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Abstract

The purpose of this article is to study the role of Godel’s functional interpretation in the extraction of
programs from proofs in well quasi-order theory. The main focus is on the interpretation of Nash-Williams’
famous minimal bad sequence construction, and the exploration of a number of much broader problems
which are related to this, particularly the question of the constructive meaning of Zorn’s lemma and the
notion of recursion over the non-wellfounded lexicographic ordering on infinite sequences.

1 Introduction

When I was invited to contribute a chapter to this volume, I felt that I should write something that would
reflect, as much as possible, the extraordinary richness of the theory of well quasi-orders. Anyone present at
the Dagstuhl Seminar of January 2016 would have experienced first hand how this rather innocent looking
mathematical object plays a central role in so many seemingly disparate areas, ranging from proof theory,
computability theory and reverse mathematics on the one hand to to term rewriting, program verification
and the world of automata and formal languages on the other. While I could never do justice to such
diversity in one article, my hope was to at least explore a variety of interesting problems in my own field
which arise from the study of well quasi-orders.

I decided, therefore, to write an essay on Godel’s functional interpretation, and the role it plays in making
constructive sense of well quasi-orders. I have chosen to organise the essay around a somewhat superficial
challenge, namely the development of a program which realizes Higman’s lemma for boolean alphabets:

ProBLEM. Write a program ® which takes as input an infinite sequence u of words over a two
letter alphabet, and returns a pair of indices i < j € IN such that u; is embedded in u;.

Of course, as long as one has proven that two such indices must exist one could simply write a program
which carries out a blind search until they are found! However, I am interested in the question of how one can
formally construct a subrecursive program which constitutes a computational analogue of Nash-Williams’
famous minimal bad sequence construction - an elegant combinatorial idea which appears throughout well
quasi-order theory.

It is important to stress that this relatively simple problem provides merely a narrative framework: My
ulterior motive is to explore a number of much more elusive problems which lurk underneath. So while on
the surface we will work towards the construction of our program @, the real aim of this essay is to try to
address several deeper questions, chief among them being:

1. What is the computational meaning of Zorn’s lemma?
2. Isit possible to sensibly define recursive functionals on chain-complete partial orders?
3. How can one describe formally extracted programs so that they can be easily understood by a human?

Each of these questions has significance far beyond Higman’s lemma, and yet the fact that they are all
naturally prompted by our elementary problem is, I believe, testament to the richness inherent to the theory
of well quasi-orders.



1.1 Proof interpretations and well quasi-orders: A brief history

In 1958, Godel published a landmark paper [10] which introduced his functional, or ‘Dialectica’ inter-
pretation, which he had already conceived in the 1930s as a response to Hilbert’s program and his own
incompleteness theorems. Initially, the functional interpretation translated Peano arithmetic to a calculus
of primitive recursive functionals in all finite types known as System T, thereby reducing the consistency of
the former theory to the latter. In modern day parlance, System T is nothing more than a simple functional
programming language which permits the construction of higher-type primitive recursive functionals. The
soundness of the functional interpretation guarantees that, whenever some statement A is provable in Peano
arithmetic, we can extract a total functional program in T which witnesses its translation A’.

The functional interpretation was just one of a number of techniques designed during the mid 20th cen-
tury to establish relative consistency proofs. Kreisel soon observed that these techniques could be flipped
on their head and viewed from a different perspective: namely as tools for extracting computational infor-
mation from non-constructive proofs [14, 15]. While the significance of this idea was not fully appreciated
at the time, in recent decades the application of proof theoretic methods to extract programs from proofs
has flourished, and now proof interpretations are primarily used for this purpose. Variants of Godel’s
functional interpretation in particular are central to the highly successful “proof mining’ program pioneered
by Kohlenbach [13], which has led to new quantitative results in several areas of mathematics. At the same
time, the arrival of the computer has meant that the extraction of programs from proofs can be automated,
and there are now proof assistants such as MinLog [1] which are dedicated to this, and which implement
sophisticated refinements of the traditional proof theoretic techniques.

So where do well quasi-orders feature in all of this?

The vast majority of proofs in ‘normal’ mathematics use only a very small amount of set theory. Often,
proofs of existential theorems in mathematics analysis which officially require choice or comprehension, use
it in such a limited way that it doesn’t really contribute to the complexity of extracted programs. However,
the theory of well quasi-orders contains a number of key theorems which do use choice in a crucial way,
the most notorious being those such Kruskal’s theorem which historically rely on variant of Nash-Williams’
minimal bad sequence construction.

As a result, these theorems have become something of a focal point for research in program extraction,
as canonical existential statements which come with concise, elegant, but proof theoretically non-trivial
classical proofs. The question of the computational meaning of such proofs is so deep that entire theses
have been dedicated to it (such as [18, 26]). By now, even comparatively simple results like Higman’s
lemma have an extensive body of research devoted to them. Thus the theory of well quasi-orders has firmly
established a foothold in the world of proof theory, and it is from this perspective that I study them here.

1.2 The origins and purpose of this chapter

Given the popularity of Higman’s lemma among researchers in proof theory, it’s perhaps important to
outline my own motivation in adding yet another paper to this menagerie.

My interest in well quasi-orders began when I was a doctoral student studying Godel’s functional
interpretation. Paulo Oliva suggested to me that Higman’s lemma might prove a useful exercise in program
extraction via the functional interpretation, as up to that point this had never been done: The majority of
attempts at giving a constructive proof of the lemma had utilised some form of realizability instead. So I
undertook this challenge and published my work as [21].

While this indeed turned out to be a valuable for me personally, improving my own understanding of
the functional interpretation and providing me with a welcome excuse to learn about well quasi-orders, in
most other respects I found my work rather unsatisfactory. In order to give a computational interpretation
of the instance of dependent choice used in the proof of the theorem, I resorted to the standard technique at
one’s disposal - a higher-type form of bar recursion. But due to the subtlety of Nash-Williams’ construction,
the resulting instance of bar recursion is extremely complex, leading to an extracted term whose operational
behaviour as a program is somewhat obscure, to say the least! While after a certain amount of effort I began
to see what the underlying program did, this was still very difficult to describe, and I doubt that anyone



who has read [21] will have gained any fresh insight into the computational meaning of Higman’s lemma.

I believe that the shortcomings of this paper were partly due to my own inexperience at the time, and
partly due to the fact that the basic technology for extracting programs from proofs is largely unchanged since
its introduction over half a century ago. While admittedly a range of refinements have been developed, and
proof mining in particular has produced a number of extremely powerful metatheorems which guarantee
the extractability of low-complexity programs from proofs in specific areas of analysis, these do not really
help us when comes to non-constructive proofs in well quasi-order theory which rely in an essential way
on dependent choice.

In the years that followed I ended up thinking about much more general problems which were prompted
from my analysis of Higman’s lemma. In particular, I studied forms of higher-order recursion closely re-
lated to Nash-Williams’ construction [22], and tried to develop notation systems which allow one to describe
extracted programs in a more intuitive way [23]. And with the announcement of this book I felt that there
was an opportunity for me to expand my original work in light of these developments, and present some
new results in this direction.

As I have already emphasised, the ‘official’ goal of building a program ® which witnesses Higman’s
lemma over boolean alphabets is nothing more than an organisational device. Indeed, this is by no means
the first place in which such a program has been presented, and I reiterate that real content of this essay lies
in the methods which we use to obtain it, and the series of theoretical results presented in Sections 7 and 8,
particularly Theorems 7.8 and 8.3, which I publish here for the first time.

Much of the technical groundwork I will present here has been done elsewhere, and this allows me to
adopt a lighter style of presentation, in which my priority will be to stress the key points and skim over the
heavier details. I have nevertheless tried to keep everything as self-contained as possible. So, for example,
the reader not familiar with Godel’s functional interpretation will be given the main definition and plenty
of intuition on what it means, and should be able to follow later sections without too much confusion,
although whenever a key concept is introduced I take care to include references to introductory material in
which a more extensive presentation is given.

On the other hand, the expert reader may wish to skip straight ahead to later sections in which the main
technical contributions are presented, and so I have indicated whenever a section is comprised mostly of
background material.

In the area of program extraction, it is not uncommon to see technical achievements presented with few
examples to illustrate them, and concrete case studies which give little insight into the underlying techniques
on which they are based (and I have certainly been guilty of both of these at one point or another!). But my
aim here is to endeavour to strike a balance between both theory and practice, and as a result I hope that
this article will form a pleasant read for both specialists in proof theory as well as those with a more general
interest in well quasi-orders.

2 Well quasi-orders and Zorn’s lemma

Let’s begin at the beginning, with the definition of a well quasi-order. There are numerous equivalent
formulations of this concept - one of the simplest and most widely seen is the following:

Definition 2.1. A quasi-order (X, <) is a set X equipped with a binary relation < which is reflexive and
transitive. It is a well quasi-order (or WQO) if it satisfies the additional property that for any infinite
sequence of elements xo, x1, X2, . .. there exists some i < j such that x; < x;.

It is not difficult to see that a quasi-order is a WQO iff it contains no infinite strictly decreasing chains
and no infinite sequences or pairwise incomparable elements. Therefore being a WQO is a strictly stronger
property than being well-founded. For example, the quasi-order (IN, | ) of natural numbers ordered by
divisibility is well-founded, but not a WQO. The following is perhaps slightly less obvious:

Lemma 2.2. A quasi-order (X, <) is a WQO iff any infinite sequence xo, x1, Xy, ... contains an infinite increasing
subsequence xq(0) < Xg(1) < Xg2) < ... (where g(0) < g(1) <...).



Proof. For the non-trivial direction, let (X, <) be a WQO, and take some infinite sequence xy, x1, .. .. Define
TCNbyT:={ieN|(Yj>i)-(x; < xj)}. Then T must be finite, otherwise we would be able to construct a
sequence contradicting the assumption that X isa WQO. Therefore there issome N € INsuch thatforalli > N
there exists some j > i with x; < x;, which allows us to construct our infinite increasing subsequence. m]

Given some mathematical property, such as being well quasi-ordered, we are often interested in identi-
fying constructions which preserve that property. WQO theory is particularly rich in such results. A simple
example is the following:

Proposition 2.3. If (X, <x) and (Y, <y) are WQOs, then so is their cartesian product (X X Y, <xxy) under the
pointwise ordering.

Proof. Given an infinite sequence {xo, Yo), {X1, Y1), - .., consider the first component xg,x1,.... Since X is a
WQO, by Lemma 2.2 there exists an infinite increasing sequence x) <x X¢1) <x .... Now consider the
sequence Ye(o), Yg(1), - - -- Since Y is a WQO, there exists some i < j with yes) <y y4(j. But by transitivity we
also have x4 < xg(j), and therefore (xq(), Vo)) <xxv (Xg(j), Ys(j))- o

A far more subtle result, which forms the basis of this article, is the following theorem, widely known
as Higman'’s lemma:

Theorem 2.4 (Higman’s lemma [11]). If (X, <) is a WQO, then so is (X", <.), the set of finite sequences over X
ordered under the embeddability relation, where [xo, . .., Xm-1] =+ [Yo, - - -, Yn—1] whenever there is a strictly increasing
map f with x; <y for all i < m.

A short and extremely elegant proof of Higman’s lemma was given by Nash-Williams, using the so-called
minimal bad sequence construction, which is a central topic of our paper.

Proof of Higman’s lemma [19]. Suppose for contradiction that X is a WQO but that there exists an infinite
sequence of words g, u1, ... such that =(u; <. u;) for alli < j. We call such a sequence a ‘bad sequence’.
Now, using the axiom of dependent choice, pick a minimal bad sequence vy, vy, ... as follows:

Given that we have already constructed [vy, ..., vx-1], define vy to be such that [vy, ..., vx—1, U]
extends to some infinite bad sequence, but [vy, . . ., vx_1,a] does not for any a < vy, by which mean
any strict prefix a of vy.

Note that such a vy exists by the minimum principle over the wellfounded prefix relation <, together with
the fact that [vy, ..., vx-1] must extend to some bad sequence: For k = 0 this follows from our assumption
that least one bad sequence exists, while for k > 0 it is true by construction.

Now, the crucial point is that this minimal sequence must itself be bad: If instead there were some i < j
with v; <, v}, then [0y, ..., v;] could not extend to a bad sequence, contradicting our construction. Therefore
in particular each v, must be non-empty, otherwise we would trivially have v, = [] <. v,,41. This means that
each v, must be a concatenation of the form @, * 5, where ¥, € X* and 7, € X. By Lemma 2.2 the sequence
0o, 01, . . . contains some increasing subsequence g < 7¢1 < ..., so let’'s now consider the sequence

W =109, ...,0g0-1,0g0, Dg0+1, Tgo+2, - - -

Since 740 < v40, by minimality of v the sequence w must be good, which means that w; <. w; for some i < j.
There are three possibilities: First j < ¢0 and so v; = w; <. w; = vj, second i < g0 and j = ¢j" and so v; <, T
L. . . - . S > L L. .
which 1mp11§s that v; <, vy since 0,y < vg;r, and finally 7, j = g7, 8] .and SO Tgir = Ugjr Whlch implies that
Ugir . Ugjr since Oy < Tgjr. In all cases we have v; <. v}, contradicting the fact that v is bad. Hence our

original assumption was false, and we can conclude that there are no bad sequence, or equivalently that X*
isa WQO. ]

As an immediate consequence of Higman’s lemma, we see that our main problem can, in theory, be
solved:



Corollary 2.5. Given an infinite sequence u of words over a two letter alphabet {0, 1}, there exists a pair of indices
i < j such that u; is embedded in u;.

