System T and the Product of Selection Functions

Thomas Powell
(joint work with Paulo Oliva and Martín Escardó)

Joint Queen Mary/Imperial Seminar 7 September, 2011

Outline

(1) Fragments of arithmetic
(2) The product of selection functions
(3) Fragments of system T

4 Selection functions in analysis

Induction and recursion

Any strong theory of arithmetic proves some form of induction
IND : $A_{0} \wedge \forall i<m\left(A_{i} \rightarrow A_{i+1}\right) \rightarrow A_{m}$.

Induction and recursion

Any strong theory of arithmetic proves some form of induction

$$
\text { IND : } A_{0} \wedge \forall i<m\left(A_{i} \rightarrow A_{i+1}\right) \rightarrow A_{m}
$$

In this talk, a strong theory of (higher-type) functionals allows construction of functions using primitive recursion

$$
\begin{aligned}
R_{0}(y, z) & =y \\
R_{m}(y, z) & =z_{m-1}\left(R_{m-1}(y, z)\right)
\end{aligned}
$$

Induction and recursion

Any strong theory of arithmetic proves some form of induction

$$
\text { IND : } A_{0} \wedge \forall i<m\left(A_{i} \rightarrow A_{i+1}\right) \rightarrow A_{m}
$$

In this talk, a strong theory of (higher-type) functionals allows construction of functions using primitive recursion

$$
\begin{aligned}
R_{0}(y, z) & =y \\
R_{m}(y, z) & =z_{m-1}\left(R_{m-1}(y, z)\right)
\end{aligned}
$$

Primitive recursion is the computational analogue of induction.

Some definitions

Fragments of arithmetic based on induction

- PA_{0} denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas

Some definitions

Fragments of arithmetic based on induction

- PA_{0} denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $\mathrm{I} \Sigma_{n}$ consists of PA_{0} along with induction restricted to Σ_{n} (equivalently Π_{n}) formulas.

Some definitions

Fragments of arithmetic based on induction

- PA_{0} denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $\mathrm{I} \Sigma_{n}$ consists of PA_{0} along with induction restricted to Σ_{n} (equivalently Π_{n}) formulas.
- Full Peano arithmetic PA consists of PA_{0} along with induction for arbitrary formulas.

Some definitions

Fragments of arithmetic based on induction

- PA_{0} denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $I \Sigma_{n}$ consists of PA_{0} along with induction restricted to Σ_{n} (equivalently Π_{n}) formulas.
- Full Peano arithmetic PA consists of PA_{0} along with induction for arbitrary formulas.

Fragments of Gödel's system T based on primitive recursion

- \mathbf{T}_{b} denotes a weak theory of functionals i.e. simply typed λ-calculus with a few basic recursive functionals.

Some definitions

Fragments of arithmetic based on induction

- PA_{0} denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $\mathrm{I} \Sigma_{n}$ consists of PA_{0} along with induction restricted to Σ_{n} (equivalently Π_{n}) formulas.
- Full Peano arithmetic PA consists of PA_{0} along with induction for arbitrary formulas.

Fragments of Gödel's system T based on primitive recursion

- \mathbf{T}_{b} denotes a weak theory of functionals i.e. simply typed λ-calculus with a few basic recursive functionals.
- The strong fragment \mathbf{T}_{n} consists of \mathbf{T}_{b} along with primitive recursors for types of degree $\leq n$.

Some definitions

Fragments of arithmetic based on induction

- PA_{0} denotes a weak theory of arithmetic with induction restricted to quantifier-free formulas
- The strong fragment $\mathrm{I} \Sigma_{n}$ consists of PA_{0} along with induction restricted to Σ_{n} (equivalently Π_{n}) formulas.
- Full Peano arithmetic PA consists of PA_{0} along with induction for arbitrary formulas.

Fragments of Gödel's system T based on primitive recursion

- \mathbf{T}_{b} denotes a weak theory of functionals i.e. simply typed λ-calculus with a few basic recursive functionals.
- The strong fragment \mathbf{T}_{n} consists of \mathbf{T}_{b} along with primitive recursors for types of degree $\leq n$.
- System \mathbf{T} consists of \mathbf{T}_{b} along with primitive recursors of all finite types.

The functional interpretation of arithmetic

Gödel's dialectica interpretation maps formulas A to quantifier-free formulas $A_{D}(x, y)$.

$$
A \leftrightarrow \exists x \forall y A_{D}(x, y)
$$

The functional interpretation of arithmetic

Gödel's dialectica interpretation maps formulas A to quantifier-free formulas $A_{D}(x, y)$.

$$
A \leftrightarrow \exists x \forall y A_{D}(x, y)
$$

We say that \mathcal{T} has a functional interpretation in F is

$$
\mathcal{T} \vdash A \Rightarrow \mathrm{~F} \vdash\left(A^{\prime}\right)_{D}(t, y) \text { for some } t \in \mathrm{~F}
$$

The functional interpretation of arithmetic

Gödel's dialectica interpretation maps formulas A to quantifier-free formulas $A_{D}(x, y)$.

$$
A \leftrightarrow \exists x \forall y A_{D}(x, y)
$$

We say that \mathcal{T} has a functional interpretation in F is

$$
\mathcal{T} \vdash A \Rightarrow \mathrm{~F} \vdash\left(A^{\prime}\right)_{D}(t, y) \text { for some } t \in \mathrm{~F}
$$

Gödel (1958): PA has a functional interpretation in system T.

The functional interpretation of arithmetic

Gödel's dialectica interpretation maps formulas A to quantifier-free formulas $A_{D}(x, y)$.

$$
A \leftrightarrow \exists x \forall y A_{D}(x, y)
$$

We say that \mathcal{T} has a functional interpretation in F is

$$
\mathcal{T} \vdash A \Rightarrow \mathrm{~F} \vdash\left(A^{\prime}\right)_{D}(t, y) \text { for some } t \in \mathrm{~F}
$$

Gödel (1958): PA has a functional interpretation in system T.

