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Abstract. We study Krasnoselskii-Mann style iterative algorithms for ap-

proximating fixpoints of asymptotically weakly contractive mappings, with a
focus on providing generalised convergence proofs along with explicit rates

of convergence. More specifically, we define a new notion of being asymp-

totically ψ-weakly contractive with modulus, and present a series of abstract
convergence theorems which both generalise and unify known results from

the literature. Rates of convergence are formulated in terms of our modulus

of contractivity, in conjunction with other moduli and functions which form
quantitative analogues of additional assumptions that are required in each

case. Our approach makes use of ideas from proof theory, in particular our

emphasis on abstraction and on formulating our main results in a quantitative
manner. As such, the paper can be seen as a contribution to the proof mining

program.
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1. Introduction

Many important results in functional analysis are based on establishing the exis-
tence of a fixpoint together with convergence towards this fixpoint for general classes
of contractive mappings. This paper will be based around one such class, the so-
called weakly contractive mappings introduced by Alber and Guerre-Delabriere in
[3]. To be more precise: working in some real normed spaceX, a mapping T is called
ψ-weakly contractive if there exists a nondecreasing function ψ : [0,∞) → [0,∞)
which is positive on (0,∞) with ψ(0) = 0, such that

‖Tx− Ty‖ ≤ ‖x− y‖ − ψ(‖x− y‖)

for all x, y ∈ E. This generalises the more well-known class of strongly contractive
mappings that satisfy

‖Tx− Ty‖ ≤ (1− k) ‖x− y‖
for some k ∈ (0, 1), and on the other hand, represents a special uniform instance of
the class of contractive mappings that satisfy

x 6= y =⇒ ‖Tx− Ty‖ < ‖x− y‖

In [3] it is shown that under certain additional assumptions, weakly contractive
mappings possess unique fixpoints q which are approximated by the Picard iteration
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scheme. The latter is shown by observing that the sequence λn := ‖xn − q‖ satisfies
the recursive inequality

(1) λn+1 ≤ λn − ψ(λn)

from which it follows that λn → 0 with the rate of convergence

λn ≤ Φ−1(Φ(λ0)− (n− 1))

for Φ(s) :=
∫ s
dt/ψ(t). Many variations on this basic result have been explored,

starting in [3] and continuing in [2, 4, 7, 12] and many other papers. Here one
typically considers variants of the more general Krasnoselskii-Mann scheme

(2) xn+1 = (1− αn)xn + αnTxn

where {αn} is some sequence of positive reals satisfying
∑∞
n=0 αn = ∞ (setting

αn = 1 we regain the Picard iteration as a special case). A wide range of con-
vergence theorems have been established, based on different modifications of the
basic parameters, namely the mapping T , the iterative algorithm {xn} and the
underlying space X. For example, [2] introduces a class of asymptotically weakly
contractive mappings which satisfy the more general property

‖Tnx− Tny‖ ≤ ‖x− y‖ − ψ(‖x− y‖) + knφ(‖x− y‖) + ln

for kn, ln → 0 as n→∞, and where certain bounding assumptions are required to
establish convergence. Another variation is considered in [12], which investigates
so-called d-weakly contractive mappings, based on the contractivity condition that
for any x, y ∈ E there exists some j ∈ J(x− y) such that

〈Tx− Ty, j〉 ≤ ‖x− y‖2 − ψ(‖x− y‖)
where here the underlying space X is uniformly smooth and J is the normalized
duality mapping defined by

Jx := {j ∈ X∗ : 〈x, j〉 = ‖x‖2 = ‖j‖2}
where 〈 , 〉 denotes the duality pairing. Finally, one can modify the iterative scheme:
For example, [7] considers the perturbed iteration

xn+1 = Qn((1− αn)xn + αnTxn)

for sunny nonexpansive retractions Qn : X → En. Here, in order to establish con-
vergence we require a number of additional properties, including uniform smooth-
ness of X and stability of the sequence {En} with respect to the Hausdorff metric.

In each of the above cases, convergence proofs tend to involve a strategy which
reduces the problem via a series of (often quite intricate) steps to the following
abstract recursive inequality:

λn+1 ≤ λn − αnψ(λn) + γn

where γn/αn → 0. One can then appeal to a standard result from the theory
of recursive inequalities to establish λn → 0. Rates of convergence become more
difficult to formulate in comparison to convergence proofs which can be reduced
to the simpler inequality (1), and are typically dependent in a subtle way on pa-
rameters which arise from the various additional assumptions that are required for
convergence.

In this paper, we use ideas from proof theory to establish a series of general
convergence theorems for classes of weakly contractive mappings. These not only
strengthen the aforementioned results by weakening parameters and introducing
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suitably abstract formulations of key properties, but bring them together as part
of a unifying scheme. In addition, we provide concrete rates of convergence in all
cases, appealing to the appropriate proof-theoretic moduli in order to formulate
them properly.

1.1. Applied proof theory. Our paper can be viewed as a contribution to the
logic based proof mining program, which applies ideas and techniques from logic to
mathematical proofs, with the aim of both generalising those proofs and extracting
quantitative data such as rates of convergence. A comprehensive background to the
area is presented in [21], and the survey papers [22, 28] provide a good overview of
some of the many applications in analysis. Proof mining continues to be expanded
to new areas of mathematics: In recent years this includes pursuit-evasion games
[27], differential algebra [34] and Tauberian theory [33].

A number of papers in applied proof theory can be related to the work presented
here. A notion of being asymptotically contractive in the setting of arbitrary com-
plete metric spaces (X, d) is given by Kirk [19], where a corresponding convergence
result for Picard iterates is proven. This has been analysed from a proof theo-
retic standpoint first by Gerhardy [16] and then Briseid [9], both of whom develop
quantitative notions of being asymptotically contractive similar in spirit to our Def-
inition 2.7 (cf. Definition 2 of [16] and Definition 2.1 of [9]). However, our focus is
different from theirs, as we are interested in convergence results for Krasnoselskii-
Mann iteration schemes in normed spaces, and the proofs that we analyse have a
very different character.

Krasnoselskii-Mann schemes have nevertheless been widely studied in proof min-
ing, starting with [20]. To give a very brief overview of the latest work in this
direction: rates of asymptotic regularity for the KM iteration towards fixed points
of k-strict pseudocontractions in Hilbert spaces have been obtained by in [18], and
similar results in the more general setting of uniformly convex Banach spaces are
given in [35]. Similarly, rates of metastability and asymptotic regularity for KM
schemes (and other algorithms) with Tikhonov regularization terms are provided
in [13], and this has been generalized to W -hyperbolic spaces in [11]. Hyperbolic
spaces are also the main setting for [29], which among other things studies hybrid
viscosity version of the KM iteration and extracts full rates of convergence. Though
none of the results in the aforementioned papers are directly related to ours, there
are parallels in the methods used to obtain the quantitative results, in particular
the use abstract quantitative lemmas similar in spirit to those we analyse in Section
3 below.

No prior familiarity with proof mining is assumed in this paper, and in particular,
we do not explicitly mention, nor require knowledge of, any concepts from logic.
That being said, our paper bears a number of important hallmarks which betray
its implicit proof theoretic flavour.

Firstly, we make use of “proof-theoretic moduli” in place of the traditional moduli
one typically encounters in analysis, the former being based on the logical struc-
ture of the property in question. For example, a rate of convergence in our sense
is simply a function Ψ : (0,∞) → N with the property that for any ε > 0 we
have ‖xn − q‖ ≤ ε for all n ≥ Ψ(ε), as opposed to a function F : N → (0,∞)
satisfying ‖xn − q‖ ≤ F (n) for all n ∈ N and F (n) → 0 as n → ∞. We work with
similar moduli for representing properties such as uniform continuity or uniform
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smoothness, together with new moduli defined for this first time here which repre-
sent sequences of mappings which are asymptotically weakly contractive. By then
using them to represent assumptions in our theorems, we are able to extract rates of
convergence over the structure of proofs in terms of these moduli. In fact precisely
because the moduli mirror the logical structure of the property in question, they
propagate through the logical structure of the convergence proof resulting in the
aforementioned rate. In many cases, our rates of convergence can be reformulated
and then directly compared to those which have been given in the literature, but
we are also able to give explicit rates of convergence for general theorems which, to
the best of our knowledge, are new.