Proof. The set (10,1}, =) trivially a WQO, therefore by Higman's lemma so is ({0, 1}*, =.). O

21 The minimal bad sequence construction and Zorn’s lemma

The existence of a minimal bad sequence in Nash-Williams” proof of Higman’s lemma can be viewed in a
much broader context as a particular instance of Zorn’s lemma, or equivalently, as an inductive principle
over chain-complete partial orders. This was first observed by Raoult [24], and since it informs our approach
to program extraction, we will explain in a little more detail what is meant by this.

Suppose that (Y, J) is a chain-complete partial order, where for each non-empty chain y in Y we fix some
lower bound A y, which is usually taken to be the greatest lower bound if it exists (note that the fact that
we talk about lower rather than upper bounds is purely cosmetic, as it sounds slightly more natural when
generalising the notion of a minimal bad sequence). The following result is essentially just the contrapositive
of the principle of open induction discussed in [24]:

Proposition 2.6. Let B be a predicate on Y which satisfies the property that for any non-empty chain y,

(Vx € y)B(x) > B( /\ 7). 1)
Then whenever B(x) holds for some x € Y, there is some minimal y such that B(y) holds, but y 3z — —B(z).

Proof. Define S := {x € Y | B(x)}. Then whenever B(x) holds for some x, the set S is chain complete: For the
empty chain we just take x as a lower bound, while any non-empty chain y in S we have that A\ y € S by
(1). Therefore by Zorn’s lemma S has some minimal element y. O

Now, consider some set X which comes equipped with a given strict partial order < on X which is
wellfounded. Define the lexicographic extension < of <t by

u<iex v iff (An)([u](n) = [0](n) A 1y <0)

where u and v are infinite sequences of type XN and [u](n) := [uo, ..., u,—1] denotes the initial segment of u
of length n. It is easy to show that <, is also (strict) a partial order. Note that <e is not wellfounded - for
example, setting X := 0,1 and defining 0 < 1 we would have

L1, . 51ex 0,11, .. 510 0,0, 1, ... o . .-

However, < is chain-complete. In fact, given a chain y in (XN, >1ex), We can construct its greatest lower
bound by defining vy € X to be the minimum with respect to > of the first components of the elements of
y, then v; € X to be the minimum of the second components of all elements x € y with xg = vy, then v, to
be the minimum of the third components of all elements x € y with xp, x; = v, v1 and so on, and it is not
difficult to show that /A y := v is a greatest lower bound of y.

Moreover, this greatest lower bound v has the property that for any n € IN, there is some x, € y which
agrees with v on the first n elements i.e. [v](n) = [x,](n). This motivates the following definition:

Definition 2.7. A formula B(u) on infinite sequences u € XN is piecewise definable, or just piecewise, if it can
be expressed in the form (Vn)P([u](n)) for some formula P(s) on finite sequences s € X*.

Theorem 2.8. Let B(u) = (Vn)P([u](n)) be a piecewise formula, and suppose that B(u) holds for some u. Then there
exists some minimal "bad’ sequence v such that B(v) holds, but ~B(w) for any w <y v.

Proof. Take any non-empty chain y such that (Vx € y)B(x), and let v := A y. We want to show that B(v)
holds i.e. P([v](n)) holds for all n € IN. But as observed above, for any n there exists some x, € y with
[0](n) = [x,](n), and P([x,](n)) follows from B(x,). Therefore the existence of a minimal bad sequence v
follows directly from Proposition 2.6. O



Theorem 2.8 is nothing more than a generalisation of the minimal-bad-sequence construction in Nash-
Williams” proof of Higman’s lemma: The predicate “u is bad” can be expressed as B(u) := (Vn)(Vi < j <
n)=(u; <. uj) which is clearly a piecewise formula, and so the existence of a minimal bad sequence follows
as a special case of the instance of Zorn’s lemma given in Proposition 2.6, where Y := (X*)N and 1 is taken
to be >1ex Over the lexicographic extension of the prefix order.

2.2 Zorn’s lemma as an axiom

The reason for the short digression above is to encourage the reader to think of the minimal bad sequence
construction, not as a derived result which follows from dependent choice, but as an axiomatic minimum
principle over the chain-complete partial order ((X*)N, >jex) which can be considered a weak form of Zorn’s
lemma, namely

(Fu)B(u) — (F0)(B(v) A (Yw <iex 0)-B(w)), 2)

where B(u) ranges over piecewise formulas. Note that in this case, the premise of Zorn’s lemma, namely
chain-completeness of S = {u € (X*)N | B(u)}, is encoded by both the premise (Ju)B(u) and the assumption
that B is piecewise.

While this slight shift of emphasis from dependent choice to Zorn’s lemma might not seem significant
from an ordinary mathematical perspective, it completely alters the way in which we give a computational
interpretation to Nash-Williams’ proof of Higman’s lemma, as this depends entirely on the manner in which
we choose to formalise that proof. We will discuss proof interpretations and program extraction in much
more detail in Section 4 below, but since the difference between dependent choice and above formulation
of Zorn’s lemma motivates our formal proof in the next section, it is important to at least roughly explain
why this distinction matters to us here.

The extraction of programs from proofs typically works by assigning basic programs to the axioms and
rules of some mathematical theory, and then constructing general programs recursively over the structure
of formal proofs. Thus the programs which interpret the axioms of our theory form our basic building
blocks, and the overall size and complexity of an extracted program in terms of these blocks reflects the size
and complexity of the formal proof from which it was obtained.

In the early days of proof theory, when proofs interpretations were primarily used to obtain relative
consistency proofs, ‘extracted programs” were nothing more than hypothetical objects which gave a com-
putational interpretation to falsity, whose existence within some formal calculus was necessary but whose
structure as programs was uninteresting and irrelevant. As such, it was sensible to work in a minimal
axiomatic theory which was easy to reason about on a meta-level, but not necessarily convenient for extract-
ing programs in practice. This was the approach taken by Spector [27], who extended Godel’s consistency
proof to full mathematical analysis by showing that countable dependent choice could be interpreted by the
scheme of bar recursion in all finite types, a form of recursion which, while elegant, can be rather abstruse
when it comes to understanding its operational semantics as part of a real program.

For us, on the other hand, a proof interpretation is a tool for extracting an actual program from the
proof of Higman’s lemma whose algorithmic behaviour can be understood to some extent, as opposed to
some obscure syntactical object which essentially acts as a black box. As a result, we want to work in a
axiomatic system in which Nash-Williams” minimal bad sequence construction can be cleanly and concisely
formalised. So it is natural to ask whether, to this end, we can give a more direct proof of Nash-Williams’
construction which circumvents the use of bar recursion, and leads to a more intuitive extracted program.

Our idea will be the following: Instead of taking dependent choice as a basic axiom and using this to
prove the existence of a minimal-bad-sequence, we will instead take (2) as a basic axiom, from which the
existence of minimal-bad-sequences follows trivially. As a result, though, we will no longer be able to rely
on Spector’s computational interpretation of dependent choice, and will have to instead construct a new
realizer for (2).

Itisnow perhaps becoming clear to the reader why the three deeper questions outlined in the introduction
emerge naturally from Higman’s lemma! The construction of our direct realizer for the principle (2) carried
out in Sections 6-8 offers a partial solution to Question 1 for the particular instance of Zorn’s lemma used
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bar recursion ———— | extracted program

here. Section 7 will focus specifically on the special variant of recursion over > that will be required in
order to do all this, and will therefore in turn address Question 2. Question 3 is something that will be on
our minds throughout the paper, and in particular influences our description of the realizing term in terms
of learning procedures.

Before we go on, it is important to observe that the idea of replacing dependent choice with some variant
of Zorn’s lemma has already been considered by Berger in the setting of modified realizability, in which
a variant of Raoult’s principle of open induction was given a direct realizability interpretation by a form
of open recursion [4]. Here we will give an analogous interpretation for the functional interpretation of a
principle classically equivalent open induction, and our work here differs considerably from the realizability
setting in a number of crucial respects, all of which we make clear later.

3 A formal proof of Higman’s lemma

As I highlighted above, in order to apply a proof interpretation to a proof, we first need to have some
kind of formal representation of this proof in mind. The route from ‘textbook’ to formal proof is no mere
preprocessing step - the structure and hence usefulness of our extracted program is entirely dependent
on the way in which we make precise the logical steps encoded by our textbook proof. The power of
applied proof theory is due to the fact that the careful analysis of logical subtleties in formal proofs can
reveal quantitative information that is not apparent from an ordinary mathematical perspective, hence the
frequent characterisation of this information as being ‘hidden’ in the proof. In our case, as emphasised
already, the fact that we will formalise Nash-Williams’ proof of Higman’s lemma using an axiomatic form
of Zorn’s lemma is absolutely crucial to our approach.

When it comes to the application of proof interpretations, one encounters two rather distinct styles in
the literature. In proof mining as conceived by Kohlenbach [13], the formal analysis of a proof is typically
done ‘by hand’. Here, a proof interpretation is simply a means to an end (typically a numerical bound
on e.g. a rate of convergence), and as such plays the role of a tool to be wielded by a mathematician. In
contrast, for automated program extraction in proof assistants such as MinLog [1], a proof interpretation
forms a high level description of a procedure which has to be implemented, and programs are then extracted
synthetically at the push of a button. In this case it goes without saying that the user must provide as input
a full machine checkable formal proof, written within the confines of some predetermined logical system.

In this article, we take a somewhat mixed approach. On the one hand, this is not a paper on formalised
mathematics (and I am certainly not a specialist in this area!): We are interested in a range of rather broad
theoretical issues which we intend to present through focusing on the key features of Nash-Williams’
proof, and in this sense our construction of a realizing term is based on the pen-and-paper style familiar
in proof mining. On the other hand, the novelties of our approach are useful partially because they could
be automated within a proof assistant, and so throughout we present our construction in a semi-formal
manner in the hope that the reader clearly sees that the main ideas could be implemented at some point.



3.1 Thelogical system

The main logical theory in which we work will be the theory PA® of Peano arithmetic in all finite types.
Here, we define the finite types to include the base types B and IN for booleans and natural numbers
respectively, and allow the construction of product X X Y, finite sequence X* and function types X — Y.
The theory PA“ is just the usual theory of Peano arithmetic, but with variables and quantifiers for objects of
any type. We write x : X or xX to denote that x has type X. Equality symbols = and = for base types are
taken as primitive, whereas equality for other types is defined inductively terms of these, so for example
s =xy t 1= (Vx)(sx =y tx). There are various ways of treating extensionality: for reasons which we will
not go into here, the functional interpretation does not interpret the axiom of extensionality - only a weak
rule form - and so if the reader prefers they can take PA” to be the weakly-extensional variant WE-PA“
defined in e.g. [13, 29], although it should be stressed that extensionality is only an issue for the interpreted
theory, and when it comes to verifying our extracted programs in later sections we freely make use of full
extensionality. In any case, the exact details of the logical system are not important in this paper, as our
extraction of a program is not fully formal.

What is important is the way in which we extend our base theory in order to deal with the minimal bad
sequence argument. First note that when reasoning in higher types it is essential to be able to add to our
base theory the very weak axiom of choice for quantifier-free formulas:

QF-AC : (Vx)Ay")Ao(x, y) = Ff1)(Vx)Ao(x, f(x))-

which as we will see is completely harmless from a computational point of view. In contrast, the crucial
additional axiom we choose in order to formalise Nash-Williams’ argument is the following syntactic variant
of Theorem 2.8 already stated as (2), which we interpret as an axiom schema labelled ZL,ey,

ZLiex : (FuNTH)B(U) — (F0)(B0) A (Y0 <iex 0)=B(w))

where B(u) is understood to range over all piecewise formulas of the form (¥n)P([u](n)), and < is some
primitive recursive relation on X, transfinite induction over which is provable in PA“. Of course, technically
we should include this additional wellfounded assumption as a premise so that ZLj.x becomes a proper
axiom schema, but we will omit it for simplicity and if the reader prefers they can just imagine that ZLe is
defined relative to some arbitrary but fixed (X, >). Both here and in Chapter 9, X will actually be of the form
X" and > will be nothing more than the prefix relation on finite sequences which is trivially wellfounded.