Parsons (1972): $\mathrm{I} \boldsymbol{\Sigma}_{n+1}$ has a functional interpretation in \mathbf{T}_{n}.

The principle of finite choice

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

The principle of finite choice

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

$$
\text { FAC : } \forall i \leq m \exists x A_{i}(x) \rightarrow \exists \alpha \forall i \leq m A_{i}\left(\alpha_{i}\right) .
$$

The principle of finite choice

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

$$
\text { FAC : } \forall i \leq m \exists x A_{i}(x) \rightarrow \exists \alpha \forall i \leq m A_{i}\left(\alpha_{i}\right) .
$$

The infinite pigeonhole principle

The principle of finite choice

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

$$
\text { FAC : } \forall i \leq m \exists x A_{i}(x) \rightarrow \exists \alpha \forall i \leq m A_{i}\left(\alpha_{i}\right) .
$$

The infinite pigeonhole principle

Suppose that for some colouring $f: \mathbb{N} \rightarrow[m]$, each colour is used only finitely many times i.e. $\forall i \leq m \exists x \forall y \geq x(f(y) \neq i)$.

The principle of finite choice

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

$$
\text { FAC : } \forall i \leq m \exists x A_{i}(x) \rightarrow \exists \alpha \forall i \leq m A_{i}\left(\alpha_{i}\right)
$$

The infinite pigeonhole principle

Suppose that for some colouring $f: \mathbb{N} \rightarrow[m]$, each colour is used only finitely many times i.e. $\forall i \leq m \exists x \forall y \geq x(f(y) \neq i)$.

By FAC,

$$
\exists \alpha \forall y, i \leq m\left(y \geq \alpha_{i} \rightarrow f(y) \neq i\right)
$$

but this fails for $y:=\max \alpha_{i}, i:=f\left(\max \alpha_{i}\right)$.

The principle of finite choice

Alternatively, one can calibrate strong fragments of arithmetic according to finite choice axioms:

$$
\text { FAC : } \forall i \leq m \exists x A_{i}(x) \rightarrow \exists \alpha \forall i \leq m A_{i}\left(\alpha_{i}\right)
$$

The infinite pigeonhole principle

Suppose that for some colouring $f: \mathbb{N} \rightarrow[m]$, each colour is used only finitely many times i.e. $\forall i \leq m \exists x \forall y \geq x(f(y) \neq i)$.

By FAC,

$$
\exists \alpha \forall y, i \leq m\left(y \geq \alpha_{i} \rightarrow f(y) \neq i\right)
$$

but this fails for $y:=\max \alpha_{i}, i:=f\left(\max \alpha_{i}\right)$.

Therefore some colour is used infinitely often.

An alternative arithmetic hierarchy

Fragments of Peano arithmetic based on choice
The strong fragment $\mathrm{F} \Pi_{n}$ consists of PA_{0} along with finite choice restricted to Π_{n} (equivalently Σ_{n+1}) formulas.

An alternative arithmetic hierarchy

Fragments of Peano arithmetic based on choice
The strong fragment $\mathrm{F} \Pi_{n}$ consists of PA_{0} along with finite choice restricted to Π_{n} (equivalently Σ_{n+1}) formulas.

The choice fragments are strictly interleaving on the induction fragments

An alternative arithmetic hierarchy

Fragments of Peano arithmetic based on choice

The strong fragment $\mathrm{F} \Pi_{n}$ consists of PA_{0} along with finite choice restricted to Π_{n} (equivalently Σ_{n+1}) formulas.

The choice fragments are strictly interleaving on the induction fragments

An alternative arithmetic hierarchy

Fragments of Peano arithmetic based on choice

The strong fragment $\mathrm{F} \Pi_{n}$ consists of PA_{0} along with finite choice restricted to Π_{n} (equivalently Σ_{n+1}) formulas.

The choice fragments are strictly interleaving on the induction fragments

Outline

(1) Fragments of arithmetic

(2) The product of selection functions
(3) Fragments of system T

4 Selection functions in analysis

A computational analogue of finite choice

Recursors realize functional interpretation of FAC, but not a natural computational analogue.

A computational analogue of finite choice

Recursors realize functional interpretation of FAC, but not a natural computational analogue.

Countable choice \rightsquigarrow Spector's bar recursion

A computational analogue of finite choice

Recursors realize functional interpretation of FAC, but not a natural computational analogue.

Countable choice \rightsquigarrow Spector's bar recursion
\rightsquigarrow Unbounded product of selection functions Optimal strategies in unbounded games

A computational analogue of finite choice

Recursors realize functional interpretation of FAC, but not a natural computational analogue.

Countable choice \rightsquigarrow Spector's bar recursion
\rightsquigarrow Unbounded product of selection functions Optimal strategies in unbounded games

Finite choice \rightsquigarrow Finite product of selection functions Optimal strategies in finite games

The product of selection functions

Given $\varepsilon_{i}:(X \rightarrow Y) \rightarrow X, q: X^{\mathbb{N}} \rightarrow Y$ define

$$
\mathrm{P}_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}0^{X^{\mathbb{N}}} & \text { if } i>m \\ a * \mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{\mathrm{a}}\right) & \text { otherwise }\end{cases}
$$

where $a:=\varepsilon_{i}(\underbrace{\left(\lambda x \cdot q_{x}\left(\mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{x}\right)\right)\right.}_{p_{i}})$.

The product of selection functions

Given $\varepsilon_{i}:(X \rightarrow Y) \rightarrow X, q: X^{\mathbb{N}} \rightarrow Y$ define

$$
\mathrm{P}_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}0^{x^{\mathbb{N}}} & \text { if } i>m \\ a * \mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{\mathrm{a}}\right) & \text { otherwise }\end{cases}
$$

where $a:=\varepsilon_{i}(\underbrace{\left(\lambda x \cdot q_{x}\left(\mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{x}\right)\right)\right.}_{p_{i}})$.