Another feature of our approach in that our main results were obtained through
the careful analysis of existing proofs, where we sought to dispose of superfluous
assumptions (which, for instance, were only required to establish existence of a fixed
point) and provide abstract versions of others, resulting in generalised theorems in
which certain premises have been weakened and others eliminated altogether. As
a direct consequence of this, it is sometimes the case that distinct theorems which
appear separately in the literature can each be presented as immediate corollaries of
our results. For example, our first case study presents in Theorem 4.1 an abstract,
quantitative generalisation of Theorem 3.4 of [3], which assuming the existence of a
fixed point applies in a general Banach space rather than a Hilbert space, removes
some assumptions about the mapping ψ and expands the class of mappings for
which convergence holds. This can then be simultaneously applied to produce a
quantitative version of somewhat different Theorem 4.1 of [2] from almost a decade
later. In this way, our work forms a unifying scheme in which different convergence
theorems can be classified and compared within a single framework.

Finally, as a result of our effort to give suitable abstract presentations of key prop-
erties, we present several new classes of mappings which generalise various notions
of being ψ-weakly contractive. For instance, in Section 4 we formulate our main
result in terms of what we call quasi asymptotically weakly contractive mappings,
a class which contains the totally asymptotically weakly contractive mappings of
Alber et al. [2] and also the sequences of approximate weakly contractive mappings
studied in [4]. Similarly, in Section 5 we present as asymptotic counterpart of the
class of d-weakly contractive mappings.

In this paper we focus on a relatively small number of representative case studies
which exemplify our proof theoretic approach to convergence theorems for mappings
of weakly contractive type. It is certainly the case that there are plenty of other
classes of mappings and associated convergence theorems which could be abstracted
and generalised in a similar fashion, and we leave an exploration of more recent
results in this area to future work (cf. Section 7).

2. Basic moduli

We begin by introducing some of the proof-theoretic moduli which form the core
of this paper, and in doing so briefly outline our abstract way of looking at classes
of weakly contractive mappings.

2.1. Rates of convergence and divergence. The central concept of this paper
is the rate of convergence.
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Definition 2.1. Suppose that {xn} is a sequence in some metric space (X, d) with
limn→∞ xn = q. A rate of convergence for {xn} is any function f : (0,∞) → N
with the property that for any ε > 0 we have d(xn, q) ≤ ε for all n ≥ f(ε).

Example 2.2. If r ∈ (0, 1) is such that d(xn+1, q) ≤ rd(xn, q) for all n ∈ N then
{xn} converges with rate

f(ε) :=
log(ε)− log(d(x0, q))

log(r)

Because we consider algorithms based on iterative schemes of the form (2) which
rely on the condition that the sum of the coefficients

∑∞
n=0 αn diverges, we need a

corresponding modulus for this property.

Definition 2.3. Suppose that {αn} is a sequence of nonnegative reals such that∑∞
n=0 αn = ∞. A rate of divergence for this series is a function r : N × (0,∞) →

(0,∞) such that for all N ∈ N and x ∈ (0,∞) we have r(N, x) ≥ N and

r(N,x)∑
n=N

αn > x

Example 2.4. If αn = 1 for all n ∈ N – in which case the Mann scheme (2) would
reduce to the usual Picard iteration – a rate of divergence is given by

r(N, x) := bx+Nc+ 1

since in this case we have

bx+Nc+1∑
n=N

αn = bx+Nc+ 1−N = bxc+ 1 > x.

Remark 2.5. An alternative way of representing divergence of a series would be via
a function g : (0,∞)→ N satisfying

g(x)∑
n=0

αn > x

in which case, a rate of divergence in our sense could be defined as

r(N, x) := g

(
x+

N−1∑
n=0

αn

)
However, in what follows we will work directly with the modulus r.

2.2. Moduli for smooth and uniformly smooth spaces. A Banach space X
is said to be uniformly smooth if for any ε > 0 there exists some δ > 0 such that
for all x, y ∈ X with ‖x‖ = 1 and ‖y‖ ≤ δ we have

(3) ‖x+ y‖+ ‖x− y‖ ≤ 2 + ε ‖y‖

A function τ : (0,∞) → (0,∞) which for any input ε returns a δ satisfying (3)
is called a modulus of uniform smoothness. This is not to be confused with the
so-called modulus of smoothness, which is defined by

ρX(δ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = δ

}
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and satisfies

lim
δ→0

ρX(δ)

δ
= 0

iff X is uniformly smooth.

2.3. Notions of contractivity. Let X be a normed space and T : E → X a
mapping. We begin our discussion of contractivity by presenting and comparing
three closely related notions:

Definition 2.6. (a) T is contractive if for all x, y ∈ E:

x 6= y =⇒ ‖Tx− Ty‖ < ‖x− y‖
(b) T is contractive with modulus τ : (0,∞)→ (0,∞) if for all x, y ∈ E and ε > 0

we have
‖x− y‖ ≥ ε =⇒ ‖Tx− Ty‖+ τ(ε) ≤ ‖x− y‖

(c) T is weakly contractive if there exists some nondecreasing map ψ : [0,∞) →
[0,∞) which is positive on (0,∞) and has ψ(0) = 0 such that for all x, y ∈ E
we have

‖Tx− Ty‖ ≤ ‖x− y‖ − ψ(‖x− y‖)

Contractive mappings in the sense of (a) have been widely studied, also in the
more general setting of metric spaces, where Edelstein’s fixed point theorem [14]
states that whenever T : E → E for some compact E, then T has a unique fixed
point. For the other notions of contractivity, it is clear that if T is weakly contractive
w.r.t. ψ then it is also contractive with modulus ψ, and if T is contractive with
any modulus, it is also contractive, and thus we easily arrive at

(c) =⇒ (b) =⇒ (a)

The other directions are more interesting. Contractivity in the sense of (a) can be
formulated more explicitly by the logical formula

(4) ∀x, y ∈ E ∀ε > 0 ∃δ > 0 (‖x− y‖ ≥ ε =⇒ ‖Tx− Ty‖+ δ ≤ ‖x− y‖)
and a contractive mapping possesses a modulus precisely when for each ε > 0 there
exists a δ > 0 satisfying (4) uniformly in the parameters x, y ∈ E (a standard
argument using sequential compactness shows that this is always the case when,
for example, E is compact). Thus a contractive mapping with a modulus is one
that is contractive in a uniform way, and as such mappings form a particularly
elegant class to study, especially from a quantitative perspective. Indeed, in [28]
it is shown that in the case that E is compact, a modulus of contractivity can be
characterised proof theoretically as the so-called monotone functional interpretation
of the statement that T is contractive, and a such a modulus is used to formulate
a rate of convergence for Edelstein’s fixed point theorem. A particular kind of
contractive mapping with modulus – so-called almost uniform contractions – is also
considered in the context of Bishop-style constructive analysis in [8].

In the case that a modulus of contractivity τ for T is nondecreasing and strictly
positive, then T is also weakly contractive w.r.t. τ . Otherwise, defining ψ(0) = 0
and

ψ(ε) := inf{τ(µ) : ε ≤ µ},
whenever this infimum is always strictly positive, we have that ψ is nondecreasing
and T is ψ-weakly contractive. Thus notions (b) and (c) are closely connected.
Interestingly however, while contractive mappings with moduli have been studied
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in proof theoretic approaches to analysis, weakly contractive mappings were in-
troduced quite independently in [3]. Here, some additional conditions on ψ are
assumed, which allow us to prove that whenever X is a Hilbert space (or more
generally a uniformly smooth Banach space) then T has a fixed point, even in cases
where E is not compact.

2.4. Asymptotically weakly contractive mappings. Rather than simple con-
tractive mappings, we will be interested in the classes of mappings which are weakly
contractive in an asymptotic sense. There are many different ways to define such
classes. A simple example would be mappings T : E → X which satisfy the prop-
erty

(5) ‖Tnx− Tny‖ ≤ (1 + kn) ‖x− y‖ − ψ(‖x− y‖)

where {kn} is some sequence of reals with kn → 0. Another example would be
given by

(6) ‖Tnx− Tny‖ ≤ ‖x− y‖ − ψ(‖x− y‖) + ln

where ln → 0. More elaborate and general classes which include both of these types
are considered in e.g. [2] and [3]. What these variants have in common is that they
concern sequences of mappings {An} which become weakly contractive in the limit
(where often this sequence is simply taken to be the iterates of a single mapping
i.e. An := Tn for some T ). In a similar vein to what we have discussed already,
we can express this notion as a simple ε/δ property and provide a corresponding
modulus, which measures how quickly such sequences become weakly contractive.