Note that the contrapositive of ZLjx can be identified with open induction over the lexicographic
ordering as treated in [4]:

Ollex : (VU)((VZU Tex U)U(ZU) - U(U)) - (VM)U(M)

where now U(u) must be an open formula of the form (In)P([u](n)) (and so in our terminology, being
piecewise is the negation of being open). In the realizability setting of [4], there is a genuine difference
between ZLjex and Oljey: the latter is an intuitionistic principle which can be given a direct computational
interpretation via open recursion, whereas the former is a non-constructive principle which cannot be
realized without the use of e.g. the A-translation. On the other hand, for the functional interpretation
combined with the negative translation, both are ZL;.x and Ol are interpreted by exactly the same term
(informally, this is due to the fact that the functional interpretation of implication is much more intricate
than that of realizability), so they are essentially interchangeable here. We choose ZL,¢, as primitive, because
in our opinion the realizing term is a little more intuitive when viewed as an approximation to a minimal
element v. In any case we will discuss these nuances later. For now, we proceed straight to the formal proof.

3.2 The formal proof

Suppose that X is some arbitrary finite type which comes equipped with some quasi-order <, which we take
to mean some primitive recursive function ¢ : X X X — B for which reflexivity and transitivity are provable



in PA“. We now introduce two predicates which represent the two equivalent definitions of a WQO which
we required in Section 2:

WQO(=) := (VAN"%) i < j)(xi < x))
WQO,q(x) := (VN7 @GN (Vi < j)(g(31) < §(J) A Xg0) = Xg(j)-

Now, given < we can formally define the embeddability relation <, as a primitive recursive function in <,
as in order to check that a <. b we simply need to carry out a bounded search over all increasing functions
{0,...,lal =1} = {0,...,|b| — 1}, where |a| denotes the length of a. Note that reflexivity and transitivity of <.
is easily provable from that of < in PA“. The main result of this section is the following:

Theorem 3.1. For any fixed quasi-order < on X we have PA“ + QF-AC + ZLje, + WQO,eq(2) = WQO(,).

The basic strategy of Nash-Williams’ proof is first to construct a hypothetical minimal bad sequence, then
to deal with a number of simple but quite fiddly cases in order to derive a contradiction. It will be greatly
helpful to us in later sections if we separate these two parts here, and prove the following numerically
explicit form of the latter:

)]N

Lemma 3.2. Given a sequence v : (X*)N, define two sequences o : (X*)N and o : XN from v as follows:

N {[1, Ox ifo, =]

[x1, .o Xkl xe ifo, =[x, .., %]

where Ox denotes some canonical element of type X. Given in addition some function g : N — IN, define the sequence
w: (XN by
I L ifn < g(0)
C o =g+

Suppose that there exists some k : IN such that
We(0) < Vg0) — (i < j < k)(w; <. wj) (3)
where < denotes the strict prefix relation on words, and that g satisfies

(Vi < j < k)(g(i) < g(j) A Tgiy < Dg(j))- (4)
Then there exists a pair of indices i < j < g(k) + 2 such that v; <. v;.

Proof. This is a simple case distinction that we prove in excruciating detail. First of all, we note that by
induction on (4) it follows that i < g(i) for all i < k, which we use below. There are two main cases: A
degenerate one where v,(g) = [], in which case vg() <. v4(0)+1 and so we can seti, j = ¢(0),g(0)+1 < g(0) +2 <
g(k) + 2. For the non-degenerate case where vg() # [] then we have wg ) = T¢(0) < vg(0) and hence w; <, w; for
some i < j < k by (3). There are three further possibilities:

(i) i <j<g(0): Thenv; = w; <. wj =vjand j <k < g(k) < g(k) + 2.

(i) i < g(0) < j: Then v; = w; =, w; = Ty) where j = g(0) + j/. Either v,y = [] and so triviall
8 J j 87" ] =38 J 837" y
Ug(jry S« Ug(jry+1, With j" < I]c'and hence ¢(j") +1 < g(j) +1 < g(k) +2, or T4(jr) <vg(jy and therefore v; <. vy
with i < g(0) < g(j) < g(k).

(iii) g(0) < i < j: Then Typy) = w; <. wj = Tg;y with i = ¢(0) +1,j = g(0) + j'. If either Gy = [] or
Og(7) = [] then the result follows exactly as in part (ii), and otherwise we have vy = Tg(ir) * Tg(r) and
Ug(jr) = Tg(jr) * Og(jry and since i’ < j* < j < k it follows by (4) that ¢(i") < g(j") and Ty < 047y and hence
Ug(iry <« Ug(j7), and since g(j’) < g(j) < g(k) we’re done.



In all cases we have found some i < j” < g(k) + 2 with vy <, v} |

Proof of Theorem 3.1. First of all, let <t denote the strict prefix relation on words, so that a < b iff |a| < |b| and
(Vi < |al)(a; = b). This is clearly wellfounded, and we can assume for argument’s sake that it is decidable,
which is automatically the case when X is a base type. Now, define the piecewise predicate B(u) on infinite
sequences of words by B(u) := (Vn)P([u](n)), where

P(s) := (Vi< j <[s])(si £ 5)-
Suppose that (Fu)B(u). Then by ZLje there exists some v : (X*)N such that
(*) B(v) A (Yw <jex v)=B(w).
Now let 3, 9 and w be defined as in Lemma 3.2, where g is the function satisfying

(Vi < ))(g() < &(j) A Tg) < Tg()

which exists by WQOseq(ﬁ). Then (3) holds for some k by minimality of v, since if wg(g) < vg() then w <ex v,
and (4) holds for any k, therefore by Lemma 3.2 there exists i < j such that v; <. v;, contradicting B(v).
Therefore (Ju)B(u) is false, which implies that for all u there exists some i < j such that u; <. u;, which is
WQO(=.). Hence we have shown that WQO,.4(x) = WQO(=.). O

While the derivation above is not fully formal in the sense that would be expected were we to formally
extract a program using a proof assistant, in contrast to the textbook proof given in Section 1 it makes
explicit important quantitative information which will guide us in constructing a realizing term, as we will
see later.

Now to our main problem, which is to prove that ({0,1}, =.) is a WQO. From now on we will equate
the two letter alphabet {0, 1} with our type B. Suppose that < is now just =g, which is clearly a WQO. In
order to be able to apply Higman's lemma, we need to establish WQO4.,(=p), either by formalising Lemma
2.2 or by a direct argument. We choose the latter, since for the simple case of =g a single instance of the
law of excluded-middle suffices, whereas the general case given as Lemma 2.2 would require some form of
comprehension.

Theorem 3.3. PA” + QF-AC + WQO.q(=p)

Proof. We will first show that
(VAN=XY @B (V) 3Fk > n)(x = b). (5)

Fix some sequence x : BN. By the law of excluded middle we have
@Am)(Vk = n)(xe = 0) v (Yn)(Fk = n)(xe = 1).

If the left hand side of the disjunction holds we set b := 0. We have that there is some N such that x; = 0 for
all k > N, and so for an arbitrary number #, setting k := max{N, n} yields k > n and x; = 0. If the right hand
side holds, we set b := 1 and we are done by definition.

So we have proved (5). To establish WQO4.q(=p), take some x and let b be such that (Yn)(3k > n)(xx = b).
By QF-AC there exists some f : IN — IN satisfying

(Yn)(f(n) 2 n Axgm = b).

Now, define g : IN — IN via primitive recursion as

3(0):= f(0) and gn+1):= f(g(n) + ).
Then it is clear that g(1) < g(n + 1) and x4 = b, and therefore

(Vi < )(g(0) < 8()) A Xg = b = xg)

and we’re done. O
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Theorem 3.3

: (Ju)B(u) 7L
WQO,q(=8)  (F0)(B() A (Yw <iex 0)-B(w))
T Lemma 3.2
WQO(=g,.)

Figure 1: A map of the formal proof

Now, putting together Theorems 3.1 and 3.3, we have:
Corollary 3.4. PA® + QF-AC + ZLjex F WQO(=p,).

We summarise the main structure of our proof of WQO(=g) in Figure 1. There are three main parts to
the proof, each of which will be treated somewhat separately in what follows, namely:

(1) A proof of WQO4q(=B) given as Theorem 3.3, which uses an instance of the law of excluded middle for
I formulas.

(2) A single instance of ZL., applied to the piecewise formula (Vi < j)(u; £ u;), set out in the main proof
of Theorem 3.1.

(3) The derivation of a contradiction from WQO
sequence, which is Lemma 3.2.

seq(X) combined with the existence of a minimal bad

Having now introduced the theory of WQOs and given a formal proof of our main result, the remainder
of the paper will be dedicated to constructing a program which finds an embedded pair of words in an
arbitrary input sequence. We will introduce our main tool - Godel’s functional interpretation - in the next
section, then each of the three main components will be analysed in turn in Sections 5, 6-8 and 9, respectively.

4 Godel’s functional interpretation

We now put well quasi-orders aside for a moment, and introduce the second main topic of this paper:
Godel’s functional (or ‘Dialectica’) interpretation. The reader already familiar with this may wish to skip
ahead to Section 6, which continues with the computational interpretation of ZLje.

Presenting the functional interpretation is something of a challenge for an author: The interpretation
is one of those syntactical objects - particularly common in proof theory - whose basic definition can be
given in a few lines and whose characterising theorem (in this case soundness) can be set up in a couple
of pages, and yet none of this is necessarily remotely helpful in giving the unacquainted reader any real
insight into what it actually does! In reality, the functional interpretation is an extraordinarily subtle idea
which continues to be studied from a range of perspectives, and the fact that it forms one of the central
techniques of the highly successful proof mining program is testament to its power. For a comprehensive
treatment of the functional interpretation and its role in program extraction, the reader is encouraged to
consult the standard textbook [13], or alternatively the shorter chapter [3].

Nevertheless, in an effort to make this essay as accessible as possible it is important that I say something
about the interpretation here. So my plan is as follows: in Sections 4.1-4.3 below I will begin by defining the
interpretation, and will state without proof the main results on program extraction. This will all be standard
material. Then in Section 4.4 I will employ the slightly unconventional tactic of explaining on a high level
how the functional interpretation treats a series of formulas of a specific logical shape, which appear several
times in the remainder of this work. Finally, in Section 5, I will present in quite some detail the extraction
of a simple program from the proof of Theorem 3.3, which will conveniently serve simultaneously as a
illustration of the functional interpretation in action and the first step in our main challenge!

11



4.1 The basics

In one sentence, Godel’s functional interpretation is a syntactic translation which takes as input a formula
A in some logical theory £ and returns a new formula A’ := (3x)(Yy)IA[; where x and y are sequences of
potentially higher type variables, and |A[} is in some sense computationally neutral, which in this article will
just mean quantifier-free and hence decidable (since characteristic functions for all quantifier-free formulas
can be constructed in PA”). The idea behind the translation is that A <> A’ over some reasonable higher-type
theory, but the latter can be witnessed by some term in a calculus T. We say that the functional interpretation
soundly interprets L in T, if for any formula in the language of L we have

L + A = there exists some closed term t of T such that 7~ + |A|§,

where 7 represents some verifying theory which allows us to reason about terms in our calculus T. Crucially,
the soundness proof comes equipped with a method of constructing such a realizer t from the proof of A.
The direct approach above typically works for intuitionistic theories L extended with some weak semi-
classical axioms (for example Markov’s principle), but for theories L. based on full classical logic, we need
to precompose the functional interpretation with a negative translation A — A™". Therefore from now on,
soundness of the functional interpretation for classical theories refers to the following;:

L. + A = there exists some closed term f of T such that 7 + IA“Ity.

In this article, our £, will be PA” + QF-AC, later extended with ZLjex. But before we go further, we need to
introduce our functional calculus T.

4.2 The programming language

Our interpreting calculus will be a standard variant of Godel’s system T, extended with product and finite
sequence types as with our variant of PA”. System T is well-known enough that we feel no need to give a
proper definition here: in any case full details can be found in many places, including the aforementioned
sources [3, 13, 29]. In a sentence: System T is a simply typed lambda calculus which allows the definition of
functionals via primitive recursion in all higher types. We summarise the basic constructions of the calculus
below, if only to allow the reader to become familiar with our notational conventions. We take the types of T
to be the same as those in our logical system PA“, namely those build from B and IN via product, sequence
and arrow types. Terms of the calculus include the following;:

e Functions. We allow the construction of terms via lambda abstraction and application: if x : X and
t:Ythen Ax.t: X — Y, whileift: X - Yand s : X then ts : Y, and these satisfy the usual axioms, e.g.
(Ax.t[x])(s) = t[x\s].

e Canonical objects. For each type X we define a canonical ‘zero object’ Ox : X in the standard manner,
with On = 0, 0g =0, 01 = (), Oxxy = (0x, Oy}, Ox- = [] and Ox—y = Ax.0y.

e Products. Given z : X X Y we often write just z, z; for the projections mpz : X, m1z € Y. This will also
be the case for sequences, where for z : (X X Y)N, zy : XN is defined by (z0)» := Moz, and so on. For
x: X and y : Y we have a pairing operator {(x, y) : X X Y.

e Sequences. As before, given s : X* we denote by |s| the length of s, for x : X we define s * x : X* by
[so,...,sk-1,x]i.e. the concatenation of s with x, and use this also for the concatenation of s with another
finite sequence s * ¢ : XN or an infinite sequence s * a : XN, For a : XN we let [a](n) := [ao, ..., an1]-

e Recursors. For each type we have a recursor Recx which has the defining equations
Rec‘;éh(O) =xa and Rec’;éh (n + 1) =x hn(Rec™"(n)).

for parametersa: Xand h: IN - X — X.
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Note that having access to recursors of arbitrary finite type means that along with all normal primitive
recursive functions we can define e.g. the Ackermann function (using Recn— ). Indeed, the closed terms
of type IN — IN definable in T are the provably recursive functions of Peano arithmetic, a fact which follows
from the soundness of the functional interpretation.