- A sequential game with $m+1$ rounds;

The product of selection functions

Given $\varepsilon_{i}:(X \rightarrow Y) \rightarrow X, q: X^{\mathbb{N}} \rightarrow Y$ define

$$
\mathrm{P}_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}0^{X^{\mathbb{N}}} & \text { if } i>m \\ a * \mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{\mathrm{a}}\right) & \text { otherwise }\end{cases}
$$

where $a:=\varepsilon_{i}(\underbrace{\left(\lambda x \cdot q_{x}\left(\mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{x}\right)\right)\right.}_{p_{i}})$.

- A sequential game with $m+1$ rounds;
- X set of possible moves each round, Y set of possible outcomes;

The product of selection functions

Given $\varepsilon_{i}:(X \rightarrow Y) \rightarrow X, q: X^{\mathbb{N}} \rightarrow Y$ define

$$
\mathrm{P}_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}\mathbf{0}^{X^{\mathbb{N}}} & \text { if } i>m \\ a * \mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{\mathrm{a}}\right) & \text { otherwise }\end{cases}
$$

where $a:=\varepsilon_{i}(\underbrace{\left(\lambda x \cdot q_{x}\left(\mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{x}\right)\right)\right.}_{p_{i}})$.

- A sequential game with $m+1$ rounds;
- X set of possible moves each round, Y set of possible outcomes;
- q determines outcome of a play;

The product of selection functions

Given $\varepsilon_{i}:(X \rightarrow Y) \rightarrow X, q: X^{\mathbb{N}} \rightarrow Y$ define

$$
\mathrm{P}_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}\mathbf{0}^{X^{\mathbb{N}}} & \text { if } i>m \\ a * \mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{\mathrm{a}}\right) & \text { otherwise }\end{cases}
$$

where $a:=\varepsilon_{i}(\underbrace{\left(\lambda x \cdot q_{x}\left(\mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{x}\right)\right)\right.}_{p_{i}})$.

- A sequential game with $m+1$ rounds;
- X set of possible moves each round, Y set of possible outcomes;
- q determines outcome of a play;
- ε_{i} determines the strategy at round i;

The product of selection functions

Given $\varepsilon_{i}:(X \rightarrow Y) \rightarrow X, q: X^{\mathbb{N}} \rightarrow Y$ define

$$
\mathrm{P}_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}\mathbf{0}^{X^{\mathbb{N}}} & \text { if } i>m \\ a * \mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{\mathrm{a}}\right) & \text { otherwise }\end{cases}
$$

where $a:=\varepsilon_{i}(\underbrace{\left(\lambda x \cdot q_{x}\left(\mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{x}\right)\right)\right.}_{p_{i}})$.

- A sequential game with $m+1$ rounds;
- X set of possible moves each round, Y set of possible outcomes;
- q determines outcome of a play;
- ε_{i} determines the strategy at round i;
- p_{i} maps potential plays x to optimal outcome.

Illustration

$$
\begin{aligned}
& \varepsilon_{i} p=\max \left(\pi_{i} \circ p\right) \times \text { for } i=0,2 \\
& \varepsilon_{i} p=\min \left(\pi_{i} \circ p\right) \times \text { for } i=1
\end{aligned}
$$

Illustration

$$
\mathrm{P}_{2}(\varepsilon)(2)\left(q_{x_{1}, y_{0}}\right)=\left\langle z_{1}\right\rangle
$$

Illustration

$$
\mathrm{P}_{1}(\varepsilon)(2)\left(q_{x_{1}}\right)=\left\langle y_{0}, z_{1}\right\rangle
$$

Illustration

$$
\mathrm{P}_{0}(\varepsilon)(2)(q)=\left\langle x_{1}, y_{0}, z_{1}\right\rangle
$$

The no-counterexample interpretation

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?
$\exists x \forall y A(x, y)$

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

$$
\exists x \forall y A(x, y) \mapsto \neg \neg \exists x \forall y A(x, y)
$$

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

$$
\begin{aligned}
\exists x \forall y A(x, y) & \mapsto \neg \neg \exists x \forall y A(x, y) \\
& \mapsto \neg \forall x \exists y \neg A(x, y)
\end{aligned}
$$

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

$$
\begin{aligned}
\exists x \forall y A(x, y) & \mapsto \neg \neg \exists x \forall y A(x, y) \\
& \mapsto \neg \forall x \exists y \neg A(x, y) \\
& \mapsto \neg \exists p \forall x \neg A(x, p x)
\end{aligned}
$$

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

$$
\begin{aligned}
\exists x \forall y A(x, y) & \mapsto \neg \neg \exists x \forall y A(x, y) \\
& \mapsto \neg \forall x \exists y \neg A(x, y) \\
& \mapsto \neg \exists p \forall x \neg A(x, p x) \quad p \text { counterexample function }
\end{aligned}
$$

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

$$
\begin{aligned}
\exists x \forall y A(x, y) & \mapsto \neg \neg \exists x \forall y A(x, y) \\
& \mapsto \neg \forall x \exists y \neg A(x, y) \\
& \mapsto \neg \exists p \forall x \neg A(x, p x) \quad p \text { counterexample function } \\
& \mapsto \forall p \exists x A(x, p x)
\end{aligned}
$$

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

$$
\begin{aligned}
\exists x \forall y A(x, y) & \mapsto \neg \neg \exists x \forall y A(x, y) \\
& \mapsto \neg \forall x \exists y \neg A(x, y) \\
& \mapsto \neg \exists p \forall x \neg A(x, p x) \quad p \text { counterexample function } \\
& \mapsto \forall p \exists x A(x, p x) \\
& \mapsto \exists \varepsilon \forall p A(\varepsilon p, p(\varepsilon p))
\end{aligned}
$$

