System \overline{T} and the Product of Selection Functions

Thomas Powell (joint work with Paulo Oliva and Martín Escardó)

Joint Queen Mary/Imperial Seminar 7 September, 2011

2 The product of selection functions

4 Selection functions in analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Induction and recursion

Any strong theory of arithmetic proves some form of induction

 IND : $A_0 \land \forall i < m(A_i \to A_{i+1}) \to A_m$.

Induction and recursion

Any strong theory of arithmetic proves some form of induction

$$\mathsf{IND}$$
 : $A_0 \land \forall i < m(A_i \to A_{i+1}) \to A_m$.

In this talk, a strong theory of (higher-type) functionals allows construction of functions using primitive recursion

$$R_0(y, z) = y$$

 $R_m(y, z) = z_{m-1}(R_{m-1}(y, z)).$

Induction and recursion

Any strong theory of arithmetic proves some form of induction

$$\mathsf{IND}$$
 : $A_0 \land \forall i < m(A_i \to A_{i+1}) \to A_m$.

In this talk, a strong theory of (higher-type) functionals allows construction of functions using primitive recursion

$$R_0(y, z) = y$$

 $R_m(y, z) = z_{m-1}(R_{m-1}(y, z)).$

Primitive recursion is the computational analogue of induction.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Some definitions

Fragments of arithmetic based on induction

 $\bullet \ {\rm PA}_0$ denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas

Some definitions

Fragments of arithmetic based on induction

- $\bullet \ {\rm PA}_0$ denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $I\Sigma_n$ consists of PA_0 along with induction restricted to Σ_n (equivalently Π_n) formulas.

Some definitions

Fragments of arithmetic based on induction

- $\bullet \ {\rm PA}_0$ denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $I\Sigma_n$ consists of PA_0 along with induction restricted to Σ_n (equivalently Π_n) formulas.
- $\bullet\,$ Full Peano arithmetic $\rm PA$ consists of $\rm PA_0$ along with induction for arbitrary formulas.

Some definitions

Fragments of arithmetic based on induction

- PA_0 denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $I\Sigma_n$ consists of PA_0 along with induction restricted to Σ_n (equivalently Π_n) formulas.
- Full Peano arithmetic PA consists of PA_0 along with induction for arbitrary formulas.

Fragments of Gödel's system T based on primitive recursion

 T_b denotes a weak theory of functionals i.e. simply typed λ-calculus with a few basic recursive functionals.

Some definitions

Fragments of arithmetic based on induction

- $\bullet \ {\rm PA}_0$ denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $I\Sigma_n$ consists of PA_0 along with induction restricted to Σ_n (equivalently Π_n) formulas.
- Full Peano arithmetic PA consists of PA_0 along with induction for arbitrary formulas.

Fragments of Gödel's system T based on primitive recursion

- T_b denotes a weak theory of functionals i.e. simply typed λ-calculus with a few basic recursive functionals.
- The strong fragment T_n consists of T_b along with primitive recursors for types of degree ≤ n.

Some definitions

Fragments of arithmetic based on induction

- $\bullet \ {\rm PA}_0$ denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $I\Sigma_n$ consists of PA_0 along with induction restricted to Σ_n (equivalently Π_n) formulas.
- $\bullet\,$ Full Peano arithmetic ${\rm PA}$ consists of ${\rm PA}_0$ along with induction for arbitrary formulas.

Fragments of Gödel's system T based on primitive recursion

- T_b denotes a weak theory of functionals i.e. simply typed λ-calculus with a few basic recursive functionals.
- The strong fragment T_n consists of T_b along with primitive recursors for types of degree ≤ n.
- System T consists of T_b along with primitive recursors of all finite types.

The functional interpretation of arithmetic

Gödel's dialectica interpretation maps formulas A to quantifier-free formulas $A_D(x, y)$.

 $A \leftrightarrow \exists x \forall y A_D(x, y)$

The functional interpretation of arithmetic

Gödel's dialectica interpretation maps formulas A to quantifier-free formulas $A_D(x, y)$.

$$A \leftrightarrow \exists x \forall y A_D(x, y)$$

We say that \mathcal{T} has a functional interpretation in F is

 $\mathcal{T} \vdash A \Rightarrow \mathsf{F} \vdash (A')_D(t, y)$ for some $t \in \mathsf{F}$.