There are a couple of further remarks to be made. First, we have presented system T as a equational
calculus, but of course we could have instead used a conversion rule —r, in which case system T can be
viewed as a fragment of PCF consisting only of total objects. More concretely, any term of system T can be
straightforwardly written as a functional program, and we encourage the reader to think of system T in this
manner, as a high level means of describing real programs.

Finally, in the previous section we wrote 7~ + |A|ty, which implies that T also comes equipped with a logic
7 for verifying programs. There are various ways of defining the underlying logic of system T - traditionally
it is presented as a minimal quantifier-free calculus with an induction axiom, although alternatively we can
just identify 7~ with the fully extensional variant of PA“, extended with additional axioms whenever we
need them. Such distinctions are more relevant for foundational issues such as relative consistency proofs,
where it was the goal to make 7 as weak as possible. Here we have no such concerns, and so we reason
about the correctness of our extracted programs in a fairly free manner.

4.3 The interpretation

The functional interpretation JA[} of a formula A in the language of PA” is defined inductively over the

logical structure of A as follows:
(i) 1A] := Aif Ais prime
(i) 1A A By, = |A[} A Bl

b]B/ Mo
(iii) 1AV Bl, ;™" = |A[; vy B

(iv) |A — B2 :=|AE,, — B

xo = Mlgxo

(v) FFAWD" = 1AG)I,

i) VEAWDL, = 1AL

where in clause (iii) we define
PviQ:=0b=0->P)A(b=1->Q).

At first glance, the functional interpretation looks very much like a standard BHK interpretation, with
the exception of the treatment of implication (iv), which is in many ways the characterising feature of
the interpretation. Though (iv) may appear to be a little mysterious, it should be viewed as the ‘least
non-constructive’ Skolemization of the formula

@ANVIAL — Fu)(Yo)IBl;

which goes via
(V) Fu)(Yo)Ay)(IAT, — |BI,)

as an intermediate step. In the original 1958 paper [10], Godel proved that the usual first order theory of
Heyting arithmetic could be soundly interpreted in System T. It follows directly that Peano arithmetic can
also be interpreted in T when precomposed with the negative translation, and in fact it is not difficult at all
to extend these results to the higher-order extensions of arithmetic with quantifier-free choice:

Theorem 4.1. Let A(a) be a formula in the language of (weakly-extensional) PA“ containing only a free. Then
PAY + QF-AC+ A(a) = T + |A@) Iy

where t is a closed term of T which can be formally extracted from the proof of A(a).
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A modern presentation and proof of this result can be found in [13], which also discusses the various
theories 7~ in which soundness can be formalised. As simple as Theorem 4.1 appears, understanding how
the combination of negative translation and functional interpretation treats even simple logical formulas
is far from straightforward, and is often a stumbling block when one first encounters the ideas of applied
proof theory. We now try to provide some insight into this.

4.4 The meaning of the interpretation

In order that the reader not familiar with the functional interpretation and program extraction can follow
the main part of the paper, it is important that we highlight how the functional interpretation combined with
the negative translation treats a handful of key formulas. Note that we have not yet stated which negative
translation we use. Unless one wants to formalise the translation this is not so important: Typically what
we do is take some arbitrary choice of A7 and use a range of semi-intuitionistic laws which are admitted
by the functional interpretation to rearrange it into a simpler formula which is easier to interpret.

4.4.1 TI formulas A := (Vx)(3y)B(x, y)

We begin with one of the key properties of the functional interpretation, which makes it so useful for
program extraction. The negative translation of a I'l, formula is equivalent to (Yx)—~=(3y)B(x, y). However,
it is not difficult to see that the functional interpretation translates =—(3y)B(x, v) to (dy)B(x, y), and so in
particular the functional interpretation admits Markov’s principle. Therefore

(Vx)-=(3y)B(x, y) is translated to (I f)(Vx)B(x, fx)

and therefore in theory we can extract a program directly witnessing a I'l, formula, even when that formula
is proven classically. Note that the statement WQO(<) is a Il formula, and so even though we use a number
of non-constructive principles in its proof, we can still hope to extract a program ® witnessing it!

442 X, formulas A := (Ax)(Vy)B(x, y)

In contrast to I, formulas, X, formulas are more problematic, as there provable X, formulas which cannot
in general be directly witnessed by a computable function. Here, the negative translation is equivalent to
—=(Ix)(Vy)B(x, y), and functional interpretation acts as follows

~=(@)(YY)B(x, y) = ~(3f)(¥x)-B(x, fx)
= (Vf)(3x)~=B(x, fx)
= (Y)E)B(x, fx) ()
= (AD)(YfIB(DS, f(DS)).

Note that we can omit double negations in front of B(x, y) as this is a quantifier-free formula. Neverthe-
less, the interpretation of our original formula gives us something ‘indirect’, which in this case coincides
with Kreisel’s well-known ‘no-counterexample’ interpretation (although in general the functional interpre-
tation is different). The intuitive idea is that f is a function which attempts to witness falsity of A i.e.
(Vx)(Jy)—-B(x, fx). Then the functional ® takes any proposed ‘counterexample function’” and shows that it
must fail. Over classical logic, the existence of such a functional @ is equivalent to the existence of some x
satisfying (Vy)B(x, y), but unlike x it can be directly constructed.

Another way of understanding the meaning of ® is as a program which constructs an approximation
to the non-constructive object x. In general, we cannot compute an x which satisfies B(x, y) for all y, but
given some f we can find an x which satisfies B(x, fx). In this setting, f should be seen as a function which
calibrates how good the approximation should be. We make extensive use of this intuition later, where we
explain how the functional interpretation of the minimal bad sequence construction can be viewed as the
statement that arbitrarily good ‘approximate’ minimal bad sequences exist.
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We also note that throughout this paper, we will often express the interpretation of IT, formulas in its
penultimate form (¥ f)(3x)B(x, fx) indicated by (+) above. This is for no other reason than that it is much
easier to talk about x instead of @ f, and so we avoid a lot of rather messy notation!

4.4.3 Implication A := (x)(Vy)B(x, y) = (Ju)(V0)C(u, v)

Finally, it is important to sketch what happens when we want to infer the existence of a non-constructive
object u from the existence of another non-constructive object x. In this case, the negative translation of A is
intuitionistically equivalent to

@)(Yy)B(x, y) = =~(@u)(Y0)C(, v),

Now, by the previous section, the functional interpretation of the conclusion yields

@) (Yy)B(x, y) = (V) @u)C(u, fu).

and so interpreting the implication as a whole following clause (iv) we get

(3E, G)(Vx, f)(B(x, Gfx) — C(Exf, f(Fxf))).

In terms of our discussion above, F and G can be read as follows: For any given x, Fx is a functional which
computes an approximation to the conclusion of the implicationi.e. (¥ f)(Ju)C(u, fu), where now it uses that
(Yy)B(x, y) holds. The functional G tells us, in a certain sense, how good the approximation of the premise
has to be in order to build an approximation of the conclusion: this is given by Gf. Note that whenever we
have a functional ® which builds an approximation to the premise in this way i.e. B(®(Gf), Gf(P(Gf))) we
can use it to construct an approximation to the conclusion.

While all this may sound extremely intricate, it will hopefully become clearer when we see some concrete
examples in the sequel.

5 Interpreting the proof of WQO,,,(=p)

We now give our first illustration of the functional interpretation in action. In Theorem 3.3 we showed that
the proof of WQO4(=p) could be formalised in PA® + QF-AC, and hence by Theorem 4.1 we know for sure
that we can construct a program in T which witnesses its functional interpretation. However, actually doing
so, and ending up with a program whose behaviour can be comprehended is another matter, and in what
follows we outline the philosophy emphasised later in the paper of combining formal program extraction
with intuition. Note that nothing in this section is new, and if the reader prefers they can simply glance at
the program we obtain in Section 5.3 and move straight on to Section 6.

The proof of Theorem 3.3 has three main components. The first is an obviously non-constructive axiom,
namely the law of excluded middle for X, formulas applied to (In)(Vk > n)(xy = 0). The second is the
derivation of the auxiliary statement (5) from this instance of the law of excluded-middle, and the final is
the derivation of WQOj.q(=p) from (5) by constructing the necessary primitive recursive function. We will
treat each of these in turn. Before we do so, it is worth spelling out explicitly what our goal is. First note
that WQO,q(=p) can be equivalently formulated as the I'l; formula

(V)(EQ)(Yn)(Vi < j < n)(g(0) < &(J) A xg) = Xg(j)-

Note that we have merged the two quantifiers Vi, j into a single ‘real’ quantifier Yn so that they are
now bounded and hence decidable. In particular, this means they are now ignored by the functional
interpretation. The negative translation of this formulas is equivalent to

(Vx)==(@)(Ym)(Vi < j < n)(g(i) < () A xgi) = Xg()-

Therefore, referring back to Section 4.4.2 our challenge is to produce a program @ which takes as input x
together with some ‘counterexample functional’ w : (IN — IN) — IN and witnesses (4g) in the formula

(Vx, )(3)(Vi < j < wg)(8(i) < (J) A Xg() = Xg(j))- (6)
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In other words, while we cannot hope to effectively construct a monotone subsequence g in general, we can
always do the next best thing and construct an approximation to it which works for all i < j < wg. Then
when it comes to using WQO4q(=p) as a lemma in the proof of WQO(=g,.) we will need to calibrate exactly
how big this approximation needs to be, in other words construct some concrete w such that WQO(=p.)
follows from (6).

5.1 The law of excluded-middle for Zg formulas

Our first step when interpreting a classical proof is to interpret the main non-constructive axioms which are
needed. When interpreting WQO,.,(=) » WQO(<) later, our focus will be on ZLj.,. Here we must deal
with the somewhat simpler law of excluded-middle for Zg formulas:

(dn)(Vk)P(n, k) v (Ym)(Al)—P(m, ).
The functional interpretation Skolemizes this as the Xy formula
(3b, n, h)(Yk, m)[P(n, k) Vy ~P(m, hm)]
and following Section 4.4.2 the interpretation of the double negation of this formula is given by
(Yo, ¥)(3b, n, h)[P(n, pbnh) v, ~P(ipbnh, h(ypbnh))]. (7)

This already looks rather complex thanks to all the function dependencies, but the way to think of ¢ and
Y is again as counterexample functionals which represent the quantifiers (Vk) and (Vm) respectively. Now,
we have two options in front of us: We can either carefully analyse the formal derivation of the negative
translation of the law of excluded-middle in intuitionistic logic in order to produce a realizer for (7), or
we can try to do this directly using our intuition. We choose the latter - and it is this kind of thing that
characterizes our ‘semi-formal” approach to program extraction.

Let’s look more closely at (7). Our boolean b is just a marker which tells us which side of the conjunction
holds, so essentially what we must do is find a pair ny, ng and h;, hg which satisfy either P(n, pOnphr) or
—P(Ylnghg, hr(1nghg)). In the first case we can then define b,71,h to be 0,1, 4y, and in the second to be
1,ng, hg. In order to do this, we want to define these so that

P(ﬂL, qunLhL) g P(gl}lnRhR, hR(x,blnRhR))

so that P(ny, ¢Onih) v =P(iplnghg, hr(P1lnghr)) follows directly from the law of excluded-middle for
quantifier-free formulas. Note that we can force this equivalence to hold if

np = l,[ll?l]le and (j)OnLhL = hR(z,blnRhR).

So can we solve these equations? Well, the first thing we notice is that ng and /; do not depend on anything
and so can be freely chosen, so we just set these to be canonical elements ng, /i, := On, ON—nN (note that this
makes sense intuitively, since n only plays a role in the left disjunct, and & only in the right). We can then
define ny, := Y10hg. It remains to find some /g which satisfies

hR(l{J10hR) = (POTILO = (PO(llll()hR)O,

where the latter equality follows by substituting in our definition for #;. But this is easily achieved if we set
hg = Ai.¢0i0. So we're done, and to summarise, (7) is solved by setting

b o [0 9100 i P10, GO10m0)
“TTN,0, hg otherwise

The reader can now easily check that this is indeed a solution by substituting it back into (7). Note that
while we use the law of excluded-middle in a very specific way in our proof, the above would work for any
instance of £ law of excluded middle (in fact we don’t even need the quantifiers to be of lowest type).
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5.2 Interpreting (Vx)(3b)(¥Yn)(3k = n)(x; = b)

We now use the realizing term given above to witness the functional interpretation of our intermediate
result (Vx)(3b)(Vn)(Ik > n)(xx = b). In order to distinguish this b from that of the previous section, we relabel
it as c. Taking into account the negative translation, what we mean is to interpret is

(Yx)==Fc, Y (Yn)(fnzn Axp =c)

and hence
(Vx, E)Tc, ))(f(Ecf) = Ecf A Xfecp) = ©).