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

$$
\begin{aligned}
\exists x \forall y A(x, y) & \mapsto \neg \neg \exists x \forall y A(x, y) \\
& \mapsto \neg \forall x \exists y \neg A(x, y) \\
& \mapsto \neg \exists p \forall x \neg A(x, p x) \quad p \text { counterexample function } \\
& \mapsto \forall p \exists x A(x, p x) \\
& \mapsto \exists \varepsilon \forall p A(\varepsilon p, p(\varepsilon p)) \quad \varepsilon \text { selection function. }
\end{aligned}
$$

The no-counterexample interpretation

What is the functional interpretation of $\exists x \forall y A(x, y)$?

$$
\begin{aligned}
\exists x \forall y A(x, y) & \mapsto \neg \neg \exists x \forall y A(x, y) \\
& \mapsto \neg \forall x \exists y \neg A(x, y) \\
& \mapsto \neg \exists p \forall x \neg A(x, p x) \quad p \text { counterexample function } \\
& \mapsto \forall p \exists x A(x, p x) \\
& \mapsto \exists \varepsilon \forall p A(\varepsilon p, p(\varepsilon p)) \quad \varepsilon \text { selection function. }
\end{aligned}
$$

There exists a selection function $\varepsilon:(X \rightarrow Y) \rightarrow X$ that for any counterexample function $p: X \rightarrow Y$ selects a point at which it fails i.e. $A(\varepsilon p, p(\varepsilon p))$ holds.

The functional interpretation of finite choice

$$
\forall i \leq m \exists x \forall y A_{i}(x, y) \rightarrow \exists \alpha \forall i \leq m \forall y A_{i}\left(\alpha_{i}, y\right)
$$

The functional interpretation of finite choice

$$
\begin{array}{r}
\forall i \leq m \exists x \forall y A_{i}(x, y) \rightarrow \exists \alpha \forall i \leq m \forall y A_{i}\left(\alpha_{i}, y\right) \\
\Downarrow \\
\exists \varepsilon \forall i \leq m \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right) \rightarrow \forall q \exists \alpha \forall i \leq m A_{i}\left(\alpha_{i}, q \alpha\right)
\end{array}
$$

The functional interpretation of finite choice

$$
\begin{aligned}
& \forall i \leq m \exists x \forall y A_{i}(x, y) \rightarrow \exists \alpha \forall i \leq m \forall y A_{i}\left(\alpha_{i}, y\right) \\
& \Downarrow \\
& \exists \varepsilon \forall i \leq m \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right) \rightarrow \forall q \exists \alpha \forall i \leq m A_{i}\left(\alpha_{i}, q \alpha\right)
\end{aligned}
$$

Premise: there exists a collection $\left(\varepsilon_{i}\right)$ of strategies refuting pointwise counterexample functions p_{i} for A_{i}.

The functional interpretation of finite choice

$$
\begin{aligned}
& \forall i \leq m \exists x \forall y A_{i}(x, y) \rightarrow \exists \alpha \forall i \leq m \forall y A_{i}\left(\alpha_{i}, y\right) \\
& \Downarrow \\
& \exists \varepsilon \forall i \leq m \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right) \rightarrow \forall q \exists \alpha \forall i \leq m A_{i}\left(\alpha_{i}, q \alpha\right)
\end{aligned}
$$

Premise: there exists a collection $\left(\varepsilon_{i}\right)$ of strategies refuting pointwise counterexample functions p_{i} for A_{i}.

Conclusion: there exists a co-operative strategy α_{q} refuting a global counterexample function q for $\forall i \leq m A_{i}$.

Interpreting choice fragments

The strong theory \mathbf{P}_{n} consists of \mathbf{T}_{0} along with the product of selection functions $\mathrm{P}^{X, R}$ for all types X of degree $\leq n$.

Interpreting choice fragments

The strong theory \mathbf{P}_{n} consists of \mathbf{T}_{0} along with the product of selection functions $\mathrm{P}^{X, R}$ for all types X of degree $\leq n$.

Theorem
$\mathrm{F} \Pi_{n}$ has a functional interpretation in \mathbf{P}_{n-1}.

Interpreting choice fragments

The strong theory \mathbf{P}_{n} consists of \mathbf{T}_{0} along with the product of selection functions $\mathrm{P}^{X, R}$ for all types X of degree $\leq n$.

Theorem

$\mathrm{F} \Pi_{n}$ has a functional interpretation in \mathbf{P}_{n-1}.

Interpreting choice fragments

The strong theory \mathbf{P}_{n} consists of \mathbf{T}_{0} along with the product of selection functions $\mathrm{P}^{X, R}$ for all types X of degree $\leq n$.

Theorem

$\mathrm{F} \Pi_{n}$ has a functional interpretation in \mathbf{P}_{n-1}.

What is the relationship between Gödel's primitive recursors and the product of selection functions?