The functional interpretation of arithmetic

Gödel's dialectica interpretation maps formulas A to quantifier-free formulas $A_D(x, y)$.

$$A \leftrightarrow \exists x \forall y A_D(x, y)$$

We say that \mathcal{T} has a functional interpretation in F is

$$\mathcal{T} \vdash A \Rightarrow \mathsf{F} \vdash (A')_D(t, y)$$
 for some $t \in \mathsf{F}$.

Gödel (1958): PA has a functional interpretation in system T.

The functional interpretation of arithmetic

Gödel's dialectica interpretation maps formulas A to quantifier-free formulas $A_D(x, y)$.

$$A \leftrightarrow \exists x \forall y A_D(x, y)$$

We say that \mathcal{T} has a functional interpretation in F is

$$\mathcal{T} \vdash A \Rightarrow \mathsf{F} \vdash (A')_D(t, y)$$
 for some $t \in \mathsf{F}$.

Gödel (1958): PA has a functional interpretation in system T.

Parsons (1972): $I\Sigma_{n+1}$ has a functional interpretation in T_n .

The principle of finite choice

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

The principle of finite choice

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

FAC : $\forall i \leq m \exists x A_i(x) \rightarrow \exists \alpha \forall i \leq m A_i(\alpha_i).$

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

```
FAC : \forall i \leq m \exists x A_i(x) \rightarrow \exists \alpha \forall i \leq m A_i(\alpha_i).
```

The infinite pigeonhole principle

NURNORR NERNER 990

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

FAC :
$$\forall i \leq m \exists x A_i(x) \rightarrow \exists \alpha \forall i \leq m A_i(\alpha_i).$$

The infinite pigeonhole principle

Suppose that for some colouring $f : \mathbb{N} \to [m]$, each colour is used only finitely many times i.e. $\forall i \leq m \exists x \forall y \geq x (f(y) \neq i)$.

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

FAC :
$$\forall i \leq m \exists x A_i(x) \rightarrow \exists \alpha \forall i \leq m A_i(\alpha_i).$$

The infinite pigeonhole principle

Suppose that for some colouring $f : \mathbb{N} \to [m]$, each colour is used only finitely many times i.e. $\forall i \leq m \exists x \forall y \geq x (f(y) \neq i)$.

By FAC,

$$\exists \alpha \forall y, i \leq m(y \geq \alpha_i \to f(y) \neq i),$$

but this fails for $y := \max \alpha_i$, $i := f(\max \alpha_i)$.

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

FAC :
$$\forall i \leq m \exists x A_i(x) \rightarrow \exists \alpha \forall i \leq m A_i(\alpha_i).$$

The infinite pigeonhole principle

Suppose that for some colouring $f : \mathbb{N} \to [m]$, each colour is used only finitely many times i.e. $\forall i \leq m \exists x \forall y \geq x (f(y) \neq i)$.

By FAC,

$$\exists \alpha \forall y, i \leq m(y \geq \alpha_i \to f(y) \neq i),$$

but this fails for $y := \max \alpha_i$, $i := f(\max \alpha_i)$.

Therefore some colour is used infinitely often.

= = 990

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An alternative arithmetic hierarchy

Fragments of Peano arithmetic based on choice

The strong fragment $F\Pi_n$ consists of PA_0 along with finite choice restricted to Π_n (equivalently Σ_{n+1}) formulas.

An alternative arithmetic hierarchy

Fragments of Peano arithmetic based on choice

The strong fragment $F\Pi_n$ consists of PA_0 along with finite choice restricted to Π_n (equivalently Σ_{n+1}) formulas.

The choice fragments are *strictly interleaving* on the induction fragments

An alternative arithmetic hierarchy

Fragments of Peano arithmetic based on choice

The strong fragment $F\Pi_n$ consists of PA₀ along with finite choice restricted to Π_n (equivalently Σ_{n+1}) formulas.

The choice fragments are *strictly interleaving* on the induction fragments

Fragments of system T Selection functions in analysis

An alternative arithmetic hierarchy

Fragments of Peano arithmetic based on choice

The strong fragment $F\Pi_n$ consists of PA₀ along with finite choice restricted to Π_n (equivalently Σ_{n+1}) formulas.

The choice fragments are *strictly interleaving* on the induction fragments

Fragments of arithmetic

A computational analogue of finite choice

Recursors realize functional interpretation of FAC, but not a **natural** computational analogue.

A computational analogue of finite choice

Recursors realize functional interpretation of FAC, but not a **natural** computational analogue.

Countable choice \rightsquigarrow Spector's bar recursion

A computational analogue of finite choice

Recursors realize functional interpretation of FAC, but not a **natural** computational analogue.