Again, this looks somewhat intricate, but the term £cf simply represents the quantifier (V7). Now, in order
to prove this statement we used the law of excluded-middle for the formula P(n,k) := (k > n — x; = 0)
given some fixed sequence x. What we need to do is work out exactly how this was used, and following
our discussion in Section 4.4.3 this means realizing the implication

(3b, n, h)(Vk, m)(P(n, k) Vi P(m, hm)) — (Y&)(3c, ))(f(Ecf) = Ecf A Xfeep) = ©) ®)

and therefore
(Yb,n,h, &)k, m,c, ))[P(n, k) Vy P(m,hm) — f(écf) = Ecf A Xfep) = cl.

This is much easier than it looks! Let us fix b, , h, £. There are two possibilities. If b = 0 then we must find
some k,c, f (we can set m = 0) such that the conclusion follows from P(n, k). It’s sensible to choose ¢ := 0,
then it remains to find k, f satisfying

(k=n—-x=0)— f(E0f) = EOf A Xfeop = 0.
Following our formal proof, let’s define f(i) := max{n, i} and
k:= f(&0f) = max{n, E0f} = max{n, EO(Ai. max{n, i}))}.

Then clearly f(£0f) > n,&0f and x¢(sof) = 0 follows from the premise.
In the second case b = 1, setting ¢ := 1 (and this time k = 0) we must establish the conclusion from
=P(m, hm), i.e. find m, f satisfying

hm = m A xp =1 — f(E1f) 2 E1f Axperp = 1.
But this is more straightforward: f := h and m := £1h work, so we’re done. In other words, defining
¢:0nh := max{n, E0(Ai.max{n,i}))} and y:lnh:=¢E1h
with ¢¢1nh = 1p:0nh = 0, we can eliminate the quantifiers (¥, k) in (8), and we have proven that
(Yb,n,h, E)[P(n, psbnh) Vy P(Yebnh, h(Pebnh)) — f(Ecf) = Ecf A Xpecp) = c]

for
¢ fi= 0, Ai.max{n,i} ifb=0
1,k otherwise.

But we know how to find b, n, h which solve the premise for ¢: and ¢, so substituting those solutions in
the definition above we have

(VE)f(&cf) = Ecf A Xpcp) =€) ©)

for

(10)

Cf'— O,/\i.max{gb(gthR,i} 1fP(¢gthR,¢)gO(ll)glohR)0)
1, g otherwise

where ¢¢, s, P and hy are defined as above.
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5.3 Simplifying the realizing term

The solution given above for finding c and f in £ is perfectly valid, but still somewhat tricky to understand, as
it is couched in terms of the abstruse functionals which arise from our formal proof. So while an automated
extraction may produce something like this, for a human being it is desirable to simplify everything and
see if there is an underlying pattern.

It is immediately clear by inspecting the definition (10) above, that there are three key terms which play
arole, namely hg, {:10h and ¢:0i0, with substitutions /1 - hg and i — :10hz. So it makes sense to unwind
each of these terms. First, notice that from the definitions of ¢, 1) we have

hr(i) = ¢:0i0 = max{i, E0(Aj. max{i, j})} and 10k = &1k
and so in particular
Y10hg = E1(Ai. max{i, E0(A]. max{i, j})}) =: a
qbgO(IIUgthR)O = l’lR(ﬂ)
and our solution can already be simplified to

fom 0, Ai. max{a, i} if Xmax{a,£0(1j. maxa,j) = 0
’ 1,Ai.E0(Aj. max{i, j}) otherwise.

where we use the fact that P(a, max{a, £0(Aj. max{a, j}))}) < Xmax{a,£0(Aj. maxa,jy)} = O-

We now see that, far from being the syntactic mess it appeared, our realizing term can be expressed in
a very natural way. By looking closer, an interesting structure emerges: Given a function g : N XN — N,
and a pair of functions ¢,0 : (IN — IN) — IN, define the pair (¢ ® 6)(g) := (4, b[a]) where

bli] := 8(Ajq(, j))
a := e(Aiq(i, bli])).

This is the so-called binary product of selection functions studied by Escardé and Oliva in [7]. Intuitively it
gives a optimal play in a two player sequential game, where g is assigns an outcome to each pair of moves,
and ¢, 6 dictate the strategy of the first and second players respectively. Using this new notation, our realizer
becomes
o 0, Al max{a, Z} if Xmax{a,b[a]} = 0
f= 1,Ai.£0(Aj. max{i, j}) otherwise.

where (a,b[a]) = (£1 ® £0)(max). An extension of this idea for nested sequences of the law of excluded-
middle were first considered in [20], and generalisations of the product of selection functions to so-called
‘unbounded” games have been used to give computational interpretations to choice principles, thereby
opening up a fascinating bridge between functional interpretations and game theory [7, 8, 9].

5.4 The final step

It now remains to compute our realizer ¢ in x and w satisfying (6). For this we need to define a suitable
functional & such that (6) follows from (9). The key here is the following trick. Suppose that ¢ is another
functional, and define

&cf = (ui < Ecf)=(f(i) = i A xp = 0.

where (ui < n)P(i) denotes the least i < n satisfying P(i), and just 0 if none exist. Then
flécf) = Ecf Axpecpy =c— (Vi< gcf)(f(i) > 1A Xp4) = o).
So, to this end, define g¢(0) := f(0) and gs(n + 1) := f(gs(n) + 1), and let

Exalf = (Ui < Eucf)=(f() 2 i A xgg = o).
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for 5
Socf := max{gs(k) + 1}.
k<wgr

Then we claim that

fErwCf) Z Exawlf A Xfe ep) =€ = (Vi< ] < wgp)gr() < gr(7) A Xgpi) = Xg,()-

Take i < wgy. Then g¢(i) + 1 < &,cf and therefore g¢(i + 1) = f(gr(1) + 1) 2 g¢(i)) + 1 > g¢(i) and xgi41) = ¢,
from which we can infer that for any i < j we have g¢(i) < g¢(j) and xg,i) = xg,(j) = ¢. Therefore, by the
previous sections, we have

(Vx, )(Vi < j < wg)(§(i) < 8() A Xg0i) = Xg(p)

where ¢ = ¢¢ for the f satisfying (9) relative to &, defined above.

5.5 Summary

Our aim in this section was to lead the reader through an actual example of program extraction, from a
much simpler classical principle than that about to be considered below. Rather than just presenting an
extracted term, our hope was to illustrate how by analysing extracted programs and applying a degree of
ingenuity, one can devise descriptions of these programs which are of interest in their own right. Here, the
observation by Escardé and Oliva that the functional interpretation of the law of excluded-middle concealed
a natural game-theoretic construction which could be extended to encompass much stronger principles led
to a large body of research in a somewhat unexpected direction. Later in this paper, a notion of a learning
procedure will play somewhat analogous role to the product of selection functions above, in the sense that it
will describe a very natural computational pattern that underlies our realizer, and helps us understand its
behaviour.

6 The functional interpretation of ZL,, - Part 1

The basic soundness proof of the functional interpretation (Theorem 4.1) guarantees that we are able to
extract a program from any proof which can be formalised in PA” + QF-AC. However, our formalisation
of the minimal bad sequence construction involves something stronger, namely an instance of ZLj.x. The
following three sections contain the chief novelty of our approach, namely the solution of the functional
interpretation of ZLjex via a form of open recursion, which will allow us in Section 9 to extract a program
witnessing WQO(=g,.).

So what exactly is the functional interpretation of ZLi.x? Let’s begin by writing out the axiom in full,
where now replace B(u) with the piecewise formula (Vn)P([1](r1)), and for the remainder of the paper we now
assume that P(s) is quantifier-free, as it is in the case of Theorem 3.1. In order to avoid nested expressions
such as P([[v](m)](n)) we will use the notation P(u, n) := P([u](n)). Then ZLex becomes

(Fuw)(¥Yn)P(u, n) — (Fo)(Yn)P(v, n) A (Yw <iex 0)(Tn)=P(w, n)).
Now, there is still an additional quantifier implicit in (Yw < v), but note that
(Yw <iex V)A(W) & (Ym, w)(wo < vy — A([0](m) + w))
and so ZLjex can be written out in a fully explicit form as
(Fu)(¥n)P(u, n) — (Fo)((Yn)P(v, n) A (Ym, w)(wy < v, — (In)=P([0](m) * w, n))). (11)

Of course, we want to apply the functional interpretation to the negative translation of (11), which is
equivalent to

Au)(Yn)P(u, n) — ==(Jo)(Yn)P(v, n) A (Ym, w)(wo < v — (An)=P([v](m) + w, n))). (12)
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Since this is a rather intricate formula, let’s break its interpretation up into pieces. Focusing on the conclusion
first, and applying the interpretation under the double negation only, we obtain

~=(F0, YNTE N (Y, m, w)(P(o, 1) A (w0 < 0y — =P([0](m)  w, ymaw))) (13)

C(v,y,m,w)
where from now on we will use the abbreviation
C(v,y,m,w) := wy < vy — =P([0](m) * w, ymw)

as indicated in (13). Now, applying the functional interpretation to (13) and referring back to the discussion
in Section 4.4.2 we arrive at

(YN, M, W)(do, )/)(P(U, Noy) A C(v, vy, Moy, Woy)) (14)

where NM : XN - (N - XN 5 N) > Nand W: XN - (N - XN — IN) - XN, Substituting (14) back
into (12) and referring to Section 4.4.3 our challenge is to witness the following expression:

(Yu, N, M, W)(3n, v, y)(P(u,n) — P(v, Nvy) A C(v, y, Moy, Woy))). (15)

So what does the expression (15) intuitively mean? In Section 4.4 we characterised the functional interpre-
tation as a translation which takes fundamentally non-constructive existence statements and converts them
into ‘approximate’ existence statements, which in theory can be given a direct computational interpretation.
In its original form, ZL;e, simply states that

if there exists a bad sequence u then there exists a bad sequence v which is minimal with respect
to 4leX/

where we call 1 bad whenever (Yn)P(u, n) holds. Now, very roughly, we can read the interpreted statement
(15) as saying something like

for any sequence u and counterexample functionals N, M, W, there exists n,v and y such that
P(u,n) implies that v is approximately bad with respect to N, and y witnesses that it is approxi-
mately minimal with respect to M and W.

When using ZLje« as a lemma in the proof of a I'l, statement, as we do in Corollary 3.4, the task of extracting
a program from this proof involves calibrating exactly what kind of approximations we need.

6.1 Aroughidea

So how do we go about solving (15) - in other words computing a suitable n,v and y in terms of u, N,M
and W? A natural idea might be to simply use trial and error, as follows. Given some initial sequence
u, we could first just try v := u. Let’s also set y := y,, where y, is some function that we will need to
sensibly define later, and put n := Nuy,. Now suppose that P(u, Nuy,) holds. There are two possibilities:
Either u is approximately minimal in the sense that C(u, y,, Muy,, Wuy,) holds, and then we’re done, or
=C(u, Yy, Muy,, Wuy,) ie.

(Wuyy)o < Unug, N P([u](MuVu) * Wuyy, y(Muy,)(Wuyy)).

But in this case, we have found a sequence u; := [u](Muy,) * Wuy, which is lexicographically less that
u and approximately bad, so could we just set v := u; and repeat this process, generating a sequence
U Dlox U1 Dlox U2 Dlox e v v - - D>1ex Uy until we reach some 1, which works? Of course, there are a lot of details to
be filled in here, in particular a formal definition of y, but the aim of Section 8 will be to demonstrate that
this informal idea does actually work.

However, the obvious problem we face is that we seem to be carrying out recursion over the non-
wellfounded ordering >jex, and so first we must establish a set of conditions under which this kind of
recursion is well-defined. This is the purpose of Section 7 which follows. Before we get into the technical
details, though, we want to pause for a moment and explore the general pattern hinted at above, and
introduce the notion of a learning procedure, which we have alluded to several times earlier.

20



6.2 Learning procedures

Our challenge in the next Sections is to take some initial sequence u which is ‘approximately bad” and
produce a v which is also approximately bad, but in addition approximately minimal. For simplicity, let’s
forget for a moment that we’re working with infinite sequences and the lexicographic ordering, and just
consider a set X which comes equipped with two decidable predicates Py(x) and Cp(x).

Of course, in our case Py(x) represents that x is approximately bad while Cy(x) represents that it’s
approximately minimal, but here everything is greatly simplified and we do not assume anything about
these formulas beyond the following property, which states that if x is not minimal then there must be some
y < x satisfying Py(y):

(Y0)(~Co(x) = @y < YPo(y)). (16)

Therefore on an abstract level, the algorithmic problem we face is the following: Given some initial x which
satisfies Py(x), to find some y which satisfies both Py(y) and Cy(y), where the failure of Co(x) always leads to
a ‘better’ guess y - this is captured by (16). In other words, using (16) we want to produce a y satisfying

(Vx)(Po(x) = (Fy)(Po(y) A Co(y)))- 17)
It is not too hard to come up with an algorithm which takes us from a realizer of (16) to a realizer of (17).

