bar recursion

modified realizability (2003)

EPS sequential, |s| ≥ ϕ(ŝ) oo //

ϕ constant Sω 6|= EPS

��

Spector’s bar recursion

Dialectica interpretation (1962)

PS sequential, |s| ≥ n oo //_____ Gödel’s primitive recursion
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Update recursion (UR)

Idea: Compute a sequence, but not sequentially...

IPS′(s) := s ∗ λk . εs∗tk
(λx . q(IPS′(s ∗ tk ∗ x)))

where tk := [IPS′(s)](l).

Suppose that u : Xω
⊥ is a partial function.

Let ux
k denote update of u with x where k not in domain of u.

UR(u) := u @ λk . εk (λx . q(UR(ux
k ))).

Recursion is no longer sequential!
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Why is UR well defined?

UR(u) requires us to know value of UR(ux
k ) for all updates of u

(not just extension), so not clear how we can use bar induction to
show that UR is total...

An open predicate on sequences Xω is one of the form
A(α) = ∃N B([α](N)).

Definition. Update induction is given by the schema

∀u(∀n /∈ dom(u), x A(ux
n )→ A(u))→ ∀u A(u).

Update induction follows from dependent choice.
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Theorem. UR exists in Cω for R of type level 0.

By CONT, the predicate ‘q(UR(u)) is total’ is equivalent to an
open predicate on partial sequences u : Xω

⊥ , because if q(UR(u)) is
total, it must only look at a finite part of u.

If q(UR(ux
n )) is total for all updates of u, then UR(u) and hence

q(UR(u)) is total.

By update induction q(UR(u)) total for all u, and therefore UR(u)
is total for all u.
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Properties of UR

Order. Unlike IPS, computation of individual entries carried
out independently. Value of UR(s)0 does not affect value of
UR(s)1 and so on.

Computation tree. Like IPS, exists implicitly, and cannot be
written down in system T.

Well-foundedness. Like IPS, exists in Cω when outcome type
R has level 0.

Semantics. Can be viewed as computing an optimal strategy
in games where players ‘ignore’ the others. Game theoretic
semantics not properly formalised for UR!
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Modes of bar recursion

UR symmetric, implicit oo //
Berardi/Bezem/Coquand functional

realizability (1998)

IPS sequential, implicit oo //
modified bar recursion

modified realizability (2003)

EPS sequential, |s| ≥ ϕ(ŝ) oo //

ϕ constant Sω 6|= EPS

��

Spector’s bar recursion

Dialectica interpretation (1962)

PS sequential, |s| ≥ n oo //______ Gödel’s primitive recursion
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Outline

1 Introduction
Bar recursion
Overview of talk

2 Modes of bar recursion
PS / Finite bar recursion
EPS / Spector’s bar recursion
IPS / Modified bar recursion
UR / Berardi-Bezem-Coquand functional

3 Interdefinability results
Relationship between EPS and IPS
Relationship between IPS and UR
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T-definablility

Definition A functional Ψ is T-definable from a functional Φ over
a theory S (we write S ` Φ ≥T Ψ) if there exists a term t in
system T such that t(Φ) satisfies the defining equation of Ψ
provably in S.

To show that Φ ≥T Ψ generally involves a (clever)
construction in T and a (tedious) verification in S.

To prove that Φ �T Ψ is hard! Tends to involve model
theoretic arguments.

In general our theory S will be something like HAω + CONT + BI.
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IPS T-defines EPS (Oliva/Escardo)

Key observation: The so-called Spector’s search functional

µSp(ϕXω→N)(αXω
) := least n (n ≥ ϕ([̂α](n)))

is definable in in system T (even if T cannot prove it exists)!
Define

αϕ(i) :=

{
0 if ∃k ≤ i + 1 (k ≥ ϕ([̂α](k)))
α(i) otherwise

If n = µSp(ϕ)(α) then αϕ = ̂[α](n − 1).

Because n is the least we have ϕ(αϕ) > n − 1 and so n ≤ ϕ(αϕ).

Can encode stopping condition |s| ≥ ϕ(ŝ) into ε̃, q̃ such that
IPSε̃,q̃ T-defines EPS.
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EPS does not T-define IPS (Oliva/Escardo)

Kleene (1959). Schemes S1-S9 of computations in higher types.

Key observations:

Spector’s bar recursion/EPS is S1-S9 computable in Cω.

The fan functional FAN exists in Cω but is not S1-S9
computable in Cω.

FAN is S1-S9 + IPS computable in Cω

⇒ IPS is not S1-S9 computable in Cω

⇒ IPS is not T-definable from EPS in any theory that has a model
in Cω.