Countable choice \rightsquigarrow Spector's bar recursion

→ Unbounded product of selection functions
 Optimal strategies in unbounded games

A computational analogue of finite choice

Recursors realize functional interpretation of FAC, but not a **natural** computational analogue.

Countable choice \rightsquigarrow Spector's bar recursion

- → Unbounded product of selection functions
 Optimal strategies in unbounded games
- Finite choice \rightsquigarrow Finite product of selection functions *Optimal strategies in finite games*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given
$$\varepsilon_i \colon (X \to Y) \to X$$
, $q \colon X^{\mathbb{N}} \to Y$ define

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

where
$$a := \varepsilon_i(\underbrace{\lambda x.q_x(\mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_x)))}_{p_i}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The product of selection functions

Given
$$\varepsilon_i \colon (X \to Y) \to X$$
, $q \colon X^{\mathbb{N}} \to Y$ define

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

where
$$a := \varepsilon_i(\underbrace{\lambda x.q_x(\mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_x))}_{p_i}).$$

• A sequential game with m + 1 rounds;

Given
$$\varepsilon_i \colon (X \to Y) \to X$$
, $q \colon X^{\mathbb{N}} \to Y$ define

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

where
$$a := \varepsilon_i(\underbrace{\lambda x.q_x(\mathsf{P}^{X,Y}_{i+1}(\varepsilon)(m)(q_x)))}_{p_i}).$$

- A sequential game with m + 1 rounds;
- X set of possible moves each round, Y set of possible outcomes;

Given
$$\varepsilon_i \colon (X \to Y) \to X$$
, $q \colon X^{\mathbb{N}} \to Y$ define

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

where
$$a := \varepsilon_i(\underbrace{\lambda x.q_x(\mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_x))}_{p_i}).$$

- A sequential game with m + 1 rounds;
- X set of possible moves each round, Y set of possible outcomes;
- q determines outcome of a play;

Given
$$\varepsilon_i \colon (X \to Y) \to X$$
, $q \colon X^{\mathbb{N}} \to Y$ define

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

where
$$a := \varepsilon_i(\underbrace{\lambda x.q_x(\mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_x))}_{p_i}).$$

- A sequential game with m + 1 rounds;
- X set of possible moves each round, Y set of possible outcomes;
- q determines outcome of a play;
- ε_i determines the strategy at round *i*;

Given
$$\varepsilon_i \colon (X \to Y) \to X$$
, $q \colon X^{\mathbb{N}} \to Y$ define

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

where
$$a := \varepsilon_i(\underbrace{\lambda x.q_x(\mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_x)))}_{p_i}).$$

- A sequential game with m + 1 rounds;
- X set of possible moves each round, Y set of possible outcomes;
- q determines outcome of a play;
- ε_i determines the strategy at round *i*;
- p_i maps potential plays x to optimal outcome.
Illustration

$$\varepsilon_i p = \max (\pi_i \circ p) x \text{ for } i = 0, 2$$

 $\varepsilon_i p = \min (\pi_i \circ p) x \text{ for } i = 1$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Illustration

Illustration

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Illustration

$\mathsf{P}_0(\varepsilon)(2)(q) = \langle x_1, y_0, z_1 \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The no-counterexample interpretation

The no-counterexample interpretation

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

 $\exists x \forall y A(x, y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The no-counterexample interpretation

$$\exists x \forall y A(x, y) \mapsto \neg \neg \exists x \forall y A(x, y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The no-counterexample interpretation

$$\exists x \forall y A(x, y) \mapsto \neg \neg \exists x \forall y A(x, y) \\ \mapsto \neg \forall x \exists y \neg A(x, y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The no-counterexample interpretation

$$\exists x \forall y A(x, y) \mapsto \neg \neg \exists x \forall y A(x, y) \\ \mapsto \neg \forall x \exists y \neg A(x, y) \\ \mapsto \neg \exists p \forall x \neg A(x, px)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