Definition 2.7. Let An : E → X be a sequence of mappings and ψ : [0,∞) →
[0,∞) some nondecreasing function with ψ(0) = 0. We say that the sequence {An}
is asymptotically ψ-weakly contractive if for all δ, b > 0 there exists some m such
that

‖x− y‖ ≤ b =⇒ ‖Anx−Any‖ ≤ ‖x− y‖ − ψ(‖x− y‖) + δ

for all n ≥ m. A function σ : (0,∞) × (0,∞) → N which produces such an m in
arguments δ, b will be called a modulus of asymptotic ψ-weak contractivity.

Example 2.8. If T is a mapping which satisfies the property (5) then {Tn} is
asymptotically ψ-weakly contractive in our sense with modulus

σ(δ, b) := f

(
δ

b

)
where f is a rate of convergence for kn → 0. Similarly, in the case of property (6)
a modulus is given by σ(δ) := g(δ) for g a rate of convergence for ln → 0. In the
second case, the modulus is independent of b: Such moduli play a special role here
and will examined more closely later. Note that for ordinary ψ-weakly contractive
mapping in the sense of Definition 2.6 (c) we can simply set σ(δ, b) = 0.

Later on in this paper, we will show that not only do a number of previous for-
mulations of asymptotic weak contractivity form instances of this general definition
(cf. Section 4), but existing results from the literature which concern only weakly
contractive mappings can be generalised to the asymptotic case (cf. Sections 5
and 6). Moreover, Definition 2.7 itself will be further varied and generalised. For
example, many (but not all) of the results we prove later work when the relevant
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notion of asymptotic ψ-weak contractivity is replaced by what we will call quasi
asymptotic ψ-weak contractivity relative to some fixed point q i.e.

‖x− q‖ ≤ b =⇒ ‖Anx− q‖ ≤ ‖x− q‖ − ψ(‖x− q‖) + δ

3. Quantitative recursive inequalities

All of the proofs in the main part of this paper utilise an abstract theory of re-
cursive inequalities, a quantitative analysis of which is not only crucial in obtaining
our rates of convergence, but forms a unifying scheme which, together with the
abstract notions of contractivity discussed above, allowing us to bring together sev-
eral distinct convergence results from the literature. In this section we present the
core quantitative convergence results which will be needed later, and also take the
opportunity to compare our rates of convergence (formulated in terms of moduli)
with those which occur in the literature (typically formulated in terms of bounding
functions).

3.1. Recursive inequalities and asymptotic contractivity. For illustrative
purposes and to motivate the results that follow, let us consider a mapping T :
E → E which satisfies the simplified variant (6) of being total asymptotically
weakly contractive, and suppose that q ∈ E is some fixpoint of T . Let us suppose
that {xn} is the standard Mann iterative scheme for approximating this fixpoint
i.e. assuming now that E is convex,

xn+1 = (1− αn)xn + αnT
nxn

for some sequence {αn} of reals in (0, 1] satisfying
∑∞
n=0 αn =∞. In order to show

that this algorithm convergences strongly to the fixpoint q, we observe that

‖xn+1 − q‖ ≤ (1− αn) ‖xn − q‖+ αn ‖Tnxn − Tnq‖
≤ (1− αn) ‖xn − q‖+ αn(‖xn − q‖ − ψ(‖xn − q‖) + ln)

≤ ‖xn − q‖ − αnψ(‖xn − q‖) + αnln

and therefore the sequence µn := ‖xn − q‖ satisfies the following recursive inequal-
ity:

(7) µn+1 ≤ µn − αnψ(µn) + αnln

It is well known that any positive sequence {µn} satisfying (7) must convergence
to zero. This follows from a general theory of recursive inequalities of this kind,
which have been studied in e.g. [1, 6]. In particular, a detailed account of such
convergence results along with proofs is given in [5], where convergence of {µn}
above follows as a special case of their Lemma 2.5 (cf. Remark 2.6 of [5]).

Many convergence theorems involving variants of weakly contractive mappings,
involve a similar (though typically much more complex) reduction to this or a
similar recursive scheme, and thus our starting point is to provide a computational
analysis of the relevant abstract convergence theorems which will be used in later
sections.

3.2. Main quantitative lemmas. We now formulate some key quantitative con-
vergence results based on an abstract formulation of the recursive inequality (7).
These bear similarities to the quantitative analysis of the closely related inequality

µn+1 ≤ µn − αnψ(µn+1) + αnln
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which can be found as [23, Lemma 1] and [30, Lemma 3.4], but the respective proofs
that µn → 0 are somewhat different, and so the results which follow are new. Note
that in addition to a rate of convergence, Lemma 3.1 establishes a new proof that
µn → 0, which is somewhat different to that found in e.g. [3] or [5].

Lemma 3.1. Let {µn} be a sequence of nonnegative real numbers, {αn} a bounded
sequence of positive numbers with

∑∞
n=0 αn = ∞ and ψ : [0,∞) → [0,∞) be a

nondecreasing function which is positive on (0,∞). Suppose that that for all δ > 0
there exists some m ∈ N such that

(8) µn+1 ≤ µn − αn(ψ(µn)− δ)

for all n ≥ m. Then µn → 0. Moreover, if α > 0, r : N × (0,∞) → N and
N : (0,∞)→ N are such that

• αn ≤ α for all n ∈ N,
• r is a rate of divergence for

∑∞
n=0 αn,

• for any δ > 0 the inequality (8) holds for n ≥ N(δ),

then µn → 0 with the following rate of convergence:

Φψ,c,α,r,N (ε) := r

(
N

(
1

2
min

{
ψ
(ε

2

)
,
ε

α

})
, 2

∫ c

ε/2

dt

ψ(t)

)
+ 1

where c is any upper bound on {µn} (but cf. Remark 3.2).

Proof. Fix ε > 0 and let

N0 := N

(
min

{
ψ(ε)

2
,
ε

α

})
.

Then for all n ≥ N0 we have both

(9) µn+1 ≤ µn − αn
(
ψ(µn)− ψ(ε)

2

)
and (using that αn ≤ α)

(10) µn+1 ≤ µn − αnψ(µn) + ε.

Now let l ≥ N0 be arbitrary and suppose towards a contradiction that ε ≤ µn for
all N0 ≤ n ≤ l+ 1. Then by monotonicity of ψ we have ψ(ε) ≤ ψ(µn) and thus by
(9) it follows that

µn+1 ≤ µn − αn
(
ψ(µn)− ψ(µn)

2

)
= µn − αn

ψ(µn)

2

and therefore (recalling the ψ is nondecreasing)

1

2

l∑
n=N0

αn ≤
l∑

n=N0

(
µn − µn+1

ψ(µn)

)
≤

l∑
n=N0

(∫ µn

µn+1

dt

ψ(t)

)
=

∫ µN0

µl+1

dt

ψ(t)

where for the second inequality we observe that for N0 ≤ n ≤ l we have 0 < µn+1 <
µn and thus the function 1/ψ(t) is well-defined, positive valued and monotonically
decreasing on [µn+1, µn], and hence integrable with

µn − µn+1

ψ(µn)
≤
∫ µn

µn+1

dt

ψ(t)
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Finally, since ε ≤ µl+1 < µN0
≤ c (recall that c is an upper bound on {µn}) we

have
l∑

n=N0

αn ≤ 2

∫ c

ε

dt

ψ(t)

which is false for l := r(N0, 2
∫ c
ε

dt
ψ(t) ). Therefore our assumption that ε ≤ µn for all

N0 ≤ n ≤ l + 1 leads to a contradiction for this value of l, or in other words, there
exists some n ≤ l + 1 such that µn < ε. We now claim that in fact µk ≤ 2ε for
all k ≥ n. This is shown by induction, where the base case is obvious and for the
induction step we deal with two cases. Firstly, if ε ≤ µk ≤ 2ε then since k ≥ N0

and ψ(ε) ≤ ψ(µk) it follows from (9) that

µk+1 ≤ µk − αk
(
ψ(µk)− ψ(ε)

2

)
= µk − αk

ψ(ε)

2
< µk ≤ 2ε

On the other hand, if µk < ε then from (10) we have

µk+1 ≤ µk − αkψ(µk) + ε ≤ µk + ε < 2ε

This proves the claim, and thus in particular it follows that µk ≤ 2ε for all k ≥ l+1
for l defined as above. Writing out l in full and substituting ε 7→ ε

2 gives us the
rate of convergence, as ε was arbitrary throughout. �

Remark 3.2. The uniform bound µn ≤ c used to formulate Lemma 3.1 is not
strictly necessary, but it does allow us to provide a simplified rate of convergence
which is independent of {µn}. Without such a bound, our rate of convergence (now
depending on {µn}) would be given by

Φψ,{µn},α,r,N (ε) := r

(
Mψ,α(ε), 2

∫ µMψ,α(ε)

ε/2

dt

ψ(t)

)
+ 1

for Mψ,α(ε) := N
(
1
2 min

{
ψ
(
ε
2

)
, εα
})

.