Outline

(1) Fragments of arithmetic

(2) The product of selection functions
(3) Fragments of system T

4 Selection functions in analysis

A primitive recursive definition of the product

$$
\mathrm{P}_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}\mathbf{0}^{X^{\mathbb{N}}} & \text { if } i>m \\ a * \mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{a}\right) & \text { otherwise }\end{cases}
$$

A primitive recursive definition of the product

$$
\mathrm{P}_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}\mathbf{0}^{X^{\mathbb{N}}} & \text { if } i>m \\ a * \mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{a}\right) & \text { otherwise }\end{cases}
$$

We can define $\mathrm{P}_{0}^{X, Y}(\varepsilon)(m)(q)$ using primitive recursion of type $X^{*} \rightarrow X^{\mathbb{N}}$:

$$
\begin{aligned}
y & =\lambda s .0^{X^{\mathbb{N}}} \\
z\left(i, F^{X^{*} \rightarrow x^{\mathbb{N}}}\right) & :=\lambda s . a_{s} * F\left(s * a_{s}\right) .
\end{aligned}
$$

A primitive recursive definition of the product

$$
\mathrm{P}_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}\mathbf{0}^{X^{\mathbb{N}}} & \text { if } i>m \\ a * \mathrm{P}_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{a}\right) & \text { otherwise }\end{cases}
$$

We can define $\mathrm{P}_{0}^{X, Y}(\varepsilon)(m)(q)$ using primitive recursion of type $X^{*} \rightarrow X^{\mathbb{N}}$:

$$
\begin{aligned}
y & =\lambda s .0^{\chi^{\mathbb{N}}} \\
z\left(i, F^{X^{*} \rightarrow x^{\mathbb{N}}}\right) & :=\lambda s . a_{s} * F\left(s * a_{s}\right) .
\end{aligned}
$$

Claim: $\mathrm{P}_{0}^{X, Y}(\varepsilon)(m)(q)=\mathrm{R}_{m+1}(y, z)(\langle \rangle)$.

A primitive recursive definition of the product

$$
P_{i}^{X, Y}(\varepsilon)(m)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}0^{X^{\mathbb{N}}} & \text { if } i>m \\ a * P_{i+1}^{X, Y}(\varepsilon)(m)\left(q_{a}\right) & \text { otherwise }\end{cases}
$$

We can define $\mathrm{P}_{0}^{X, Y}(\varepsilon)(m)(q)$ using primitive recursion of type $X^{*} \rightarrow X^{\mathbb{N}}$:

$$
\begin{aligned}
y & :=\lambda s .0^{X^{\mathbb{N}}} \\
z\left(i, F^{X^{*} \rightarrow X^{\mathbb{N}}}\right) & :=\lambda s . a_{s} * F\left(s * a_{s}\right) .
\end{aligned}
$$

Claim: $\mathrm{P}_{0}^{X, Y}(\varepsilon)(m)(q)=\mathrm{R}_{m+1}(y, z)(\langle \rangle)$.

Theorem

$\mathbf{T}_{n+1} \Rightarrow \mathbf{P}_{n}$ over \mathbf{T}_{b}.

Computations on a register machine

Products of type X of the form $\mathrm{P}^{X, X^{\mathbb{N}}}(\varepsilon)(m)(i d)$ are canonical.

Computations on a register machine

Products of type X of the form $\mathrm{P}^{X, X^{\mathbb{N}}}(\varepsilon)(m)(i d)$ are canonical.
These can be seen as computations on a register:

Computations on a register machine

Products of type X of the form $\mathrm{P}^{X, X^{\mathbb{N}}}(\varepsilon)(m)(i d)$ are canonical.
These can be seen as computations on a register:

Computations on a register machine

Products of type X of the form $\mathrm{P}^{X, X^{\mathbb{N}}}(\varepsilon)(m)(i d)$ are canonical.
These can be seen as computations on a register:

Computations on a register machine

Products of type X of the form $\mathrm{P}^{X, X^{\mathbb{N}}}(\varepsilon)(m)(i d)$ are canonical.
These can be seen as computations on a register:

Simulating primitive recursion

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
& \mathrm{R}_{0}(y, z)=y \\
& \mathrm{R}_{i}(y, z)=z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Simulating primitive recursion

$$
\begin{aligned}
\mathrm{R}_{0}(y, z) & =y \\
\mathrm{R}_{i}(y, z) & =z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Claim: $\mathrm{R}_{m}^{X}(y, z)=\mathrm{P}_{0}^{X, X^{\mathbb{N}}}(\varepsilon)(m)(i d)_{m}$.

Simulating primitive recursion

$$
\begin{aligned}
\mathrm{R}_{0}(y, z) & =y \\
\mathrm{R}_{i}(y, z) & =z_{i-1}\left(\mathrm{R}_{i-1}(y, z)\right)
\end{aligned}
$$

Claim: $\mathrm{R}_{m}^{X}(y, z)=\mathrm{P}_{0}^{X, X^{\mathbb{N}}}(\varepsilon)(m)(i d)_{m}$.

Theorem

$\mathbf{P}_{n} \Rightarrow \mathbf{T}_{n}$ over \mathbf{T}_{b}.

Making full use of the product

Making full use of the product

$$
\begin{aligned}
& \mathrm{R}_{0}(Y, Z)(x)=Y(x) \\
& \mathrm{R}_{i}(Y, Z)(x)=Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
& \mathrm{R}_{0}(Y, Z)(x)=Y(x) \\
& \mathrm{R}_{i}(Y, Z)(x)=Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
& \mathrm{R}_{0}(Y, Z)(x)=Y(x) \\
& \mathrm{R}_{i}(Y, Z)(x)=Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
& \mathrm{R}_{0}(Y, Z)(x)=Y(x) \\
& \mathrm{R}_{i}(Y, Z)(x)=Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
& \mathrm{R}_{0}(Y, Z)(x)=Y(x) \\
& \mathrm{R}_{i}(Y, Z)(x)=Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
& \mathrm{R}_{0}(Y, Z)(x)=Y(x) \\
& \mathrm{R}_{i}(Y, Z)(x)=Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
& \mathrm{R}_{0}(Y, Z)(x)=Y(x) \\
& \mathrm{R}_{i}(Y, Z)(x)=Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
& \mathrm{R}_{0}(Y, Z)(x)=Y(x) \\
& \mathrm{R}_{i}(Y, Z)(x)=Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
\mathrm{R}_{0}(Y, Z)(x) & =Y(x) \\
\mathrm{R}_{i}(Y, Z)(x) & =Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
\mathrm{R}_{0}(Y, Z)(x) & =Y(x) \\
\mathrm{R}_{i}(Y, Z)(x) & =Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
\mathrm{R}_{0}(Y, Z)(x) & =Y(x) \\
\mathrm{R}_{i}(Y, Z)(x) & =Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
\mathrm{R}_{0}(Y, Z)(x) & =Y(x) \\
\mathrm{R}_{i}(Y, Z)(x) & =Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