The no-counterexample interpretation

$$\exists x \forall y A(x, y) \mapsto \neg \neg \exists x \forall y A(x, y) \\ \mapsto \neg \forall x \exists y \neg A(x, y) \\ \mapsto \neg \exists p \forall x \neg A(x, px) \quad p \text{ counterexample function}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The no-counterexample interpretation

$$\exists x \forall y A(x, y) \mapsto \neg \neg \exists x \forall y A(x, y) \\ \mapsto \neg \forall x \exists y \neg A(x, y) \\ \mapsto \neg \exists p \forall x \neg A(x, px) \quad p \text{ counterexample function} \\ \mapsto \forall p \exists x A(x, px)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The no-counterexample interpretation

$$\begin{aligned} \exists x \forall y \mathcal{A}(x, y) &\mapsto \neg \neg \exists x \forall y \mathcal{A}(x, y) \\ &\mapsto \neg \forall x \exists y \neg \mathcal{A}(x, y) \\ &\mapsto \neg \exists p \forall x \neg \mathcal{A}(x, px) \quad p \text{ counterexample function} \\ &\mapsto \forall p \exists x \mathcal{A}(x, px) \\ &\mapsto \exists \varepsilon \forall p \mathcal{A}(\varepsilon p, p(\varepsilon p)) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The no-counterexample interpretation

$$\begin{aligned} \exists x \forall y A(x,y) &\mapsto \neg \neg \exists x \forall y A(x,y) \\ &\mapsto \neg \forall x \exists y \neg A(x,y) \\ &\mapsto \neg \exists p \forall x \neg A(x,px) \quad p \text{ counterexample function} \\ &\mapsto \forall p \exists x A(x,px) \\ &\mapsto \exists \varepsilon \forall p A(\varepsilon p, p(\varepsilon p)) \quad \varepsilon \text{ selection function.} \end{aligned}$$

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

$$\exists x \forall y A(x, y) \mapsto \neg \neg \exists x \forall y A(x, y) \mapsto \neg \forall x \exists y \neg A(x, y) \mapsto \neg \exists p \forall x \neg A(x, px) \quad p \text{ counterexample function} \mapsto \forall p \exists x A(x, px) \mapsto \exists \varepsilon \forall p A(\varepsilon p, p(\varepsilon p)) \quad \varepsilon \text{ selection function.}$$

There exists a selection function $\varepsilon \colon (X \to Y) \to X$ that for any counterexample function $p \colon X \to Y$ selects a point at which it fails i.e. $A(\varepsilon p, p(\varepsilon p))$ holds.

Fragments of system T Selection functions in analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The functional interpretation of finite choice

$\forall i \leq m \exists x \forall y A_i(x, y) \rightarrow \exists \alpha \forall i \leq m \forall y A_i(\alpha_i, y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The functional interpretation of finite choice

$$\begin{array}{l} \forall i \leq m \exists x \forall y A_i(x, y) \rightarrow \exists \alpha \forall i \leq m \forall y A_i(\alpha_i, y) \\ \downarrow \\ \exists \varepsilon \forall i \leq m \forall p A_i(\varepsilon_i p, p(\varepsilon_i p)) \rightarrow \forall q \exists \alpha \forall i \leq m A_i(\alpha_i, q\alpha) \end{array}$$

The functional interpretation of finite choice

$$\begin{array}{l} \forall i \leq m \exists x \forall y A_i(x, y) \rightarrow \exists \alpha \forall i \leq m \forall y A_i(\alpha_i, y) \\ \downarrow \\ \exists \varepsilon \forall i \leq m \forall p A_i(\varepsilon_i p, p(\varepsilon_i p)) \rightarrow \forall q \exists \alpha \forall i \leq m A_i(\alpha_i, q\alpha) \end{array}$$

Premise: there exists a collection (ε_i) of strategies refuting **pointwise** counterexample functions p_i for A_i .

The functional interpretation of finite choice

$$orall i \leq m \exists x \forall y A_i(x, y) \rightarrow \exists \alpha \forall i \leq m \forall y A_i(\alpha_i, y)$$

 \Downarrow
 $\exists \varepsilon \forall i \leq m \forall p A_i(\varepsilon_i p, p(\varepsilon_i p)) \rightarrow \forall q \exists \alpha \forall i \leq m A_i(\alpha_i, q \alpha)$

Premise: there exists a collection (ε_i) of strategies refuting **pointwise** counterexample functions p_i for A_i .

Conclusion: there exists a co-operative strategy α_q refuting a **global** counterexample function q for $\forall i \leq mA_i$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Interpreting choice fragments

The strong theory \mathbf{P}_n consists of \mathbf{T}_0 along with the product of selection functions $\mathsf{P}^{X,R}$ for all types X of degree $\leq n$.

Interpreting choice fragments

The strong theory \mathbf{P}_n consists of \mathbf{T}_0 along with the product of selection functions $\mathsf{P}^{X,R}$ for all types X of degree $\leq n$.

Theorem

 $F\Pi_n$ has a functional interpretation in P_{n-1} .