Lemma 6.1. Suppose that & : X — X is a function which satisfies
(Yx)(=Co(x) = x > &(x) A Po(E(x)))- (18)

For any x : X, the learning procedure L ¢ [x] starting at x denotes the sequence (x;)ien given by

Xi if Co(x;)
= d xi1 =
To= X g i {é(xi) otherwise.
Whenever > is wellfounded, there exists some k such that Co(xx) holds, and we call the minimal such x; the limit of
L c,[x], which we denote by
lim Lg/co [x]

Then the functional Ax1lim Lgc [x] is definable using wellfounded recursion over >, and realizes (17) in the sense
that
(Vx)(Po(x) — Po(lim Ly ¢, [x]) A Co(lim L ¢, [x])). (19)

Proof. To formally construct the limit, given Cy and & define the function Ls ¢, : X — X" by

[x] if Co(x)
Lecy(x) = { .

[x] * Lec,(E(x))  otherwise,
which is definable via wellfounded recursion over > since the recursive call Ls ¢ (£(x)) is only made in the
event that ~Cy(x) and so x > &(x) by (18). A simple induction over the length of L ¢, (x) then establishes that
lim L c,[x] is the last element of L¢ ¢, (x).

That the limit satisfies (19) essentially follows from the definition. If Py(x;) but =Cy(x;) then we have

Xip1 = &(x;) with x; > xi41 and Po(x41). So it follows that if Py(x) then Py(x;) for all i € IN. Then by the
existence of a limit x; satisfying Co(xx) we're done, since we then have Py(xx) A Co(xy). a

Algorithms of the above kind can be characterised as ‘learning procedures’ because we start with some
initial attempt x( for our minimal element, and either this works or it fails, in which case we replace xy with
some ‘improved’ guess xy < x; which we have learned from the failure of xy and continue in this way until
we have produced an attempt x; which works and satisfies Po(x;) A Co(x).

The next two sections involve adapting this basic idea to the more complex situation of constructing
a realizer for the functional interpretation of ZLjex, where the predicates Py and Cy will need to take into
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account the counterexample functionals which determine precisely what an approximation constitutes.
Moreover, we will need to adapt Lemma 6.1 so that it applies to the non-wellfounded ordering .

Learning procedures as described above form the main subject of the author’s paper [23], which in
particular contains a solution to the functional interpretation of the least element principle for wellfounded >
that essentially forms a simple version of the realizer we construct here. Moreover, learning procedures even
for certain non-wellfounded orderings are discussed in [23, Section 5], although none of this encompasses
the variant of recursion over >jox which we require below. Note that these learning procedures should not
be confused with the learning realizability of Aschieri and Berardi (e.g. [2]), which although based on a
similar idea, takes place in a very different setting.

7 Recursion over >, in the continuous functionals

In order to give a functional interpretation of ZLjey, it is necessary that we extend system T with some form
of recursion over the relation >jex. Since > is not wellfounded, it is clear that naively introducing a general
recursor over >jex will lead to problems. However, just as ZLjey is equivalent to an induction principle Oljex
over 1o, Which comes with the caveat that formulas must be open (cf. Section 3.1), we will show that we
can define a recursor over >jx which exists in continuous models of higher-type functionals, provided that
we introduce an analogous restriction for the recursor.

The notion of recursion over B>}, is not new: In particular this forms the main topic of Berger’s analysis
of open induction in the framework of modified realizability [4]. However, the functional interpretation
requires a non-trivial adaptation of these ideas, which is the main purpose of this section.

7.1 The problem with recursion over >jex

We begin by highlighting why a naive lexicographic recursor does not behave in the same way as Godel’s
wellfounded recursors Rec, as identifying the problems provides some insight into how we can potentially
circumvent them. Suppose that given some pair (X, >) where X is a type and > a wellfounded decidable
relation on X, together with output type Y, we add to our programming language T an open recursor
ORec(x»),y which has the defining equation

ORec(y () =y Hu(An,v . ORec” ([u](n) = v) if vg < 1)

where “if vy < u,” is short for ‘if vy < u,, else 0y’. Does our recursor give rise to well-defined functionals?
Let’s consider the very simple case X = B where by > by only holds in the case 1 > 0, and set the output
type Y := IN. Define the closed functional @ : (BN — (N — BN — IN) — IN) —» N by

®H := ORec(y . \(Ak.1).

Then we can show that the type structure of all set-theoretic functionals is no longer a model of T +
(ORec(p»)N)- To see this, consider the functional H : BN — (N — BN — IN) — N defined by

Huf o= 1+ fn(0,1,1,...) for theleast n withu, =1
0 if no such n exists.

Suppose that ®H = N for some natural number N. Then unwinding the defining equation of ORecﬁBP)JN
we get

N = ®H =1+ ORec’(0,1,1,...) =2 + ORec(0,0,1,1,...) =... = N + 1 + ORec(0,...,0,1,1,...) > N+ 1,
N————
N + 1 times

a contradiction. Here it is not necessarily surprising that we run into problems. But suppose that we
demand that H be continuous, in the sense that we can determine the value of Huf based on a finite initial
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segment of # and f. Unfortunately, it turns out that if we increase the output type to Y := IN — IN then not
even continuity (or indeed even computability) can save us: Let G : BN — (N —» BN — NN) - NN be
defined by

Gufn:=1+ fn(0,1,1,...)(n+1),

and let N : IN be given by N := ORecG(/\k.O)(O). Then similarly to before, we have

N =1+0Rec®(0,1,1,...)(1) = 2+0Rec®(0,0,1,1,...)2) = ... = N+1+ORec®(0,...,0,1,1,...)(N+1) > N+1,
N————
N + 1 times

which is again inconsistent with the axioms of Peano arithmetic. So even though N is a closed term in
T + (ORec(p ) nn) of base type, there is no natural interpretation of N in even in continuous models. So
what does it take to ensure that recursion over >« does have an interpretation in continuous models? To
this end we will discuss two possible restrictions, namely:

e Leave the defining equation of the recursor unchanged but restrict Y to being a base type.
o Allow Y tobe an arbitrary type but introduce an explicit ‘control functional” into the defining equation.

The former is the approach taken by Berger in [4] and works well in the setting of modified realizability.
However, for the functional interpretation we need a recursor whose output type Y can be arbitrary, and
so we appeal to the second strategy which we will describe in detail in Section 7.3. However, to put our
solution in context, first we will quickly sketch Berger’s solution.

7.2 The continuous functionals and Berger’s open recursor

In order to extend functional interpretations to subsystems of mathematical analysis, it is traditionally
necessary to extend the usual interpreting calculus of functionals with a strong form of recursion, which is
typically only satisfiable the continuous models. This was originally the case with Spector’s bar recursion,
and also here with our variants of open recursion.

In this section we assume a basic knowledge of the type structures of partial and total continuous
functionals, as a full presentation here is beyond the scope of our paper. Continuous type structures of
functionals were formally constructed from the 1960s onwards: The total continuous functionals being
conceived simultaneously by Kleene [12] and Kreisel [16] and the partial model, developed independently
by Scott [25] and Ershov [6]. Variants of the latter play an important role in domain theory, where in
particular they are used to give a denotational semantics to abstract functional programming languages
such as PCF. For an up-to-date presentation of these things and much more in this direction, the reader is
encouraged to consult [17].

Very roughly, the continuous functionals C%

¢y of type X — Y consist of functionals F from X to Y which
satisfy the property that

in order to determine a finite amount of information about F(x) one only needs a finite amount
of information about x,

where the notion of finiteness is made precise by introducing a suitable topology for each type. Note that
continuity is a strictly weaker property than being computable: In particular any function f : IN — N is
continuous by definition, since f(n) only depends on a natural number 1, and natural numbers are here
considered to be finite pieces of information. On the other hand, not all functionals F : NN — IN are
continuous, in fact the continuous functionals Cy . of type 2 are precisely those such that for any a : NN
there exists some N such that for all g, if [a](N) = [B](N) then F(a) = F(5). Both of the aforementioned
properties can be generalised in the following way:

(i) The continuous functionals Cy_, consist of all sequences N — C¢, and so in particular the type
structure of continuous functionals is a model of countable dependent choice.
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(ii) Any F € Cy,_,, satisties the following property:

CONT : (Ya)@AN)(YB)([a](N) =x- [BIN) — F(a) = F(p)).

Note that for X = IN this property is equivalent to F being continuous, whereas for X a higher type, it is
strictly weaker (since F could depend on an infinite amount of information from a(0) but still satisfy CONT,
for example).

The partial continuous functionals C* are similar to the total continuous functionals described above, with
the crucial difference that they allow functionals which are undefined in places, and so the C’;‘é are represented
by a domains which in particular come equipped with a bottom element L denoting an undefined value.
The partial continuous functionals have the key property that every continuous functional X — X has a
continuous fixed point, which means in particular that any recursively defined functional has a natural
interpretation in C (although this need not be total). The partial continuous functionals are related to the
total continuous functionals in that C* is the extensional collapse of the total elements of C® [6]. What this
means in practice is that in order to show that a recursively defined functional has an interpretation in C%,
it is enough to show that its interpretation in C¢ as a fixpoint is total.

Theorem 7.1 (Berger [4]). Let > be a well-founded, decidable relation on X. Then any fixpoint of the defining
equation of ORecx )N is total, and hence ORecx )N exists in the total continuous functionals C.

Proof. While in [4, Proposition 5.1] this is proven using a variant of open induction, we appeal to the classical
minimal bad sequence construction, to emphasise already the deep connection with Nash-Williams” proof
of Higman'’s lemma. Suppose for contradiction that there are total arguments H and u such that ORec" (1)
is not total. Using dependent choice, which is valid for total objects of sequence type, construct the minimal
bad sequence v of total elements of type X as follows:

If [vg,...,vk-1] has already been constructed, define v; to be a total element of CAI‘)‘(’ such that

ORec!! ([vg, . .., vk-1,vr] * w) is not total for some total extension w, but ORec!! ([vg, ..., vk1,a] *w)
is total for all total w whenever a < vy.

Now consider ORec’(v) = Huo(An, w . ORec([v](n) * w) if wy < v,) = Ha where
ay = {0y, Aw.OReCH([v](n) = w) if wy < v,),

and note that we use a slight abuse of types here, informally identifying the type XN — (N — XN —
IN) — N of H with (X X (XN — N))N — IN. But by minimality of v, the sequence a, is total, and hence
Ha is total and then by CONT applied to the total objects H and « there exists some N such that whenever
[a](N) = [BI(N) then Ha = Hf. But now consider the sequence [v](N). By construction there exists some w
such that ORec! ([v](N) * w) is not total. But ORec! ([v](N) * w) = H, B for

B = (([DI(N) * w),, Aw’.ORec™ ([0])(N) * w](n) = w’) if w} < ([0](N) * w),)

and we have a,, = 8, for all n < N and hence Hf = Ha which is total, a contradiction. Hence our original
assumption was wrong and ORec” (1) must be total, and since H and u were arbitrary we have that ORec is
total. O

We have given this proof in great detail as we want to compare it to the corresponding totality proof
of our explicit open recursor given in the next section. We now conclude our overview of Berger’s open
recursion by stating the main result of [4], namely:

Theorem 7.2 (Berger [4]). There is a functional definable in T + (ORec(x ) N) such that @ satisfies the modified
realizability interpretation of the axiom of open induction Oliey for X9-piecewise formulas, provably in PA + CONT +
Ollex + (OReC(X,D)/N).

Theorem 8.3 below forms an analogue of this for the functional interpretation.
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7.3 The explicitly controlled open recursor

Berger’s variant of open recursion uses in an essential way the fact that total continuous functions of type
ZN — N (where Z is arbitrary) only consider a finite initial segment of their input. In this way we avoid the
problems encountered earlier in the chapter. However, as we will see, having open recursive functionals
whose output type Y is arbitrary is essential for the functional interpretation of ZLje, and Berger’s variant
is no longer total in this case as we cannot rely on continuity to ‘implicitly’ control the recursion. Therefore
we require some other way of ensuring that the recursor only depends on a finite initial segment of its input.
We accomplish this by adding an additional parameter F to the recursor which is responsible for “explicitly”
controlling the recursion, in a sense that will be made clear below. We start with some definitions.

Definition 7.3. Suppose that a : ZN and m : IN. Then the infinite sequence [a],, : ZN is defined by

lal,, = An a, ifn<m
" "10, otherwise.

Now suppose in addition that F : ZN — IN. Then the infinite sequence {a}f : ZN is defined by

0z if (Am < n)(F([a]y) < m)
o, otherwise.

{a}r := /\n.{

Note that both [a],, and {a}r are primitive recursively definable.

Note that the sequence {a}r uses the well-known stopping condition F([a],) < m due to Spector [27],
which ensures that his variant of bar recursion is well-founded.

Lemma 7.4. Given some F : ZN — N and a : ZN, whenever there exists some m : IN such that F([a],,) < m then

{a}e = [alm,
where my is the least such m. If no such m exists then {a}r = a.