0		i	$m-2$	$m-1$	m
C		$\mathrm{R}_{m-1}\left(x_{i-1}\right)$	$\xrightarrow{\mathrm{R}_{2}\left(x_{m-3}\right)}$	$\mathrm{R}_{1}\left(x_{m-2}\right)$	$Y\left(x_{m-1}\right)$
$\varepsilon_{0} p=Z_{m-1}\left(\lambda x \cdot p(x)_{1}\right)(a)$					$\left.)_{m}\right)(p(0$

Making full use of the product

$$
\begin{aligned}
\mathrm{R}_{0}(Y, Z)(x) & =Y(x) \\
\mathrm{R}_{i}(Y, Z)(x) & =Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

0	i		$m-2$	$m-1$	m
$Z_{m-1}\left(p_{1}\right)(a)$	$\mathrm{R}_{m-1}\left(x_{i-1}\right)$	- .	$\mathrm{R}_{2}\left(x_{m-3}\right)$	$\mathrm{R}_{1}\left(x_{m-2}\right)$	$Y\left(x_{m-1}\right)$
$\varepsilon_{0} p=Z_{m-1}\left(\lambda x \cdot p(x)_{1}\right)(a)$					$=Y$

Making full use of the product

$$
\begin{aligned}
\mathrm{R}_{0}(Y, Z)(x) & =Y(x) \\
\mathrm{R}_{i}(Y, Z)(x) & =Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

0	i	$m-2$	$m-1$	m
$C^{R_{m}(a)}$	$\mathrm{R}_{m-1}\left(x_{i-1}\right)$	$\mathrm{R}_{2}\left(x_{m}-3\right)$	$\mathrm{R}_{1}\left(x_{m}-2\right)$	$Y\left(x_{m-1}\right)$
$\varepsilon_{0} p=Z_{m-1}\left(\lambda x \cdot p(x)_{1}\right)(a)$				

Making full use of the product

$$
\begin{aligned}
\mathrm{R}_{0}(Y, Z)(x) & =Y(x) \\
\mathrm{R}_{i}(Y, Z)(x) & =Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

Making full use of the product

$$
\begin{aligned}
\mathrm{R}_{0}(Y, Z)(x) & =Y(x) \\
\mathrm{R}_{i}(Y, Z)(x) & =Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

0		i		$m-2$	$m-1$	m
$R_{m}(\mathrm{a})$		$\mathrm{R}_{m-1}\left(x_{i-1}\right)$	\ldots	$\underset{\sim}{\mathrm{R}_{2}\left(x_{m-3}\right)}$	$\mathrm{R}_{1}\left(x_{m-2}\right)$	$Y\left(x_{m-1}\right)$
$\varepsilon_{0} p=Z_{m-1}\left(\lambda x \cdot p(x)_{1}\right)(a)$						$\varepsilon_{m-1} p=Z_{0}\left(\lambda x . p(x)_{m}\right)\left(p(0)_{m-2}\right)$

Claim: $\mathrm{R}_{m}^{X \rightarrow X}(Y, Z)=\lambda a . \mathrm{P}_{0}^{X, X^{\mathbb{N}}}\left(\varepsilon^{a}\right)(m)(i d)_{0}$.

Making full use of the product

$$
\begin{aligned}
\mathrm{R}_{0}(Y, Z)(x) & =Y(x) \\
\mathrm{R}_{i}(Y, Z)(x) & =Z_{i-1}\left(\mathrm{R}_{i-1}(Y, Z)\right)(x)
\end{aligned}
$$

0	i	$m-2$	$m-1$	m
$R^{R_{m}(\mathrm{a})}$	$\mathrm{R}_{m-1}\left(x_{i-1}\right)$	$\mathrm{R}_{2}\left(x_{m}-3\right)$	$\mathrm{R}_{1}\left(x_{m-2}\right)$	$Y\left(x_{m-1}\right)$
$\varepsilon_{0} p=Z_{m-1}\left(\lambda x . p(x)_{1}\right)(a)$				

Claim: $\mathrm{R}_{m}^{X \rightarrow X}(Y, Z)=\lambda a . \mathrm{P}_{0}^{X, X^{\mathbb{N}}}\left(\varepsilon^{a}\right)(m)(i d)_{0}$.

Theorem

$\mathbf{P}_{n} \Rightarrow \mathbf{T}_{n+1}$ over \mathbf{T}_{b}.

Conclusion

Theorem
 $\mathbf{P}_{n} \Leftrightarrow \mathbf{T}_{n+1}$ over \mathbf{T}_{b}.

Conclusion

Theorem

$$
\mathbf{P}_{n} \Leftrightarrow \mathbf{T}_{n+1} \text { over } \mathbf{T}_{\mathrm{b}} .
$$

Corollary

Gödel's system \mathbf{T} can be alternatively defined as \mathbf{T}_{b} plus the product of selection functions for all types.

Conclusion

Theorem

$$
\mathbf{P}_{n} \Leftrightarrow \mathbf{T}_{n+1} \text { over } \mathbf{T}_{\mathrm{b}} .
$$

Corollary

Gödel's system \mathbf{T} can be alternatively defined as \mathbf{T}_{b} plus the product of selection functions for all types.

Conclusion

Theorem

$$
\mathbf{P}_{n} \Leftrightarrow \mathbf{T}_{n+1} \text { over } \mathbf{T}_{\mathrm{b}} .
$$

Corollary

Gödel's system \mathbf{T} can be alternatively defined as \mathbf{T}_{b} plus the product of selection functions for all types.