Interpreting choice fragments

The strong theory \mathbf{P}_n consists of \mathbf{T}_0 along with the product of selection functions $P^{X,R}$ for all types X of degree < n.

Theorem

 $F\Pi_n$ has a functional interpretation in \mathbf{P}_{n-1} .

Interpreting choice fragments

The strong theory \mathbf{P}_n consists of \mathbf{T}_0 along with the product of selection functions $P^{X,R}$ for all types X of degree < n.

Theorem

 $F\Pi_n$ has a functional interpretation in \mathbf{P}_{n-1} .

What is the relationship between Gödel's primitive recursors and the product of selection functions?

Fragments of arithmetic

2 The product of selection functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A primitive recursive definition of the product

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A primitive recursive definition of the product

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

We can define $P_0^{X,Y}(\varepsilon)(m)(q)$ using primitive recursion of type $X^* \to X^{\mathbb{N}}$:

$$y:=\lambda s.\mathbf{0}^{X^{\mathbb{N}}}$$
$$z(i, F^{X^* \to X^{\mathbb{N}}}):=\lambda s.a_s * F(s * a_s).$$

A primitive recursive definition of the product

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

We can define $P_0^{X,Y}(\varepsilon)(m)(q)$ using primitive recursion of type $X^* \to X^{\mathbb{N}}$:

$$y:=\lambda s.\mathbf{0}^{X^{\mathbb{N}}}$$
$$z(i, F^{X^* \to X^{\mathbb{N}}}):=\lambda s.a_s * F(s * a_s).$$

Claim: $P_0^{X,Y}(\varepsilon)(m)(q) = R_{m+1}(y,z)(\langle \rangle).$

A primitive recursive definition of the product

$$\mathsf{P}_{i}^{X,Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } i > m \\ a * \mathsf{P}_{i+1}^{X,Y}(\varepsilon)(m)(q_{a}) & \text{otherwise} \end{cases}$$

We can define $P_0^{X,Y}(\varepsilon)(m)(q)$ using primitive recursion of type $X^* \to X^{\mathbb{N}}$

$$y:=\lambda s.\mathbf{0}^{X^{\mathbb{N}}}$$
$$z(i, F^{X^* \to X^{\mathbb{N}}}):=\lambda s.a_s * F(s * a_s).$$

Claim: $P_0^{X,Y}(\varepsilon)(m)(q) = R_{m+1}(y,z)(\langle \rangle).$

Theorem

 $\mathbf{T}_{n+1} \Rightarrow \mathbf{P}_n$ over \mathbf{T}_b .

Computations on a register machine

Products of type X of the form $P^{X,X^{\mathbb{N}}}(\varepsilon)(m)(id)$ are canonical.

Computations on a register machine

Products of type X of the form $P^{X,X^{\mathbb{N}}}(\varepsilon)(m)(id)$ are canonical.

Computations on a register machine

Products of type X of the form $P^{X,X^{\mathbb{N}}}(\varepsilon)(m)(id)$ are canonical.

Computations on a register machine

Products of type X of the form $P^{X,X^{\mathbb{N}}}(\varepsilon)(m)(id)$ are canonical.

Computations on a register machine

Products of type X of the form $P^{X,X^{\mathbb{N}}}(\varepsilon)(m)(id)$ are canonical.

Fragments of system T

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simulating primitive recursion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simulating primitive recursion

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Simulating primitive recursion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$R_0(y, z) = y$$

 $R_i(y, z) = z_{i-1}(R_{i-1}(y, z))$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$R_0(y, z) = y$$

 $R_i(y, z) = z_{i-1}(R_{i-1}(y, z))$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$R_0(y, z) = y$$

 $R_i(y, z) = z_{i-1}(R_{i-1}(y, z))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$R_0(y, z) = y$$

 $R_i(y, z) = z_{i-1}(R_{i-1}(y, z))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$R_0(y, z) = y$$

 $R_i(y, z) = z_{i-1}(R_{i-1}(y, z))$

Simulating primitive recursion

$$R_0(y,z) = y$$

 $R_i(y,z) = z_{i-1}(R_{i-1}(y,z))$

Claim: $\mathsf{R}_m^X(y,z) = \mathsf{P}_0^{X,X^{\mathbb{N}}}(\varepsilon)(m)(id)_m$.

Fragments of system T

Selection functions in analysis

Simulating primitive recursion

$$R_0(y, z) = y$$

 $R_i(y, z) = z_{i-1}(R_{i-1}(y, z))$

Claim: $\mathsf{R}_m^X(y,z) = \mathsf{P}_0^{X,X^{\mathbb{N}}}(\varepsilon)(m)(id)_m$.