Proof. This follows directly from the definition: For the first case, by minimality of my we have {a}r(n) = ay,
for all n < myg, and {a}r(n) = 0z otherwise, which is exactly the definition of [a],. O

Lemma 7.5. For any functional F : ZN — N satisfying CONT, then for each a : ZN there exists some m such that
F([alw) < m.

Proof. Suppose that N is the point of continuity of F which exists by CONT, and define m := max{N, Fa + 1}.
Then [[a],,](N) = [a](m) since N < m, and therefore F([a],,) = Fa < m. O

Theorem 7.6. Given F : ZN — N and o : ZN, the following facts are provable assuming CONT:
(i) {a}r = [aly, where mg satisfies F([a],,,) < mo and is the least such number;
(ii) for any B satisfying [a](mo) = [B](mo) we have {a}r = {B}F;

(iii) {a}etr = {a}r.

Proof. Part (i) follows directly from Lemma 7.4 together with Lemma 7.5. For part (ii), we observe that for
all n < my we have [a], = [B],, from which it follows that the first m; satisfying F([8].,,) < m1 is just my.
Therefore by part (i) again we have {8}r = [Bln, = [@]m, = {a}r. Part (iii) now follows easily, since by part (i)
we have {{al¢le = {[@ln ), and since [, 1(mo) = [al(mo) then ([al, )¢ = {a)r by part (ii). 0
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Now we are ready to define our ‘explicit’ recursor. Given H : (X X (XN — Y))N - Yand F: (X x (XN —
Y))N — N, we define

EORecg(FD)Y(u) =y H(la}p) for a :=(xxnoyyn An . (uy, Av . EORec?F ([u](n) * v) if vy < ).

This is a form of lexicographic recursion just as before, but with the crucial difference that the recursor now
comes equipped with some additional functional F : ZN — N which determines how much of the sequence
a is ‘relevant’. As soon as we have found some m satisfying the condition F([a],,) < m then we declare that
we are not interested in a, for n > m. Our introduction of this ‘control” functional F allows us to provide an
analogue of CONT for H, even though the output type of H is arbitrary.

Lemma 7.7. Suppose that H : ZN — Y and that F : ZN — N satisfies CONT. Then H satisfies the following
property:
CONT" : (Ya)@AN)(¥B)([al(N) = [BI(N) — H({a}r) =y H({}F)).

Proof. Let mg be the least number satisfying F([a],,,) < o, which exists by CONT, and define N := m. Then
if [a](mo) = [Bl(mo) then {a}r = {B}r by part (ii) above, and therefore H({a'}r) = H({B}r). O

We can use this result to show, analogously to Theorem 7.1, that EORec(x 5 y exists in the total continuous
functionals for any Y.

Theorem 7.8. Let > be a well-founded, decidable relation on X. Then the fixpoint of the defining equation of
EORecx ),y is total, and hence EORec(x )y exists in the total continuous functionals C*.

Proof. This follows analogously to the Eroof of Theorem 7.1. Suppose for contradiction that there are total
arguments H, F and u such that EORec™" () is not total. Using dependent choice, construct a minimal bad
sequence v as follows:

If [vg,...,vk-1] has already been constructed, define v, to be a total element of C"}‘(’ such that

EORec™* ([vo, - - -, k-1, vx]*w) is not total for some total extension w, but EORec* ([vo, - - -, Uk-1,a]*
w) is total for all total w whenever a < vy.

Now consider EORec™f (v) = H({a}F) for
a = An . (v,, Aw . EORec™ ([v](n) * w) if wo <t v,).

Then by construction of v, @ and hence H({a}r) must be total, and by CONT" applied to the total objects
a, F and H hence there exists some N such that for any total g : (X x (XN — V)N, if [a](N) = [BI(N)
then H({a}r) = H({B}r). Now consider the se%uence [0](N). By construction there exists some w such that
EORec™F ([0](N) * w) is not total. But EORec'™ ([v](N) » w) = H({B}r) where

B = An{([0](N) * w),, Aw’ . EORec ([[0](N) * w](n) * w’) if w}) < ([v](N) * w)y)

and we have f(n) = a(n) for alln < N and hence by CONT" we have EORec™F ([0](N) *w) = H({B}r) = H({a}r)
which is total, a contradiction. Therefore EORec/"* (1) must be total, and since H, F and u were arbitrary
total objects then EORec is total. m|

8 The functional interpretation of ZL,, - Part 2

We will now make formal the intuitive idea presented in Section 6. We begin by setting up an analogue of
Lemma 6.1, but this time the objects x of our learning procedures are sequences u : X™¥ (and so Py(u) and
Co(u) are decidable predicates over XN) and ;.1 is defined as E({ui}g) for some ¢ : XN — N. As a result, we
end up with a sequence of the form

g > {uolp lex t1 > {unlp Dlex i > ...
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and so in order to guarantee that Py(u;) holds for all i we will require an additional condition, namely that
the property P is preserved under the map {-}, : X™ — X™. We will now just state and prove the result, but
the reader is strongly encouraged to simultaneously refer back to the much simpler Lemma 6.1 and its proof,
not only so that it is easier to grasp what is going on here, but because the differences in the formulation of
the two lemmas are extremely informative.

Remark 8.1. For the remainder of the paper, we request that the canonical element Ox of type X is minimal
with respect to >. This condition is not essential and could be circumvented by other means, but it makes
what follows a little easier and allows us to avoid some additional syntax. In practice this assumption is
completely benign, and in particular in Chapter 9 where our type X will actually be a type X" of finite words
and < will denote the prefix relation, then the normal choice of Ox- = [] is also minimal.

Lemma 8.2. Suppose that & : X™N — XN is defined by
E(u) = [u](So(u)) * £1(u)
where & : XN — Nand & : XN — XN, and that & satisfies
(Vu)(=Co(1) — ugywy > E1(u)o A Po(E(1))). (20)
Moreover, suppose that ¢ : XN — IN is an additional functional which satisfies
(Yu)(Po(u) — Po({u}g))- (21)
For any u : XN, the controlled learning procedure LC?CO [u] starting at u denotes the sequence (u;)ien given by

{uily if Co({uite)

= d i+l ‘=
Up:=u and Ui {E({Mi}a,)) otherwise.

Then provably from CONT, firstly there always exists some k such that Co({ux}y) holds, and we call {ux}, for the
minimal such wy the limit ofLC(f;CO [u], which we denote by

. 0]
lim £LC £Co [u],
secondly the functional Au.lim LC?CU [u] is definable in T + (EORecx)), and finally we have

(Yu)(Po(u) = Po(lim LC? . [ul) A Colim LC? . [ul)). 22)

Proof. We first formally construct the limit functional, which the reader can skip if they like since this is
nothing more that a somewhat intricate unwinding of definitions. First, we define LZ’ o XN — (XN)* by

L?Ca (u) := EORecgé,FD),(XN)W(u) where

Fa := (P(O(())
Ha = [ao] if Co(ag)
")l * ar&o(ap)ér(ap)  otherwise.

Here we denote by «ay the sequence An.moa(n) and similarly for a;. Then unwinding the definition, we
have L?CO(u) = H({a}f) for a = /\n.(un,AU.L?CO([u](n) +v) if vg <u,). But since Fa depends only on the
first Component ap = u, we have (by Lemma 7.6) {a}r = [a]n, where my is the least number satisfying
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F(ladm,) = ¢(lulm,) < mo. This means that {uly = [uly, and so (fa}r)o = ([alm)o = [ulw, = {uly and

¢

(late)r = An < mg,0.L¢

([u](n) * v) it vy < u,, and so

Hulol if Co({uly)

H({a}F) = {[{“}¢] « (e &o((ulp)Er(fuly)  otherwise.

But now by (20), if =Co(ful) then ({u}g)ey(iuy,) > E1({u}p)o, and since Ox was chosen to be minimal with
respect to > (cf. Remark 8.1) this can only mean that &o(fuly) < mo (else ({ulg)eou,) = 0x) and therefore
({udo)eo(tuny) = Ueo(uy,)- Substituting all this information into the ({a}r); we have

(laten&o(lulg)&r(fug) = LY - ([udo](Eo((ul)) * Exfuelg)) = LY ¢ (E({uky)).

So to summarise, the functional L? c, satisfies (repressing subscripts)

¢ | Hubgl if Co({u}g)
Fea )= {[{um + L (E(fuly))  otherwise,

and so by induction on the length of L? ¢, (1) one establishes that lim LC? c,[1] exists and is the last element

of LY . (u).

"16"6 0Ve1rify (22) is similar to the proof of Lemma 6.1. We first show by induction that if Py(u) holds then
Po({ui}y) holds for all i € IN. For i = 0 this follows by (21) applied to u = ug, and otherwise if Py({u;}y) is true
then either {u;1}y = {{ui}p}o = {ui}y by Lemma 7.6 or =C({u;}y) and then by (20) we have Py(u;;1) and hence
Po({uir1}) by (21). Therefore, if {uy}4 is the limit of the learning procedure, then Po({ux}) A Co({ur}g) holds,
and we're done. O

Our final step is now to produce a realizer for the functional interpretation of ZLje,. Let’s briefly recall
from Section 6 what this means: We are given as input a sequence i (we use this new notation as we want
u to denote a separate variable below), a pair of functionals M, N : XN > (IN—-XN->N)—- N, together
with W: XN - (N - XN — N) - XN, and we must produce some 7 : N, v : XN and y : (XN - N)N
satisfying

P(ii,n) — P(v, Nvy) A C(v,y, Muy, Woy), (23)
where as before C(v, y, m, w) := wy < vy, = —P([v](m) * w, ymw). We first need some definitions. Define the
functional WN : XN — N by

N ,_ NN
W (u) = EORec(X,D)/N(u)
where Na := Napa;. Using W, for each u : XN define y, : N - XN — N by
Yui=An,v. WN([u](n) = v) if vo < uy,.

Finally, define parameters ¢ : XN — N, & : XN - Nand & : XN — XN, together with predicates Py and
C() ’ by

¢(u) :== Nuy,
CEO(M) = Mu)/u
ci(u) := Wuyy

Po(u) := P(it, W¥ (@) — P(u, W™ (1)

Co(u) := C(u, yu, Muy,,, Wuy,,).
Now it is perhaps becoming clear to the reader what will come next: We will set up a controlled learning
procedure LCZI‘),CO [#] on these parameters exactly as in Lemma 8.2, and the limit v := {uy}, of LC?CO [7] will

satisfy Py(v) A Co(v), or in other words, P(i1, WN(i1)) — P(v, WN(v)) and C(v, y», Moy, Woy,), from which we
will be able to construct our realizer of ZL;... Let’s make this formal.
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Theorem 8.3. Let n,v and y be defined in terms of i, N, M and W by

n = W)
v := lim .EC?CU["]
Y i="Yo.

Then (provably in CONT) these satisfy (23) and therefore solve the functional interpretation of ZLey.

Proof. We use Lemma 8.2, which means that we must check that each of (20) and (21) hold for our choice of
Py and Cy, i.e. we must prove

(V) [=Cu, yu, My, Wiyy) = gy > E1()o A (P, N (@) — P(E(u), WN(Ew))))] (24)

and
(Vu)[(P(a, WN (@) — P(u, ¥V (w))) — (P, WN (@) — P({u}y, PN ({u}p)))]- (25)

For the first condi’_cion, note that —=C(u, y,, Muy,, Wuy,) is just =C(u, vy, Eo(u), E1(u)), which implies both
E1(u)o < ugy @y and P([u](Eo(w)) * E1(w), yuo(u)é1(u)). But since

[ul(Eo(w) * E1(u) = &) and  yulo(u)&i(u) = PN(E(w))

we have established P(&(u), WN(&(u)), and hence the conclusion of (24).

The second condition is more subtle: Either —P(i1, WN(i1)) and we’re done, or it suffices to prove
P(u, WN(u)) — P({u}y, PN(fu}y)). We now need to unwind the definition of WN(u): First note that we
have

() = Nlaly)

where (using the definition of y,,)
@ = Anuy, Av . WN([u](n) * 0) if v9 < 1,) = Anuy, Vin)-

and so in particular we have (by the definitions of N and ¢)

N(lalw) = N((udw)([yulm) = N(@dn)Y1a1,,) = $uln) (26)

where for the central equality we use the assumption that Ox is minimal with respect to > and so
A UN([u](n) *v) if vg <u, ifn<m
u ZA,.\PN m +0) if vy < mn = A
Yl n,o ([[ulm](n) * 0) if vo < ([u]m) {AU.\I]N([M](TI) +0)if vy <10x otherwise

—n Avyyno ifn<m
T A0 otherwise

= [yulm-

Let mp be the least number such that N([a],,) < mo (which exists since we are assuming CONT), and
therefore by (26) the also the least number such that ¢([u],,,) < mo. Then by Lemma 7.6 we have that for all

u:

L.7:6() (26) L.76()

W) = N({aly) N(lwy) =" ¢ ([l m,) P({ulg) = Niuoy i, (27)
In particular, by Lemma 7.6 (iii) we have
WX (o) E olole) 2 pltulg) € W) 28)
and
W) 2 Nlaln,) < mo (29)
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and therefore s e -
[k IOV () B Tk 1wV 00) © 2 [l 100V ) B [0V ()

and thus P([u](WN(u))) implies P([{u}(p](‘l’N ({u}y))), which establishes (25).
It now follows from Lemma 8.2 that

Py(it) = Po(v) A Co(v)
and since Py(#) is trivially true we have established
P(i, WN()) — P(v, WN(v)) and C(v,y,, Moy, Woy,).