Remark 3.3. A more common formulation of the convergence result contained in
Lemma 3.1 is to suppose that

(11) µn+1 ≤ µn − αnψ(µn) + γn

for all n ∈ N, where now {γn} is some sequence of reals with γn/αn → 0. But if N
is a rate of convergence for γn/αn → 0 then for any δ > 0 we have

µn+1 ≤ µn − αnψ(µn) + αnδ

for all n ≥ N(δ), which is precisely the scheme (8). Therefore in this case we also
have that µn → 0 with the rate of convergence given in Lemma 3.1.

Before we move on, we state a useful generalisation of Lemma 3.1 that we will
use later, and which is based on the following well-known variant of (11):

µn+1 ≤ (1 + βn)µn − αnψ(µn) + γn

where now {βn} is a sequence of nonnegative reals with
∏∞
n=0(1 + βn) <∞.

Lemma 3.4. Let {µn} be a sequence of nonnegative real numbers, {αn} a bounded
sequence of positive numbers with

∑∞
n=0 αn = ∞, {βn} a sequence of nonnegative

numbers with
∏∞
n=0(1 + βn) < ∞, and ψ : [0,∞) → [0,∞) be a nondecreasing
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function which is positive on (0,∞). Suppose that for all δ > 0 there exists some
m ∈ N such that

(12) µn+1 ≤ (1 + βn)µn − αn(ψ(µn)− δ)
for all n ≥ m. Then µn → 0. Moreover, if α > 0, d ≥ 1, r : N × (0,∞) → N and
N : (0,∞)→ N are such that

• αn ≤ α for all n ∈ N,
•
∏n
i=0(1 + βi) ≤ d for all n ∈ N,

• r is a rate of divergence for
∑∞
n=0 αn,

• for any δ > 0 the inequality (12) holds for n ≥ N(δ),

then µn → 0 with the following rate of convergence:

Φψ,c,α,d,r,N (ε) := r

(
N

(
1

2d
min

{
ψ
( ε

2d

)
,
ε

α

})
, 2d

∫ c

ε/2d

dt

ψ(t)

)
+ 1

where c is any upper bound on {µn}.

Proof. We use a standard trick to reduce (12) to (8), see e.g. Lemma 3.3. of [2].

Define λ0 := µ0 and λn := µn/
∏n−1
i=0 (1 + βi) for n > 0. Then for any δ > 0, for all

n ≥ N(δ) we have

λn+1 ≤ λn −
αnψ(µn)∏n
i=0(1 + βi)

+
αnδ∏n

i=0(1 + βi)
≤ λn − αnd−1ψ(µn) + αnδ

using that 1 ≤
∏n
i=0(1 + βi) ≤ d. Moreover, since µn = λn

∏n−1
i=0 (1 + βi) ≥ λn, by

monotonicity of ψ we have ψ(µn) ≥ ψ(λn) and thus

(13) λn+1 ≤ λn − αn(φ(λn)− δ)
for φ(t) = ψ(t)/d, which is clearly also nondecreasing and positive on (0,∞). Ob-
serving finally that λn ≤ µn ≤ c for all n ∈ N, we can apply Lemma 3.1 to λn with
parameters φ, c, α, r and N to establish a rate of convergence for λn → 0. Finally,
noting that µn ≤ dλn, we modify this rate of convergence with the substitution
ε 7→ ε

d to obtain the stated rate of convergence for µn → 0. �

3.3. Reformulation in terms of traditional rates of convergence. We now
give a rough translation of our main quantitative results so that they are phrased
in terms of direct rates of convergence in the sense traditionally encountered in the
literature, where we seek some explicit bounding function f : N → (0,∞) with
limn→∞ f(n) = 0 such that µn ≤ f(n) for all n ∈ N. Being able to provide a
closed expression of this kind typically requires additional assumptions, such as
the existence of inverse functions, and so our “proof theoretic” formulations above
are preferred. Nevertheless, the translation we provide in this section facilitates a
direct comparison with known convergence rates in the literature.

We emphasise that Lemma 3.6 below is not required for our main results, but
is useful in allowing us to compare our proof theoretic rates of convergence with
existing rates in cases where those have been given, for instance in 3.8.

Definition 3.5. Let N : (0,∞) → N be a nonincreasing function. A continuous

bounding function Ñ : (0,∞) → [0,∞) for N is defined to be any function which

is continuous, nonincreasing and satisfies N(ε) ≤ Ñ(ε) for all ε ∈ (0,∞). Since N

can be viewed as a simple step function in any interval, it is clear that such an Ñ
always exists.
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Lemma 3.6. Suppose that {µn}, {αn}, {βn}, ψ, α, d, N and c all satisfy the
assumptions of Lemma 3.4. Define

Ψ(x) :=

∫ x dt

ψ(t)

and assuming w.l.o.g. that N is nonincreasing, define Ñ : (0,∞)→ [0,∞) to be a
continuous bounding function for N . Now define F : (0,∞)→ R by

F (ε) := 2d ·Ψ
( ε

2d

)
− α · Ñ

(
1

2d
min

{
ψ
( ε

2d

)
,
ε

α

})
which must be strictly increasing and continuous, and hence invertible on its range.
Then F (ε)→ −∞ as ε→ 0 and for n ∈ N sufficiently large we have

µn ≤ F−1
(

2dΨ(c)−
n−2∑
i=0

αi

)
Proof. We first show that F (ε)→ −∞ as ε→ 0. This is obviously true if Ñ(ε)→
+∞ as ε→ 0, so we now assume that this is not the case i.e. there is some k ∈ N
such that Ñ(ε) ≤ k and thus N(ε) ≤ k for all ε ∈ (0,∞). Defining λn as in the
proof of Lemma 3.4, then by definition of N and (13) it follows that

(14) λn+1 ≤ λn − αnd−1ψ(λn) + αnδ

for n ≥ N(δ) and any δ > 0. But since k ≥ N(δ) it follows that (14) holds for all
n ≥ k independent of δ > 0, and therefore we actually have

(15) λn+1 ≤ λn − αnd−1ψ(λn)

for all n ≥ k. Analogously to the proof of Lemma 3.1, rearranging (15) and summing
up to some arbitrary m > k we obtain

d−1
m−1∑
n=k

αn ≤
m−1∑
n=k

λn − λn+1

ψ(λn)
≤
m−1∑
n=k

∫ λn

λn+1

dt

ψ(t)
=

∫ λk

λm

dt

ψ(t)
= Ψ(λk)−Ψ(λm)

Letting m→∞ it follows from
∑∞
n=k αn =∞ that Ψ(λm)→ −∞. Since λm → 0

and Ψ is monotonic we can infer that Ψ(ε)→ −∞ and thus F (ε)→ −∞ as ε→ 0.
Now, assume that n ∈ N is sufficiently large so that

(16) 2dΨ(c)−
n−2∑
i=0

αi ∈ F (0,∞)

We can make “sufficiently large” precise here by noting that (−∞, F (1)] ⊂ F (0,∞)

and so (16) holds for all n ≥ m where m is such that
∑m−2
i=0 αi ≥ 2dΨ(c) − F (1).