Theorem

 $\mathbf{P}_n \Rightarrow \mathbf{T}_n \text{ over } \mathbf{T}_b.$

Fragments of system ${\bf T}$

Selection functions in analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

・ロト ・ 一 ト ・ モト ・ モト

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

・ロト ・ 一 ト ・ モト ・ モト

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

・ロト ・ 一 ト ・ モト ・ モト

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

イロト 不得 トイヨト イヨト

æ.

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

イロト 不得 トイヨト イヨト

æ

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

・ロト ・ 雪 ト ・ ヨ ト

æ

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

・ロト ・ 雪 ト ・ ヨ ト

э.

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

イロト 不得 トイヨト イヨト

э.

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

イロト 不得 トイヨト イヨト

э.

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

イロト 不得 トイヨト イヨト

3

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

イロト 不得 トイヨト イヨト

э.

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

イロト 不得 トイヨト イヨト

э.

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

Making full use of the product

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

Claim: $\mathsf{R}_m^{X \to X}(Y, Z) = \lambda a \cdot \mathsf{P}_0^{X, X^{\mathbb{N}}}(\varepsilon^a)(m)(id)_0.$

Making full use of the product

$$R_0(Y, Z)(x) = Y(x) R_i(Y, Z)(x) = Z_{i-1}(R_{i-1}(Y, Z))(x)$$

Claim:
$$\mathsf{R}_m^{X \to X}(Y, Z) = \lambda a \cdot \mathsf{P}_0^{X, X^{\mathbb{N}}}(\varepsilon^a)(m)(id)_0$$
.

Theorem

 $\mathbf{P}_n \Rightarrow \mathbf{T}_{n+1} \text{ over } \mathbf{T}_b.$

Conclusion

Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Theorem

$$\mathbf{P}_n \Leftrightarrow \mathbf{T}_{n+1} \text{ over } \mathbf{T}_b$$

Corollary

Gödel's system ${\sf T}$ can be alternatively defined as ${\sf T}_b$ plus the product of selection functions for all types.

Conclusion

Theorem

$$\mathbf{P}_n \Leftrightarrow \mathbf{T}_{n+1} \text{ over } \mathbf{T}_b$$

Corollary

Gödel's system **T** can be alternatively defined as $T_{\rm b}$ plus the product of selection functions for all types.

Conclusion

Theorem

$$\mathbf{P}_n \Leftrightarrow \mathbf{T}_{n+1} \text{ over } \mathbf{T}_b$$

Corollary

Gödel's system **T** can be alternatively defined as $T_{\rm b}$ plus the product of selection functions for all types.

Does $F\Pi_n$ have a functional interpretation is a fragment weaker than \mathbf{P}_{n-1} ?

(中) (문) (문) (문) (문)

・ロト ・ 日本・ 小田・ 小田・ 小田・

• Propose an alternative to primitive recursion based on the computation of optimal strategies in sequential games.

- Propose an alternative to primitive recursion based on the computation of optimal strategies in sequential games.
- Resulting fragments of **T** correspond to fragment of arithmetic based on finite choice, as opposed to induction.

Summary

- Propose an alternative to primitive recursion based on the computation of optimal strategies in sequential games.
- Resulting fragments of **T** correspond to fragment of arithmetic based on finite choice, as opposed to induction.
- An unbounded version of the product is equivalent to Spector's bar recursion: uniform transition from arithmetic to analysis.
Summary

- Propose an alternative to primitive recursion based on the computation of optimal strategies in sequential games.
- Resulting fragments of **T** correspond to fragment of arithmetic based on finite choice, as opposed to induction.
- An unbounded version of the product is equivalent to Spector's bar recursion: uniform transition from arithmetic to analysis.

Arithmetic	\rightsquigarrow	Finite games
Analysis	\rightsquigarrow	Unbounded games

2 The product of selection functions

A computational analogue of finite choice

Countable choice \rightsquigarrow Spector's bar recursion

Coquand et al. (1998), Oliva and Escardo (2009): Computational content of choice has game theoretic character.