We can now prove (23). Suppose that P(u, ) holds. Then since n = WN (i) from the left hand side we have

P(v, WN(v)). Now, since v = {ux}y for some element in the learning procedure LC? G [@], by (28) we have

WN() = WN({urdp) = d({edg) = Nitdo)iu, = Noys = Noy

and so we have established P(v, Nvy). Then, since C(v, y, Mvy, Woy) is given to us automatically, we have
proven
P(u,n) — P(v, Nvy) A C(v,y, Muy, Woy)

which is exactly (23), and so we’re done. O

The results of this section mark the technical climax of the paper, and in particular form our broadest and
most widely applicable contribution. While the proofs above are perhaps somewhat difficult to navigate,
it is important to emphasise that most of the technical details are bureaucratic in nature, in the unwinding
of all the definitions and the careful use of Lemma 7.6. The intuition behind our realizer, on the other hand,
should hopefully be clear from the somewhat more informal discussion in Section 6. In any case, now that
the hard work is done, a computational interpretation of Nash-William’s proof of Higman’s lemma follows
relatively easily.

9 Interpreting the proof of WQO(=5.)

We are now finally ready to produce our realizer for the statement that =g- isa WQO. In fact we do something
more general, namely give a computational interpretation to the proof that WQO44(=) = WQO(.), which
is valid for any well quasi-order <. Recall that the functional interpretation of WQO4,(<) is given by

(VX @™=NENY G0y (Vi < < wg)(g(i) < () A Xg = Xg(j)- (30)

Lemma 3.2 makes precise exactly how we use the assumption WQO,.4(=) to prove WQO(<.): Namely given
a hypothetical minimal bad sequence of words v, we take the sequence ¢ and require that our monotone
subsequence ¢ be valid up to the point k, where k is such that P(w, k) holds for w = [v](g(0)) * ¥¢ as defined in
Lemma 3.2. If minimality of v is witnessed by some functional y then such a k would be given by y(g0)(3).
This motivates the following:

Lemma 9.1. Suppose that G is a realizer for (30):
(Vx, )(Vi < ] < 0Grw)(Grow(i) < Grow(f) A XG,u() = XCyu(j))- @1
Then from this we can construct a functional H : XN — (N — XN — IN) — NN satisfying
(Yo, Y)(Vi < j < y(Ho,(0))(Fh,,))(Ho, (i) < Hy,y(j) A Oh,,6) = TH,,()) (32)

where vy, , is shorthand for Ai.vy, ), and 0,0 are defined as in Lemma 3.2.
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Proof. Define wy,, g := 7(g(0))(0¢) and then H,), := Gz,,. Then (32) follows directly from (31). O
We will now give a computational version of Lemma 3.2 as a whole:

Lemma 9.2. Suppose that H satisfies (32) and that v and y satisfy C(v,y, Hy,,(0), 0, ), which analogously to before
abbreviates

OH,,(0) < VH,,©0) = (Fi < j < y(Hoy(0)(@n,, ) (([0](Ho,(0)) * Bh,, )i =« ([0](Hy,(0)) * Th,,);) - (33)

—P([v](Ho,y (0))+t,,, ¥ (Ho,y (0)(Br )
Then we have =P(v, Hy,, (y(Hy,,(0))(3n,,)) + 2) i.e.
(Ji < j < Hyp(y(Ho,(0))(0n,,)) + 2)(0; <. vj).

Proof. This follows directly from Lemma 3.2. First of all, we define ¢ := H,,, then the sequence w in Lemma
3.2 becomes identified with [0](H,,,(0)) * Op,,, and so setting k := y(Hy,,(0))(0n,,), the equation (33) is just
(3), while (32) is just (4), and so by the lemma there exists some i < j < g(k) + 2 such that v; <, v;. But since
g(k) +2 = Hy,(y(Hy,,(0))(0n,,)) + 2 we're done. O

What we have shown above is that if C(v, y, Hy,,(0), 7n,,) then -P(v, Hy, (y(Ho,,(0))(n,,)) +2), or in other
words, .
P(v, Hv,y(V(Hv,y(O))(ﬁHu,,,)) +2) AC(v,7, Hv,y(o)r 6Hv,y)

mustbe false. But thisisjust the conclusion of the function interpretation of ZLjex for Nvy = Hy, ), (y(Ho,,,(0))(0n, )+
2, Mvy = H,,,(0) and Wouy = 0y, ,, and so for any v,y and n satisfying (23) we must have —P(u,n), which is
exactly what we want! Let’s make this formal.

Theorem 9.3. Define N,M : (X*)N - (N — (X)N - N) - Nand W : (X*)N - (N - (X)N - N) - (X)N
by

Noy := Ho,)(y(Ho,(0))(0H,,)) + 2

Muy := H,,(0)

Woy = OH,,
where H is some functional which satisfies (32). Define P(s) := (Vi < j < Is|)(s; £ s;) so that P(u, k) = (Vi < j <
k)(ui #. uj), and let n,v and y be such that they satisfy the functional interpretation of ZLiex relative to N, M, W

defined above:
P(u,n) — P(v, Nvy) A C(v,y, Muy, Woy) (34)

Then we have —P(u, n) and hence
Vu)Ji < j < n)(u; <. uj)).

Proof. As shown above, if H satisfies (32) and C(v, y, Mvy, Woy), then by Lemma 9.2 we have —P(v, Nvy),
which implies =(P(v, Nvy) A C(v,y, Mvy, Woy)), and so by the contrapositive of (34) we have -P(u,n). O

Therefore any program which computes v,y and n on any u, N, M and W, in particular that of Theorem
8.3, can be converted to a program which realizes WQO(X.):

Corollary 9.4. Suppose that H satisfies (32), and define Nvy := H,,,(y(Ho,,(0))(?n,,)) +2. Then provably in CONT
the functional @ : (X*)N — N defined by
D(u) := WN(u)

where WN(u) is defined as in Theorem 8.3 witnesses WQO(<.,) i.e.

(Fi < j < Ow)(u; <. uj).
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Corollary 9.5. Let H be defined as in Lemma 9.1 for G as defined in Section 5. Then @ : (B YN — IN as defined in
Corollary 9.4 witnesses WQO(=p ) i.e.

(Fi < j < Ow))(u; =, uj).

Remark 9.6. To construct our realizer for WQO(<.) we have only used the first component n of the
full functional interpretation n,v,y of ZLiex. This makes sense: We actually prove via Lemma 9.2 that
(Jv,7)Q(v,y) — L where Q(v, ) abbreviates the conclusion of (34), and so to realize Higman’s lemma we
in fact only need to produce some functional @ such that P(u, ®(u)) — (v, 7)Q(v, ), and so the full com-
putational interpretation of ZLje, via learning procedures was not strictly necessary. However, this simply
emphasises the fact that we have achieved much more that a realizer for Higman’s lemma - Theorem 8.3
allows us to extract a program from any proof which uses ZL,e, and in general this program may well need
a specific v and y satisfying Q(v, y), even though here that was not the case. There is a further point to be
made in this direction - namely that the concrete witnesses for v and y enables us to verify our realizer ®(u)
in a quantifier-free theory, a fact that is relevant to those inclined towards foundational issues.

Before we conclude, it is worth pausing for a moment and trying to explain from an algorithmic point of
view what the realizer we get in Corollary 9.4 actually does. Note that all of the following is essentially just
an informal recapitulation of ideas contained in the preceding results. Roughly speaking, ®(u) encodes a
program which works by recursion on the lexicographic ordering t>jex. First, it finds the point 1 such that

N([M]mo)([)/u]mg) < myp

where v, = An,w . O([u](n) * w) if wy < u,, and so in particularly it only looks at the sequence u at points
n < my. For simplicity let’s define u’,y" = [ulu,, [Vuln,- Now, using any program H which realizes
WQO44(%) on the sequence @’ we find a sufficiently large approximation Hy )+ to a constant subsequence,
which works up to the point )/’(Hu/,y»(O))(ﬂ;{”, V,).

Now if ﬁ?ll,/,y/ o < u;{w, 0) then we must have Hy ,/(0) < mg (using our assumption that Ox is chosen to be
minimal with respect to <) and so )/’(Hu/,),f(O))(ﬁ;[uw) = O([u'](Hyr ) (0)) * ﬁ}{“/,y/ ). Assuming inductively that
this returns a bound for [u'](H, ,(0)) * ﬁ}iuw being a good sequence, then using reasoning as in Lemma 3.2

this means that u’ becomes a good sequenée before point Hy , (P([t'](Hy,(0)) = iy, ) +2 = Nu'y’. But
'y
since ®(u) = Nu'y’ < my and u’ = [u],, then this means also that u is good before ®(u).
To verify that O([u'](Hy - (0))*il}, , ) returns abound, we can repeat this argument for u; := [u'][(Hy,(0))*
wy

~57

i, , and we end up with a learning procedure as in Section 8. Eventually, this learning procedure will

Hy,
terminate with a minimal sequence v such that ®(v) is guaranteed to witnesses that v is good.

10 Conclusion

I will conclude by tying up everything that we’ve done and outlining some directions for future work.
On the route to Corollary 9.5 we took what we hope was a pleasant and instructive detour through many
different areas which connect proof theory and well quasi-order theory, the most important of which I will
now summarise.

Right at the start, in Chapters 2-3, we discussed various nuances that arise when giving an axiomatic
formalisation of results in WQO theory, in particular how the distinction between dependent choice or
Zorn’s lemma plays an important role in the context of program extraction. The full formalisation of Nash-
Williams” minimal bad sequence argument has already been studied in e.g. [26] (in MinLoc) and [28] (in
Isabelle/HOL), and we hope that our formal proof sketched in Chapter 3 may prove informative to those
working in a more hands-on manner on the formalisation of WQO theory in proof assistants.

In Chapters 4-5 we took the opportunity to present Godel’s functional interpretation in a way that would
appeal to readers not already familiar with it. In Section 4.4 we placed particular emphasis on explaining
how the interpretation behaves in practice, and in this vein we gave a carefully worked out case study in
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Section 5, which also formed a key Lemma in our proof of WQO(=g.). It is my sincere hope that these
chapters will be a general help to those interested in how proof interpretations work, independently of the
rest of the paper.

Chapters 6 and 8 contain our main technical contribution, namely the solution of the functional interpre-
tation of ZLjex. While as a direct consequence this enables us to extract a program witnessing WQO(=p ),
our work in these chapters is much broader, and provides us with a method of giving a computational
interpretation to any proof that can be formalised in PA“ + QF-AC + ZL ey, where moreover ZLjex can involve
any relation (X, ) which is provably wellfounded. In particular, this paves the way for the extraction of
programs from much more complex proofs in WQO theory, such as Kruskal’s theorem, and we intend to
address this in future work.

Hidden in Chapters 6 and 8 is also a small extension of my work on learning procedures [23]. While in
this paper they play the role of making our computational interpretation of ZLj.x more intuitive, Lemma
8.2 is of interest in its own right, as it demonstrates that we can extend the notion of a learning procedure
as introduced in [23] to the non-wellfounded ordering >.x. We anticipate that a number of variants of open
induction or Zorn’s lemma over 1, could be given computational interpretations by appealing directly to
Lemma 8.2 as a intermediate result, and this was part of our motivation for stating it explicitly here.

Sandwiched between these sections is Chapter 7, which itself forms a small essay on higher-type com-
putability theory, and the various ways of carrying out recursion over >}, in the continuous functionals.
There are a number of interesting questions to be answered in this direction. Firstly, what is the relationship
between EORec, Berger’s open recursion and the many variants of bar recursion which have been devised
in the context of proof theory? I have already shown that Berger’s open recursion is primitive recursively
equivalent to modified bar recursion [5] and thus strictly stronger than Spector’s original bar recursion, but I
conjecture that in contrast, EORec is equivalent to Spector’s bar recursion and thus weaker than Berger’s
open recursion. This would also imply that EORec exists in the type structure of M® strongly majorizable
functionals, and so does not necessarily rely on continuity to be a wellfounded form of recursion. It would
be interesting to explore some of these issues in the future.

Finally, we should not forget that in Chapter 9 we gave a new program which witnesses Higman’s
lemma, that works not just for the =g, but for any WQO for which a realizer of WQO4,(<) can be given.
Moreover, in contrast to [21], this realizer encodes a recursive algorithm which seems to do something fun-
damentally intuitive. The precise relationship between this algorithm and the many others which have been
offered over the years is a question we leave open for now, although the presence of the control functional in
the explicit open recursor leads me to conjecture that it is genuinely different to most of them. But for now
we simply hope that, among other things, we have provided a little more insight into the computational
meaning of Nash-Williams’ elegant classical proof.
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