Introduction Modes of bar recursion Interdefinability results

EPS does not T-define IPS (Oliva/Escardo)

Kleene (1959). Schemes S1-S9 of computations in higher types.

Key observations:

Spector’s bar recursion/EPS is S1-S9 computable in Cω.

The fan functional FAN exists in Cω but is not S1-S9
computable in Cω.

FAN is S1-S9 + IPS computable in Cω

⇒ IPS is not S1-S9 computable in Cω

⇒ IPS is not T-definable from EPS in any theory that has a model
in Cω.



Introduction Modes of bar recursion Interdefinability results

EPS does not T-define IPS (Oliva/Escardo)

Kleene (1959). Schemes S1-S9 of computations in higher types.

Key observations:

Spector’s bar recursion/EPS is S1-S9 computable in Cω.

The fan functional FAN exists in Cω but is not S1-S9
computable in Cω.

FAN is S1-S9 + IPS computable in Cω

⇒ IPS is not S1-S9 computable in Cω

⇒ IPS is not T-definable from EPS in any theory that has a model
in Cω.



Introduction Modes of bar recursion Interdefinability results

EPS does not T-define IPS (Oliva/Escardo)

Kleene (1959). Schemes S1-S9 of computations in higher types.

Key observations:

Spector’s bar recursion/EPS is S1-S9 computable in Cω.

The fan functional FAN exists in Cω but is not S1-S9
computable in Cω.

FAN is S1-S9 + IPS computable in Cω

⇒ IPS is not S1-S9 computable in Cω

⇒ IPS is not T-definable from EPS in any theory that has a model
in Cω.



Introduction Modes of bar recursion Interdefinability results

EPS does not T-define IPS (Oliva/Escardo)

Kleene (1959). Schemes S1-S9 of computations in higher types.

Key observations:

Spector’s bar recursion/EPS is S1-S9 computable in Cω.

The fan functional FAN exists in Cω but is not S1-S9
computable in Cω.

FAN is S1-S9 + IPS computable in Cω

⇒ IPS is not S1-S9 computable in Cω

⇒ IPS is not T-definable from EPS in any theory that has a model
in Cω.



Introduction Modes of bar recursion Interdefinability results

Modes of bar recursion

UR symmetric, implicit oo //
Berardi/Bezem/Coquand functional

realizability (1998)

IPS sequential, implicit oo //

T defines µSpector IPS not S1-S9 definable

��

modified bar recursion

modified realizability (2003)

EPS sequential, |s| ≥ ϕ(ŝ) oo //

ϕ constant Sω 6|= EPS

��

Spector’s bar recursion

Dialectica interpretation (1962)

PS sequential, |s| ≥ n oo //______ Gödel’s primitive recursion
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UR T-defines IPS (unpublished)

How do we simulate a sequential algorithm like IPS with a
non-sequential algorithm like UR?

Key idea: Use UR to compute a sequence of sequences, i.e.
moves of type Xω. Entries may be computed independently, but
using sequence types allows us to store recursive calls.

A fairly complex construction with a long and tedious verification.
Won’t go into any more detail!
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Does IPS T-define UR?

Can we simulate a non-sequential algorithm like UI with a
sequential algorithm like IPS?

Unknown!



Introduction Modes of bar recursion Interdefinability results

Does IPS T-define UR?

Can we simulate a non-sequential algorithm like UI with a
sequential algorithm like IPS?

Unknown!



Introduction Modes of bar recursion Interdefinability results

Modes of bar recursion

UR symmetric, implicit oo //

store memory via Xω ???

��

Berardi/Bezem/Coquand functional

realizability (1998)

IPS sequential, implicit oo //

T defines µSpector IPS not S1-S9 definable

��

modified bar recursion

modified realizability (2003)

EPS sequential, |s| ≥ ϕ(ŝ) oo //

ϕ constant Sω 6|= EPS

��

Spector’s bar recursion

Dialectica interpretation (1962)

PS sequential, |s| ≥ n oo //______ Gödel’s primitive recursion
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Further questions

The key difference between UR and IPS...

IPS ∼ usual order < on N
UI ∼ discrete order N

Can we generalise this to associate a form of bar recursion to an
arbitrary tree ≺?

How is this family of bar recursion functionals related?

New realisers for program extraction?
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Direction for future work

Complete interdefinability question for main known modes of
bar recursion.

Formulate a uniform framework in which they can be
compared, to better understand their behaviour and
semantics.

Look at new modes of bar recursion. New realizers for proof
interpretations? How do they fit into current picture?

Develop some new results and machinery in theory of
higher-type computability.
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