Now define

εn := F−1

(
2dΨ(c)−

n−2∑
i=0

αi

)
so that our aim becomes establishing µn ≤ εn for all n ∈ N. By Lemma 3.4 we
have that µm ≤ εn for all m ≥ Φψ,c,α,d,r,N (εn) for Φψ,c,α,d,r,N as defined in that
lemma, where r is any rate of divergence for

∑∞
i=0 αi. So it suffices to show that

n ≥ Φψ,c,α,d,r,N (εn), or in other words,

(17) n ≥ r

(
N

(
1

2d
min

{
ψ
(εn

2d

)
,
εn
α

})
, 2d

∫ c

εn/2d

dt

ψ(t)

)
+ 1
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for some rate of divergence r. Suppose therefore that r is given by

r(N, x) := least k such that
∑k
i=N αi > x

which is well defined under the assumption that
∑∞
i=0 αi =∞. Then m ≥ r(N, x)

is equivalent to the statement
∑m
i=N αi > x and so (17) is equivalent to

n−1∑
i=N0

αi > 2d

∫ c

εn/2d

dt

ψ(t)
= 2d

(
Ψ(c)−Ψ

(εn
2d

))
for N0 := N

(
1
2d min

{
ψ
(
εn
2d

)
, εnα
})

. This can be reformulated as

(18) 2d ·Ψ
(εn

2d

)
−
N0−1∑
i=0

αi > 2dΨ(c)−
n−1∑
i=0

αi

All that remains is to establish (18), and for this we observe that

2dΨ(c)−
n−1∑
i=0

αi < 2dΨ(c)−
n−2∑
i=0

αi

= F (εn)

= 2d ·Ψ
(εn

2d

)
− α · Ñ

(
1

2d
min

{
ψ
(εn

2d

)
,
εn
α

})
≤ 2d ·Ψ

(εn
2d

)
− αN0

≤ 2d ·Ψ
(εn

2d

)
−
N0−1∑
i=0

αi

�

Remark 3.7. Note that by setting βn = 0 and d = 1 we can adapt Lemma 3.6 so
that it applies to Lemma 3.1.

3.4. Weakly contractive mappings: A simple case study. We conclude this
section by demonstrating that a quantitative convergence result for weakly con-
tractive mappings already established in [3] falls out as a very simple case of our
framework. In subsequent sections we will then consider more complex convergence
results for asymptotically contractive mappings, and in those cases will provide new
and general rates of convergence.

Theorem 3.8 (Cf. Theorem 3.1 of [3]). Let E ⊆ X and suppose that T : E → X
is a mapping which satisfies

‖Tx− Ty‖ ≤ ‖x− y‖ − ψ(‖x− y‖)
for some nondecreasing function ψ : [0,∞) → [0,∞) which is positive on (0,∞).
Let q ∈ E be a fixpoint of T , and suppose that the sequence {xn} in X satisfies
xn+1 = Txn for all n ∈ N. Then ‖xn − q‖ → 0 with rate of convergence

Φ(ε) :=
⌊
2

∫ ‖x0−q‖

ε/2

dt

ψ(t)

⌋
+ 2

or alternatively,

‖xn − q‖ ≤ 2Ψ−1
(

Ψ(‖x0 − q‖)−
n− 1

2

)



14 RATES OF CONVERGENCE FOR WEAKLY CONTRACTIVE MAPPINGS

for Ψ(x) :=
∫ x

dt/ψ(t).

Proof. We observe that

‖xn+1 − q‖ = ‖Txn − Tq‖ ≤ ‖xn − q‖ − ψ(‖xn − q‖)

and therefore the sequence {‖xn − q‖} satisfies (8) for αn = 1, N(δ) = 0 and
r(N, x) = bN + xc + 1. The first rate of convergence then follows by noting that
‖x0 − q‖ is an upper bound for {‖xn − q‖} and plugging this data into Lemma 3.1.
The second rate follows from Lemma 3.6 (setting βn = 1 and d = 1), where having
N(δ) = 0 allows us to define F (ε) := 2Ψ(ε/2). �

It is instructive to compare the precise formulation of Theorem 3.8 above to the
corresponding Theorem 3.1 of [3], as the differences represent important features
of our approach which will apply throughout later sections. Firstly, we assume
the existence of a fixpoint, and that allows us to weaken certain assumptions on T
down to those which are essential for establishing convergence. For example, here
ψ is not required to be continuous, neither must it satisfy the asymptotic property
limt→∞ ψ(t) = ∞ (or alternatively that E be bounded) as these are only required
to establish the existence of a fixpoint.

Similarly, we assume that the sequence {xn} satisfies xn+1 = Txn, rather than
demanding any additional properties of T which would ensure that Picard iterates
can be generated from any initial point x0. So here we do not require that T (E) ⊆
E, and later we can omit stronger assumptions on the domain, such as convexity.
The crucial point here is that for each abstract convergence theorems we provide,
there will be a natural setting in which fixpoints q and the relevant approximating
sequences {xn} do indeed exist, but we do not concern ourselves with those details
in this paper.

Other properties can be inferred from our assumptions. For instance, the ex-
istence of a nonnegative sequence {µn} satisfying µn+1 ≤ µn − ψ(µn) necessar-
ily implies that ψ(0) = 0, even though this condition is not explicitly stated:
After all, if ψ(0) > 0 then by monotonicity we also have ψ(µn) ≥ ψ(0) > 0.
But since µn → 0 we have µn < ψ(0) for sufficiently large n, and therefore
µn+1 ≤ µn − ψ(µn) ≤ µn − ψ(0) < 0, contradicting µn+1 ≥ 0.

Finally, Theorem 3.8 illustrates our approach of providing “proof theoretic” rates
of convergence in the sense of Section 2.1. These rates of convergence are typically
simpler, and crucially we do not need to prove in addition that the bounding func-
tion µn ≤ f(n) satisfies limt→0 f(t) = 0 to establish µn → 0. However, our Lemma
3.6 nevertheless allows us to translate our rates of convergence into traditional
ones, and for concrete applications where explicit rates of convergence appear in
the literature, we can offer a direct comparison. For example, the rates given in
our Theorem 3.8 match up well with those stated in [3]:

‖xn − q‖ ≤ Ψ−1(Ψ(‖x0 − q‖)− (n− 1))

This similarity (differing only by a few constants) for simple cases suggests that
our abstract quantitative results, which are both formulated and proven in a differ-
ent style to the concrete convergence theorems they generalise, nevertheless provide
good rates of convergence.
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4. Case study 1: Convergence of Mann iteration for asymptotically
contractive mappings

We now present our first general convergence result, where we combine our ab-
stract notion of being asymptotically contractive with the quantitative lemmas of
the previous section to also provide a rate of convergence. The proof is extremely
simple, but as we demonstrate, several existing theorems from the literature can
be regarded as special cases of our general result.

Theorem 4.1. Let {An} be a sequence of mappings An : E → X and ψ : [0,∞)→
[0,∞) be some nondecreasing function with ψ(0) = 0. Suppose that {kn} is some
sequence of nonnegative reals and σ : (0,∞) × (0,∞) → N a modulus such that
{An} is quasi asymptotically weakly contractive with respect to q ∈ X in the sense
that

‖x− q‖ ≤ b =⇒ ‖Anx− q‖ ≤ (1 + kn) ‖x− q‖ − ψ(‖x− q‖) + δ

for all δ, b > 0 and n ≥ σ(δ, b). Suppose in addition that {xn} is a sequence
satisfying

(19) xn+1 = (1− αn)xn + αnAnxn

where {αn} is some sequence in (0, α] such that
∑∞
n=0 αn = ∞ with rate of diver-

gence r and d > 0 is such that
∏n
i=0(1 + αiki) ≤ d for all n ∈ N. Then whenever

there exists c > 0 such that ‖xn − q‖ ≤ c for all n ∈ N, we have ‖xn − q‖ → 0 with
rate

Φψ,c,α,d,r,σ(ε) := r

(
σ

(
1

2d
min

{
ψ
( ε

2d

)
,
ε

α

}
, c

)
, 2d

∫ c

ε/2d

dt

ψ(t)

)
+ 1

Proof. We simply observe that for any δ and all n ≥ σ(δ, c) we have

‖xn+1 − q‖ ≤ (1− αn) ‖xn − q‖+ αn ‖Anxn − q‖
≤ (1− αn) ‖xn − q‖+ αn((1 + kn) ‖xn − q‖ − ψ(‖xn − q‖) + δ)

≤ (1 + αnkn) ‖xn − q‖ − αn(ψ(‖xn − q‖)− δ)

and therefore Lemma 3.4 applies for µn := ‖xn − q‖, βn := αnkn and N(δ) :=
σ(δ, c), which yields the given rate of convergence. �

Remark 4.2. In the case where we have a modulus σ(δ) which is independent
of the bound ‖x− q‖ ≤ b, we no longer require a uniform bound ‖xn − q‖ ≤
c in order to prove convergence of the sequence in the first place. Rather for
the rate of convergence given in Theorem 4.1 it is enough to choose any c > 0
satisfying max{‖xn − q‖ : n ∈ N} ≤ c. Moreover, following Remark 3.2 such
a bound for the whole sequence can even by computed directly by defining c :=
maxn≤k{‖xn − q‖ , 1} for

k := r

(
Mψ,α, 2d

∫ ‖xMψ,α−q‖
1/2d

dt

ψ(t)

)
+ 1

with Mψ,α,d := σ
(

1
2d min

{
ψ
(

1
2d

)
, 1
α

}
, c
)
, where here k is obtained by setting ε = 1

in the non-independent rate of convergence for ‖xn − q‖ → 0. We would then have
‖xn − q‖ ≤ 1 for all n ≥ k and thus ‖xn − q‖ ≤ c for all n ∈ N.
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4.1. Approximate weakly contractive mappings. As our first concrete ap-
plication of the main theorem in this section, we give a computational version of
Section 3 of [3], which considers a sequence {An} of operators which are weakly
contractive in the limit.

Corollary 4.3 (cf. Theorem 3.4 of [3]). Let {An} be a sequence of mappings
An : E → X and A a ψ-weakly contractive mapping, and suppose that ψn, g :
[0,∞) → [0,∞) are functions positive on (0,∞), and {kn}, {µn}, {hn}, {δn} and
{νn} are sequences of nonnegative reals such that for x, y ∈ E and t ∈ [0,∞):

• ‖Anx−Any‖ ≤ (1 + kn) ‖x− y‖ − ψn(‖x− y‖) + µn

• ‖Anx−Ax‖ ≤ hng(‖x‖) + δn

• |ψn(t)− ψ(t)| ≤ νn
and µn, hn, δn, νn → 0 with rates of convergence f1, f2, f3 and f4 respectively. Sup-
pose in addition that {xn} satisfies xn+1 = Anxn. Let q be a fixpoint of A and
suppose that

∑∞
n=0 kn ≤ d for some d > 0. Then ‖xn − q‖ → 0 with rate of

convergence

Φψ,c,c1,d,f1,f2,f3,f4(ε) :=

σc1,f1,f2,f3,f4

(
1

2ed
min

{
ψ
( ε

2ed

)
, ε
})

+
⌊
2ed

∫ c

ε/2ed

dt

ψ(t)

⌋
+ 2

for

σc1,f1,f2,f3,f4(δ) := max

{
f1

(
δ

4

)
, f2

(
δ

4c1

)
, f3

(
δ

4

)
, f4

(
δ

4

)}
and where c, c1 > 0 are any reals satisfying max{‖xn − q‖ : n ∈ N} ≤ c and
g(‖q‖) ≤ c1.

Proof. If q is a fixpoint of A then we have

‖Anx− q‖ ≤ ‖Anx−Anq‖+ ‖Anq −Aq‖
≤ (1 + kn) ‖x− q‖ − ψn(‖x− q‖) + µn + hng(‖q‖) + δn

≤ (1 + kn) ‖x− q‖ − ψ(‖x− q‖) + (µn + hng(‖q‖) + δn + νn)

and therefore the {An} are quasi asymptotically weakly contractive in the sense of
Theorem 4.1 with modulus σc1,f1,f2,f3,f4 (which is also uniform in the bound b).
The Picard sequence {xn} is a special case of the scheme (2) with αn = 1 for all
n ∈ N, and using the inequality 1 + x ≤ ex we have

∏n
n=0(1 + ki) ≤ ed for any

n ∈ N. Therefore we can apply Theorem 4.1 and Remark 4.2 directly with α = 1
and r(N, x) := bx+Nc+ 1 to obtain the given rate of convergence. �

4.2. Totally asymptotically weakly contractive mappings. We now give a
quantitative convergence proof relating to so-called totally asymptotically weakly
contractive mappings [2], a class of mappings which we have already alluded to in
Section 2.4.

Corollary 4.4 (cf. Theorem 4.1 of [2]). Let T : E → X be a totally asymptotically
weakly contractive mapping in the sense that there exist nondecreasing functions
φ, ψ : [0,∞) → [0,∞) with φ(0) = ψ(0) = 0 along with sequences {νn} , {ln} of
nonnegative reals such that

‖Tnx− Tny‖ ≤ ‖x− y‖+ νnφ(‖x− y‖)− ψ(‖x− y‖) + ln
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and νn, ln → 0 with rates f1 and f2 respectively. Suppose in addition that {xn} is
a sequence satisfying

xn+1 = (1− αn)xn + αnT
nxn

where {αn} is some sequence in (0, α] such that
∑∞
n=0 αn = ∞ with rate of di-

vergence r. Let q be a fixpoint of T . Then whenever there exists c > 0 such that
‖xn − q‖ ≤ c for all n ∈ N, we have ‖xn − q‖ → 0 with rate

Φψ,φ,c,α,r,f1,f2 := r

(
σf1,f2,φ

(
1

2
min

{
ψ
(ε

2

)
,
ε

α

}
, c

)
, 2

∫ c

ε/2

dt

ψ(t)

)
+ 1

for

σf1,f2,φ(δ, b) := max

{
f1

(
δ

2φ(b)

)
, f2

(
δ

2

)}
Proof. If q is a fixpoint of T then whenever ‖x− q‖ ≤ b we have

‖Tnx− q‖ ≤ ‖x− q‖+ νnφ(‖x− q‖)− ψ(‖x− q‖) + ln

≤ ‖x− q‖ − ψ(‖x− q‖) + (νnφ(b) + ln)

and therefore the sequence {Tn} is quasi asymptotically weakly contractive in the
sense of Theorem 4.1 (for kn = 0) with modulus σf1,f2,φ. Therefore Theorem 4.1
applies directly with d := 1 and results in the given rate of convergence. �

Remark 4.5. For the special case of totally asymptotically weakly contractive map-
pings where φ is a linear function i.e. φ(t) = at and ln = 0, and subject to the
condition

∑∞
n=0 αnνn <∞, the rate of convergence we obtain is particularly simple.

Here the main recursive inequality in the proof of Theorem 4.1 reduces to

‖xn+1 − q‖ ≤ (1 + αnνn) ‖xn − q‖ − αnψ(‖xn − q‖)
and so a rate of convergence for ‖xn − q‖ → 0 is given by

Φψ,c,α,d,r(ε) := r

(
0, 2ed

∫ c

ε/2ed

dt

ψ(t)

)
+ 1

where
∑n
i=0 αnνn ≤ d for all n ∈ N. Our connection with traditional rates of

convergence in Lemma 3.6 gives, in this case, the alternative rate of convergence

‖xn − q‖ ≤ 2edΨ−1

(
Ψ(‖x0 − q‖ −

1

2ed

n−2∑
i=0

αi

)
which is broadly similar to the explicit rate of convergence provided for this case in
[2, p. 10–11]. Further generalisations in this direction are possible, for cases where
φ(t) is linear or eventually linear for sufficiently large t, and rates of convergence
can be provided for other results in Section 4 of [2].

5. Case study 2: Asymptotically d-weakly contractive mappings in
spaces with a uniformly continuous duality selection map

We now move to the setting of uniformly smooth Banach spaces, and turn our
attention to a variant of weak contractivity which involves the dual space. These
are particularly interesting for us, as the associated convergence results often rely on
geometric properties of the underlying space, such as uniform smoothness, allowing
us to produce rates of convergence in terms of the corresponding moduli.
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We start with some standard facts. Let X∗ be the dual of the space X, and
J : X → 2X

∗
the normalized duality mapping. We will make use of the following

well known inequality: For x, y ∈ X and j ∈ J(x+ y) we have

(20) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j〉.
Definition 5.1 ([4]). A mapping T : E → X is called d-weakly contractive relative
to some continuous and strictly increasing function ψ : [0,∞)→ [0,∞) positive on
(0,∞) and satisfying ψ(0) = 0 and limt→∞ ψ(t) =∞ if for all x, y ∈ E there exists
some j ∈ J(x− y) such that

|〈Tx− Ty, j〉| ≤ ‖x− y‖2 − ψ(‖x− y‖)
In order to establish convergence to fixpoints for mappings of this kind, we will

appeal to an alternative characterisation of a uniformly smooth space as being one
equipped with a norm-to-norm uniformly continuous duality selection map:

Definition 5.2 ([26]). A space with a uniformly continuous duality selection map
(X, J) is defined to be any Banach space X equipped with a mapping J : X → X∗

which satisfies

(1) 〈x, Jx〉 = ‖x‖2 = ‖Jx‖2 for all x ∈ X,
(2) J is norm-to-norm uniformly continuous on bounded subsets of X.