Does $\mathrm{F} \Pi_{n}$ have a functional interpretation is a fragment weaker than \mathbf{P}_{n-1} ?

Summary

Summary

- Propose an alternative to primitive recursion based on the computation of optimal strategies in sequential games.

Summary

- Propose an alternative to primitive recursion based on the computation of optimal strategies in sequential games.
- Resulting fragments of \mathbf{T} correspond to fragment of arithmetic based on finite choice, as opposed to induction.

Summary

- Propose an alternative to primitive recursion based on the computation of optimal strategies in sequential games.
- Resulting fragments of \mathbf{T} correspond to fragment of arithmetic based on finite choice, as opposed to induction.
- An unbounded version of the product is equivalent to Spector's bar recursion: uniform transition from arithmetic to analysis.

Summary

- Propose an alternative to primitive recursion based on the computation of optimal strategies in sequential games.
- Resulting fragments of \mathbf{T} correspond to fragment of arithmetic based on finite choice, as opposed to induction.
- An unbounded version of the product is equivalent to Spector's bar recursion: uniform transition from arithmetic to analysis.

| Arithmetic | \rightsquigarrow Finite games |
| :---: | :--- | :---: |
| Analysis | \rightsquigarrow Unbounded games |

Outline

(1) Fragments of arithmetic

(2) The product of selection functions

3 Fragments of system T

4 Selection functions in analysis

A computational analogue of finite choice

Countable choice \rightsquigarrow Spector's bar recursion

Coquand et al. (1998), Oliva and Escardo (2009):
Computational content of choice has game theoretic character.

Countable choice \rightsquigarrow Unbounded product of selection functions Optimal strategies in unbounded games

The unbounded product of selection functions

$$
\forall i \exists x \forall y A_{i}(x, y) \rightarrow \exists \alpha \forall i \forall y A_{i}\left(\alpha_{i}, y\right)
$$

The unbounded product of selection functions

$$
\begin{aligned}
\forall i \exists x \forall y A_{i}(x, y) & \rightarrow \exists \alpha \forall i \forall y A_{i}\left(\alpha_{i}, y\right) \\
& \Downarrow \\
\exists \varepsilon \forall i \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right) & \rightarrow \forall \omega, q \exists \alpha \forall i \leq \omega \alpha A_{i}\left(\alpha_{i}, q \alpha\right)
\end{aligned}
$$

The unbounded product of selection functions

$$
\begin{aligned}
\forall i \exists x \forall y A_{i}(x, y) & \rightarrow \exists \alpha \forall i \forall y A_{i}\left(\alpha_{i}, y\right) \\
& \Downarrow \\
\exists \varepsilon \forall i \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right) & \rightarrow \forall \omega, q \exists \alpha \forall i \leq \omega \alpha A_{i}\left(\alpha_{i}, q \alpha\right)
\end{aligned}
$$

For any control functional ω there exists a co-operative strategy α_{q} refuting a global counterexample function q for $\forall i \leq \omega \alpha A_{i}$.

The unbounded product of selection functions

$$
\begin{aligned}
\forall i \exists x \forall y A_{i}(x, y) & \rightarrow \exists \alpha \forall i \forall y A_{i}\left(\alpha_{i}, y\right) \\
& \Downarrow \\
\exists \varepsilon \forall i \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right) & \rightarrow \forall \omega, q \exists \alpha \forall i \leq \omega \alpha A_{i}\left(\alpha_{i}, q \alpha\right)
\end{aligned}
$$

For any control functional ω there exists a co-operative strategy α_{q} refuting a global counterexample function q for $\forall i \leq \omega \alpha A_{i}$.

$$
\operatorname{EPS}_{i}^{X, Y}(\varepsilon)(\omega)(q) \stackrel{X^{\mathbb{N}}}{=} \begin{cases}0^{X^{\mathbb{N}}} & \text { if } \omega \alpha<i \\ a * \operatorname{EPS}_{i+1}^{X, Y}(\varepsilon)(\omega)\left(q_{\mathrm{a}}\right) & \text { otherwise }\end{cases}
$$

where $a:=\varepsilon_{i}(\underbrace{\left.\lambda x \cdot q_{x}\left(\operatorname{EPS}_{i+1}^{X, Y}(\varepsilon)(\omega)\left(q_{x}\right)\right)\right)}_{p_{i}})$.

A game-theoretic interpretation of analysis

A large portion of analysis can be formalised in Peano arithmetic plus countable choice.

Theorem

$P A+A C^{0}$ has a functional interpretation in $\mathbf{T}+E P S$.

Theorems in mathematical analysis have an intuitive computational interpretation in terms of optimal strategies in sequential games

Why are we interested in the qualitative behaviour of functional interpretations?

The correspondence principle

T. Tao: Correspondence between 'hard' and 'soft' analysis.

The correspondence principle

T. Tao: Correspondence between 'hard' and 'soft' analysis.

Theorem (Bounded convergence principle)
Given $\varepsilon>0,0 \leq x_{0} \leq x_{1} \leq \ldots \leq 1$, there exists n such that
$\left|x_{n+m}-x_{n}\right| \leq \varepsilon$ for all m.

The correspondence principle

T. Tao: Correspondence between 'hard' and 'soft' analysis.

Theorem (Bounded convergence principle)

Given $\varepsilon>0,0 \leq x_{0} \leq x_{1} \leq \ldots \leq 1$, there exists n such that $\left|x_{n+m}-x_{n}\right| \leq \varepsilon$ for all m.

Theorem (Finite convergence principle)
Fix $F: \mathbb{N} \rightarrow \mathbb{N}$. Given $\varepsilon>0,0 \leq x_{0} \leq \ldots x_{M} \leq 1$, if M sufficiently large exists N s.t. $\left|x_{N+F(N)}-x_{N}\right| \leq \varepsilon$.