Countable choice \rightsquigarrow Unbounded product of selection functions Optimal strategies in unbounded games

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The unbounded product of selection functions

$\forall i \exists x \forall y A_i(x, y) \rightarrow \exists \alpha \forall i \forall y A_i(\alpha_i, y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The unbounded product of selection functions

$$\begin{array}{l} \forall i \exists x \forall y A_i(x, y) \to \exists \alpha \forall i \forall y A_i(\alpha_i, y) \\ \Downarrow \\ \exists \varepsilon \forall i \forall p A_i(\varepsilon_i p, p(\varepsilon_i p)) \to \forall \omega, q \exists \alpha \forall i \leq \omega \alpha \ A_i(\alpha_i, q \alpha) \end{array}$$

The unbounded product of selection functions

$$\begin{array}{l} \forall i \exists x \forall y A_i(x, y) \to \exists \alpha \forall i \forall y A_i(\alpha_i, y) \\ \Downarrow \\ \exists \varepsilon \forall i \forall p A_i(\varepsilon_i p, p(\varepsilon_i p)) \to \forall \omega, q \exists \alpha \forall i \leq \omega \alpha \ A_i(\alpha_i, q \alpha) \end{array}$$

For any control functional ω there exists a co-operative strategy α_q refuting a **global** counterexample function q for $\forall i \leq \omega \alpha A_i$.

The unbounded product of selection functions

$$\begin{array}{l} \forall i \exists x \forall y A_i(x, y) \to \exists \alpha \forall i \forall y A_i(\alpha_i, y) \\ \Downarrow \\ \exists \varepsilon \forall i \forall p A_i(\varepsilon_i p, p(\varepsilon_i p)) \to \forall \omega, q \exists \alpha \forall i \leq \omega \alpha \ A_i(\alpha_i, q \alpha) \end{array}$$

For any control functional ω there exists a co-operative strategy α_q refuting a **global** counterexample function q for $\forall i \leq \omega \alpha A_i$.

$$\mathsf{EPS}_{i}^{X,Y}(\varepsilon)(\omega)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases} \mathbf{0}^{X^{\mathbb{N}}} & \text{if } \omega \alpha < i \\ a * \mathsf{EPS}_{i+1}^{X,Y}(\varepsilon)(\omega)(q_{a}) & \text{otherwise} \end{cases}$$

where $a := \varepsilon_{i}(\lambda x.q_{x}(\mathsf{EPS}_{i+1}^{X,Y}(\varepsilon)(\omega)(q_{x}))).$

A game-theoretic interpretation of analysis

A large portion of analysis can be formalised in Peano arithmetic plus countable choice.

Theorem

 $PA + AC^0$ has a functional interpretation in **T** + EPS.

Theorems in mathematical analysis have an intuitive computational interpretation in terms of optimal strategies in sequential games

Why are we interested in the qualitative behaviour of functional interpretations?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The correspondence principle

T. Tao: Correspondence between 'hard' and 'soft' analysis.

The correspondence principle

T. Tao: Correspondence between 'hard' and 'soft' analysis.

Theorem (Bounded convergence principle)

Given $\varepsilon > 0$, $0 < x_0 < x_1 < \ldots < 1$, there exists n such that $|x_{n+m} - x_n| \leq \varepsilon$ for all m.

The correspondence principle

T. Tao: Correspondence between 'hard' and 'soft' analysis.

Theorem (Bounded convergence principle)

Given $\varepsilon > 0$, $0 < x_0 < x_1 < \ldots < 1$, there exists n such that $|x_{n+m} - x_n| \leq \varepsilon$ for all m.

Theorem (Finite convergence principle)

Fix $F : \mathbb{N} \to \mathbb{N}$. Given $\varepsilon > 0$, $0 \le x_0 \le \ldots x_M \le 1$, if M sufficiently large exists N s.t. $|x_{N+F(N)} - x_N| \leq \varepsilon$.

The correspondence principle

T. Tao: Correspondence between 'hard' and 'soft' analysis.

Theorem (Bounded convergence principle)

Given $\varepsilon > 0$, $0 < x_0 < x_1 < \ldots < 1$, there exists n such that $|x_{n+m} - x_n| \leq \varepsilon$ for all m.

Theorem (Finite convergence principle)

Fix $F : \mathbb{N} \to \mathbb{N}$. Given $\varepsilon > 0$, $0 \le x_0 \le \dots x_M \le 1$, if M sufficiently large exists N s.t. $|x_{N+F(N)} - x_N| \leq \varepsilon$.

Permanent stability vs. arbitrary high quality regions of metastability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Functional interpretations as 'finitizations'

Kohlenbach: This is what the 'monotone' functional interpretation does.

Functional interpretations as 'finitizations'

Kohlenbach: This is what the 'monotone' functional interpretation does.