Furthermore, a modulus of uniform continuity for J is defined to be any function
ω : (0,∞)× (0,∞)→ (0,∞) such that for all x, y ∈ X with ‖x‖ , ‖y‖ ≤ d:

‖x− y‖X ≤ ω(d, ε) =⇒ ‖Jx− Jy‖X∗ ≤ ε
If X is smooth then the normalised duality mapping is single-valued, and so

coincides with a selection map in the sense of Definition 5.2. Moreover, if X is uni-
formly smooth, then J is uniformly continuous on bounded subsets, and therefore
the uniformly smooth spaces form a natural class of spaces which always possess a
uniformly continuous duality selection map. That the converse also holds, namely
that any Banach space possessing a uniformly continuous duality selection map is
uniformly smooth, is proven in [32, Appendix A].

Theorem 5.3. Suppose that (X, J) is a space equipped with a uniformly continuous
duality selection map, with modulus of continuity ω. Let {An} be a sequence of
mappings An : E → X and ψ : [0,∞) → [0,∞) be some nondecreasing function
with ψ(0) = 0. Suppose that {An} is quasi asymptotically d-weakly contractive
w.r.t. some q ∈ X and with modulus σ : (0,∞)× (0,∞)→ N, in the sense that for
any δ, b > 0 and x ∈ E we have

(21) ‖x− q‖ ≤ b =⇒ |〈Anx− q, J(x− q)〉| ≤ ‖x− q‖2 − ψ(‖x− q‖) + δ

for all n ≥ σ(δ, b). Suppose in addition that {xn} is a sequence satisfying (19)
where {αn} is some sequence in (0, α] such that αn → 0 with rate of convergence
f and

∑∞
n=0 αn =∞ with rate of divergence r. Then whenever c1, c2 > 0 are such

that ‖xn − q‖ ≤ c1 and ‖Anxn − xn‖ ≤ c2 for all n ∈ N, we have ‖xn − q‖ → 0
with rate

Φω,ψ,c1,c2,α,f,r,σ(ε) := r

(
Nω,c1,c2,f,σ

(
1

2
min

{
2ψ

(
ε√
2

)
,
ε2

α

})
, 2

∫ c1

ε2/2

dt

2ψ(
√
t)

)
where

Nω,c1,c2,f,σ(δ) := max

{
σ

(
δ

4
, c1

)
, f

(
1

c2
· ω
(
c1,

δ

4c2

))}
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Proof. We start by using the property (21) of {An} and observing that for any
δ > 0, since ‖xn − q‖ ≤ c1 we have

〈Anxn − q, J(xn − q)〉 ≤ ‖xn − q‖2 − ψ(‖xn − q‖) +
δ

4

= 〈xn − q, J(xn − q)〉 − ψ(‖xn − q‖) +
δ

4

and therefore

(22) 〈Axn − xn, J(xn − q)〉 ≤ −ψ(‖xn − q‖) +
δ

4

for n ≥ σ(δ/4, c1). Independently of this, we observe that whenever

(23) ‖J(xn+1 − q)− J(xn − q)‖ ≤
δ

4c2

it follows that

(24)

〈Axn − xn, J(xn+1 − q)− J(xn − q)〉
≤ ‖Axn − xn‖ · ‖J(xn+1 − q)− J(xn − q)‖

≤ c2 ‖J(xn+1 − q)− J(xn − q)‖ ≤
δ

4

Now, noting that ‖xn − q‖ , ‖xn+1 − q‖ ≤ c1, by uniform continuity of J we have
that (23) holds as long as

(25) ‖xn+1 − xn‖ ≤ ω
(
c1,

δ

4c2

)
Observing that

‖xn+1 − xn‖ = ‖αn(Anxn − xn)‖ ≤ αnc2
and recalling that αn → 0 with rate f , it follows that (25) and therefore (23) and
(24) hold whenever

n ≥ f
(

1

c2
· ω
(
c1,

δ

4c2

))
Putting together (22) and (24) we see that

(26)

〈Anxn − xn, J(xn+1 − q)〉
≤ 〈Anxn − xn, J(xn − q)〉+ 〈Anxn − xn, J(xn+1 − q)− J(xn − q)〉

≤ −ψ(‖xn − q‖) +
δ

2

for all n ≥ Nω,c1,c2,f,σ(δ) where the latter is defined as in the statement of the
theorem. Thus for all n in this range we have, using (26) together with (20):

(27)

‖xn+1 − q‖2 = ‖xn − q + αn(Anxn − xn)‖

≤ ‖xn − q‖2 + 2αn〈Anxn − xn, J(xn+1 − q)〉

≤ ‖xn − q‖2 − 2αnψ(‖xn − q‖) + αnδ

and therefore µn := ‖xn − q‖2 satisfies

µn+1 ≤ µn − αnψ̄(µn) + αnδ
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for ψ̄(t) := 2ψ(
√
t). Applying Lemma 3.1 to {µn} on parameters ψ̄, α, r, Nω,c1,c2,f,σ

and c1 gives the following rate of convergence for ‖xn − q‖2 → 0:

ε 7→ r

(
Nω,c1,c2,f,σ

(
1

2
min

{
ψ̄
(ε

2

)
,
ε

α

})
, 2

∫ c1

ε/2

dt

ψ̄(t)

)
We can adjust this to a rate of convergence for ‖xn − q‖ → 0 via the substitution
ε 7→ ε2, and writing out the definition of ψ̄ in full we obtain the rate stated in the
theorem. �

Remark 5.4. In Theorem 5.3, we can easily replace the basic Mann scheme (19)
with the following variant:

xn+1 = P ((1− αn)xn + αnAnxn)

where P : X → E is a nonexpansive retraction, that is, a mapping satisfying
P 2 = P and ‖Px− Py‖ ≤ ‖x− y‖ for all x, y ∈ X. We can do this by simply
setting yn := (1 − αn)xn + αnAnxn and then replacing xn+1 with yn throughout,
and finally for (27) observing that

‖xn+1 − q‖2 = ‖P ((1− αn)xn + αnAnxn)− Pq‖
≤ ‖xn − q + αn(Anxn − xn)‖

≤ ‖xn − q‖2 − 2αn〈Anxn − xn, J(yn+1 − q)〉

Remark 5.5. It has been shown in [26] that in the case that X is uniformly smooth,
a modulus of uniform continuity for J can be constructed in terms of a modulus τ
of uniform smoothness for X. More specifically, we define

ωτ (d, ε) :=
ε2

12d
· τ
( ε

2d

)
, ε ∈ (0, 2], d ≥ 1

with ωτ (d, ε) := ωτ (1, ε) for d < 1 and ωτ (d, ε) := ωτ (d, 2) for ε > 2. Thus the
requirement in Theorem 5.3 to provide an explicit modulus of uniform continuity
for J can be replaced by instead providing a modulus of uniform smoothness for
X.

5.1. d-weakly contractive mappings uniformly smooth spaces. It is clear
that if T : E → X is a d-weakly contractive mapping in the sense of Definition
5.1 then {T} is quasi asymptotically weakly contractive relative to any fixpoint q
of T the sense of Theorem 5.3 with modulus σ(δ, b) := 0. In fact, we can give the
following as a simple corollary, which forms a computational version of Theorem
3.1 of Chidume et al [12]:

Corollary 5.6 (Cf. Theorem 3.1 of [12]). Suppose that X is a uniformly smooth
space equipped with a modulus τ . Let T : E → X be a d-weakly contractive mapping
w.r.t. ψ (now in the sense of Definition 5.1) and suppose in addition that {xn} is
a sequence satisfying

xn+1 = P ((1− αn)xn + αnTxn)

where P : X → E is some nonexpansive retraction, {αn} is some sequence in
(0, α] such that αn → 0 with rate of convergence f and

∑∞
n=0 αn =∞ with rate of
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divergence r. Let q ∈ E be a fixpoint of T . Then whenever c1, c2 > 0 are such that
‖xn − q‖ ≤ c1 and ‖Txn − xn‖ ≤ c2 for all n ∈ N, we have ‖xn − q‖ → 0 with rate

Φτ,ψ,c1,c2,α,f,r(ε) := r

(
Nτ,c1,c2,f

(
1

2
min

{
2ψ

(
ε√
2

)
,
ε2

α

})
, 2

∫ c1

ε2/2

dt

2ψ(
√
t)

)
where

Nτ,c1,c2,f (δ) := f

(
1

c2
· ωτ

(
c1,

δ

4c2

))
for ωτ defined as in Remark 5.5.