The correspondence principle

T. Tao: Correspondence between 'hard' and 'soft' analysis.

> Theorem (Bounded convergence principle)
> Given $\varepsilon>0,0 \leq x_{0} \leq x_{1} \leq \ldots \leq 1$, there exists n such that $\left|x_{n+m}-x_{n}\right| \leq \varepsilon$ for all m.

> Theorem (Finite convergence principle)
> Fix $F: \mathbb{N} \rightarrow \mathbb{N}$. Given $\varepsilon>0,0 \leq x_{0} \leq \ldots x_{M} \leq 1$, if M sufficiently large exists N s.t. $\left|x_{N+F(N)}-x_{N}\right| \leq \varepsilon$.

Permanent stability vs. arbitrary high quality regions of metastability

Functional interpretations as 'finitizations'

Kohlenbach: This is what the 'monotone' functional interpretation does.

Functional interpretations as 'finitizations'

Kohlenbach: This is what the 'monotone' functional interpretation does.

Logical manipulations on formulas carried out by functional interpretations analogous to techniques used by mathematicians in ergodic theory etc.

Functional interpretations as 'finitizations'

Kohlenbach: This is what the 'monotone' functional interpretation does.

Logical manipulations on formulas carried out by functional interpretations analogous to techniques used by mathematicians in ergodic theory etc.
monotone functional interpretation \Leftrightarrow correspondence principle

> higher-type realiser of interpreted formula $\quad \Leftrightarrow \quad \begin{gathered}\text { constructive proof } \\ \text { of finitized theorem }\end{gathered}$

Some recent work

> A Game-Theoretic Computational Interpretation of some Ineffective Analytical Principles Powell and Oliva

- New computational interpretations of several well known theorems in analysis, including Bolzano-Weierstrass and Ramsey's theorem.

Some recent work

A Game-Theoretic Computational Interpretation of some Ineffective Analytical Principles Powell and Oliva

- New computational interpretations of several well known theorems in analysis, including Bolzano-Weierstrass and Ramsey's theorem.
- Operational behaviour of extracted algorithms easier to understand in terms of a constructive mathematical proof of an interpreted/finitised theorem.

Illustration

For any Σ_{1} predicate φ over $\mathbb{N}, \exists X \subseteq \mathbb{N}\left(n \in X \leftrightarrow \exists i \varphi_{0}(n, i)\right)$.

Illustration

For any Σ_{1} predicate φ over $\mathbb{N}, \exists X \subseteq \mathbb{N}\left(n \in X \leftrightarrow \exists i \varphi_{0}(n, i)\right)$.

Theorem (Finite arithmetic comprehension)

Illustration

For any Σ_{1} predicate φ over $\mathbb{N}, \exists X \subseteq \mathbb{N}\left(n \in X \leftrightarrow \exists i \varphi_{0}(n, i)\right)$.
Theorem (Finite arithmetic comprehension)
For any continuous functions $\omega, q: 2^{\mathbb{N}} \rightarrow \mathbb{N}$, $\exists Y \subseteq \mathbb{N} \forall n \leq \omega(Y)\left(\exists i \leq q(Y) \varphi_{0}(n, i) \rightarrow n \in Y \wedge n \in Y \rightarrow \varphi(n)\right)$.

Illustration

For any Σ_{1} predicate φ over $\mathbb{N}, \exists X \subseteq \mathbb{N}\left(n \in X \leftrightarrow \exists i \varphi_{0}(n, i)\right)$.

Theorem (Finite arithmetic comprehension)

For any continuous functions $\omega, q: 2^{\mathbb{N}} \rightarrow \mathbb{N}$, $\exists Y \subseteq \mathbb{N} \forall n \leq \omega(Y)\left(\exists i \leq q(Y) \varphi_{0}(n, i) \rightarrow n \in Y \wedge n \in Y \rightarrow \varphi(n)\right)$.

Proof.

$$
\varepsilon_{n} p:= \begin{cases}\text { don't add } n & \text { if } \forall i \leq p 0 \neg \varphi_{0}(n, p 0) \\ \text { add } n & \text { otherwise }\end{cases}
$$

In practise construct Y recursively: $\emptyset \mapsto Y_{1} \mapsto Y_{2} \mapsto \ldots \mapsto Y$ each iteration adding a discovered element of X until Y_{i} large enough.

Illustration

For any Σ_{1} predicate φ over $\mathbb{N}, \exists X \subseteq \mathbb{N}\left(n \in X \leftrightarrow \exists i \varphi_{0}(n, i)\right)$.

Theorem (Finite arithmetic comprehension)

For any continuous functions $\omega, q: 2^{\mathbb{N}} \rightarrow \mathbb{N}$, $\exists Y \subseteq \mathbb{N} \forall n \leq \omega(Y)\left(\exists i \leq q(Y) \varphi_{0}(n, i) \rightarrow n \in Y \wedge n \in Y \rightarrow \varphi(n)\right)$.

Proof.

$$
\varepsilon_{n} p:= \begin{cases}\text { don't add } n & \text { if } \forall i \leq p 0 \neg \varphi_{0}(n, p 0) \\ \text { add } n & \text { otherwise }\end{cases}
$$

In practise construct Y recursively: $\emptyset \mapsto Y_{1} \mapsto Y_{2} \mapsto \ldots \mapsto Y$ each iteration adding a discovered element of X until Y_{i} large enough.

Final remarks

- Functional interpretations have genuine mathematical relevance.

Final remarks

- Functional interpretations have genuine mathematical relevance.
- Behind the syntax a translation on proofs.

Final remarks

- Functional interpretations have genuine mathematical relevance.
- Behind the syntax a translation on proofs.
- Want to bridge the gap between formal program extraction and practical mathematics.