Logical manipulations on formulas carried out by functional interpretations analogous to techniques used by mathematicians in ergodic theory etc.

Functional interpretations as 'finitizations'

Kohlenbach: This is what the 'monotone' functional interpretation does.

Logical manipulations on formulas carried out by functional interpretations analogous to techniques used by mathematicians in ergodic theory etc.

monotone functional interpretation \Leftrightarrow correspondence principle

Some recent work

A Game-Theoretic Computational Interpretation of some Ineffective Analytical Principles Powell and Oliva

• New computational interpretations of several well known theorems in analysis, including Bolzano-Weierstrass and Ramsey's theorem.

Some recent work

A Game-Theoretic Computational Interpretation of some Ineffective Analytical Principles Powell and Oliva

- New computational interpretations of several well known theorems in analysis, including Bolzano-Weierstrass and Ramsey's theorem.
- Operational behaviour of extracted algorithms easier to understand in terms of a constructive mathematical proof of an interpreted/finitised theorem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Illustration

For any Σ_1 predicate φ over \mathbb{N} , $\exists X \subseteq \mathbb{N}$ $(n \in X \leftrightarrow \exists i \varphi_0(n, i))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Illustration

For any
$$\Sigma_1$$
 predicate φ over \mathbb{N} , $\exists X \subseteq \mathbb{N}$ $(n \in X \leftrightarrow \exists i \varphi_0(n, i))$.

Theorem (Finite arithmetic comprehension)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Illustration

For any
$$\Sigma_1$$
 predicate φ over \mathbb{N} , $\exists X \subseteq \mathbb{N}$ $(n \in X \leftrightarrow \exists i \varphi_0(n, i))$.

Theorem (Finite arithmetic comprehension)

For any continuous functions $\omega, q: 2^{\mathbb{N}} \to \mathbb{N}$, $\exists Y \subseteq \mathbb{N} \forall n \leq \omega(Y) (\exists i \leq q(Y) \varphi_0(n, i) \to n \in Y \land n \in Y \to \varphi(n)).$

Illustration

For any
$$\Sigma_1$$
 predicate φ over \mathbb{N} , $\exists X \subseteq \mathbb{N}$ $(n \in X \leftrightarrow \exists i \varphi_0(n, i))$.

Theorem (Finite arithmetic comprehension)

For any continuous functions $\omega, q: 2^{\mathbb{N}} \to \mathbb{N}$, $\exists Y \subseteq \mathbb{N} \forall n \leq \omega(Y) (\exists i \leq q(Y) \varphi_0(n, i) \to n \in Y \land n \in Y \to \varphi(n)).$

Proof.

$$\varepsilon_n p := \begin{cases} \text{ don't add } n & \text{if } \forall i \leq p0 \ \neg \varphi_0(n, p0) \\ \text{ add } n & \text{ otherwise} \end{cases}$$

In practise construct Y recursively: $\emptyset \mapsto Y_1 \mapsto Y_2 \mapsto \ldots \mapsto Y$ each iteration adding a discovered element of X until Y_i large enough.

Illustration

For any
$$\Sigma_1$$
 predicate φ over \mathbb{N} , $\exists X \subseteq \mathbb{N}$ $(n \in X \leftrightarrow \exists i \varphi_0(n, i))$.

Theorem (Finite arithmetic comprehension)

For any continuous functions $\omega, q: 2^{\mathbb{N}} \to \mathbb{N}$, $\exists Y \subseteq \mathbb{N} \forall n \leq \omega(Y) (\exists i \leq q(Y) \varphi_0(n, i) \to n \in Y \land n \in Y \to \varphi(n)).$

Proof.

$$\varepsilon_n p := \begin{cases} \text{ don't add } n & \text{if } \forall i \leq p0 \ \neg \varphi_0(n, p0) \\ \text{ add } n & \text{ otherwise} \end{cases}$$

In practise construct Y recursively: $\emptyset \mapsto Y_1 \mapsto Y_2 \mapsto \ldots \mapsto Y$ each iteration adding a discovered element of X until Y_i large enough.

(ロ)、(型)、(E)、(E)、 E) の(の)

Final remarks

• Functional interpretations have genuine mathematical relevance.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Final remarks

- Functional interpretations have genuine mathematical relevance.
- Behind the syntax a translation on proofs.

Final remarks

- Functional interpretations have genuine mathematical relevance.
- Behind the syntax a translation on proofs.
- Want to bridge the gap between formal program extraction and practical mathematics.