Proof. This follows directly from Theorem 5.3 and Remark 5.4, observing that
for q a fixpoint of T the constant sequence {T} is quasi asymptotically d-weakly
contractive with modulus σ(δ, b) := 0. �

Remark 5.7. Corollary 5.6 includes an implicit assumption that the sequences
{‖xn − q‖} and {‖Txn − xn‖} are bounded, whereas the proof of Theorem 3.1 of
[12] demonstrates that these sequences are always bounded, and so c1, c2 are guar-
anteed to exist in this case. However, the rate of convergence we provide remains
valid, and is in any case dependent on upper bounds for the sequences, independent
of whether or not their existence is required in advance to establish convergence.

6. Case study 3: Perturbed Mann schemes

In our final and most complex case study, we take as inspiration a paper of Al-
ber, Reich and Yao [7], where approximation sequences {zn} to weakly contractive
mappings T : E → X are studied for which zn is projected onto some En ⊆ E. To
establish convergence we require that the perturbed sets {En} approach E in the
uniform Hausdorff metric, and that the projection operators are sunny nonexpan-
sive retractions. We start off by introducing these notions and providing some key
computational lemmas that will be needed to establish rates of convergence.

The Hausdorff distance between two (non-empty) subsets of X is defined by

H(P,Q) := max

{
sup
x∈P

inf
y∈Q
‖x− y‖ , sup

y∈Q
inf
x∈P
‖x− y‖

}
Following [30], we represent the Hausdorff distance via an abstract predicate H∗,
defined as follows:

Definition 6.1. For P,Q ⊆ X and a > 0 say that H∗[P,Q, a] is true iff both

∀x ∈ P ∃y ∈ Q(‖x− y‖ ≤ a) and ∀y ∈ Q ∃x ∈ P (‖x− y‖ ≤ a)

Lemma 6.2. If H(P,Q) < a then H∗[P,Q, a] holds.

Proof. From supx∈P infy∈Q ‖x− y‖ < a we infer that for all x ∈ P :

inf
y∈Q
‖x− y‖ < a

Supposing for contradiction that for all y ∈ Q we had ‖x− y‖ ≥ a, it would follow
that infy∈Q ‖x− y‖ ≥ a, so therefore for each x ∈ P there must exists at least one
y ∈ Q with ‖x− y‖ < a. Showing that for any y ∈ Q there exists some x ∈ P with
‖x− y‖ < a is entirely analogous, and therefore H∗[P,Q, a] holds. �
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Lemma 6.2 is useful as it shows us that we can replace assumptions involving the
Hausdorff metric with assumptions phrased in terms of the simpler predicate H∗

(which does not involve infima or suprema, nor indeed any requirement that the
Hausdorff metric be well-defined). We now turn to the notion of a sunny nonex-
pansive retraction ([10, 17]) – which has been recently studied from the perspective
of proof mining in [31] – and give a quantitative version of a key lemma from [7] in
which we make use of our Hausdorff predicate. We first require a definition which
gives a characterisation of sunny expansiveness that will be crucial in what follows.

Definition 6.3 (cf. [7]). Let E be a nonempty, closed convex subset of a Banach
space X. A nonexpansive retraction Q : X → E is called sunny if for all x ∈ X
and t ≥ 0 we have

Q(Qx+ t(x−Qx)) = Qx

Moreover, if X is smooth, Q is sunny nonexpansive iff for all x ∈ X and y ∈ E:

(28) 〈x−Qx, J(y −Qx)〉 ≤ 0

It is the alternative formulation (28) of sunny nonexpansive mappings that gives
some intuition as to their relevance: In a Hilbert space, (28) characterises the
metric projection, and so sunny nonexpansive retractions can be viewed as playing
an analogous role Banach spaces to projections in Hilbert spaces.

In the remainder of this section we will work in a space (X, J) with a uniformly
continuous duality selection map, and define a nonexpansive retraction Q : X → E
to be one which satisfies (28) for all x ∈ X and y ∈ E (note that the assumption
that E is closed and convex is no longer used, though in the case where it is our
definition will then match up to the usual definition.

With all this now in place, we now give a abstract formulation of Lemma 3.4 of
[7] in terms of our moduli:

Lemma 6.4. Let (X, J) be a space with a uniformly continuous duality selection
map with modulus of continuity ω, and Q1 : X → E1, Q2 : X → E2 be sunny
nonexpansive retractions with ‖Q10‖ , ‖Q20‖ ≤ d. Pick any ε, b > 0 and define

R := 2(2b+ d) + 1 and a := min
{

1, ω
(
R,

ε

R

)}
Then H∗[E1, E2, a] implies that for any x ∈ X with ‖x‖ ≤ b we have

‖Q1x−Q2x‖2 ≤ ε

Proof. Take x ∈ X with ‖x‖ ≤ b and let y1 := Q1x ∈ E1 and y2 := Q2x ∈ E2.
Then by H∗[E1, E2, a] there exists some v2 ∈ E2 such that ‖y1 − v2‖ ≤ a. We have

(29)

〈x− y2, J(y1 − y2)〉
= 〈x− y2, J(v2 − y2)〉+ 〈x− y2, J(y1 − y2)− J(v2 − y2)〉
≤ ‖x− y2‖ ‖J(y1 − y2)− J(v2 − y2)‖

where for the equality we use linearity of the duality pairing operation and for the
second inequality we use 〈x− y2, J(v2 − y2)〉 ≤ 0 which follows directly from (28)
and the assumption that Q2 is sunny. We now observe that

‖x− y2‖ ≤ ‖x−Q20‖+ ‖Q20−Q2x‖ ≤ 2 ‖x‖+ ‖Q20‖ ≤ 2b+ d
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and similarly ‖x− y1‖ ≤ 2b + d. From this it follows that ‖y1 − y2‖ ≤ 2(2b + d)
and, using ‖y1 − v2‖ ≤ a ≤ 1, we have

‖v2 − y2‖ ≤ ‖v2 − y1‖+ y1 − y2 ≤ a+ 2(2b+ d) ≤ R
Using now that ‖y1 − y2‖ , ‖v2 − y2‖ ≤ R and ‖y1 − v2‖ ≤ a ≤ ω

(
R, εR

)
, since ω is

a modulus of continuity for J in the sense of Definition 5.2 we have

‖J(y1 − y2)− J(v2 − y2)‖ ≤ ε

R

and therefore from (29):

〈x− y2, J(y1 − y2)〉 ≤ (2b+ d) · ε
R
≤ ε

2

Entirely analogously, byH∗[E1, E2, a] there exists some v1 ∈ E1 such that ‖v1 − y2‖ ≤
a and using a symmetric argument we can show that

〈x− y1, J(y2 − y1)〉 ≤ ε

2

and therefore

‖y1 − y2‖2 = 〈y1 − y2, J(y1 − y2)〉
= 〈y1 − x, J(y1 − y2)〉+ 〈x− y2, J(y1 − y2)〉 ≤ ε

This completes the proof. �

Remark 6.5. The above lemma essentially provides a modulus of uniqueness for the
implication H(E1, E2) = 0 =⇒ Q1 = Q2, in the sense that it tells us exactly how
close E1 and E2 need to be in order to make ‖Q1x−Q2x‖ arbitrarily small. The
extraction of moduli of uniqueness form an important subclass of applications in
proof mining, see [21, Chapters 15-16] for examples.

We are now ready to present the main quantitative result:

Theorem 6.6. Suppose that (X,J) is a space equipped with a uniformly continuous
duality selection map, with modulus of continuity ω. Let {An} be a sequence of
mappings An : En → X and ψ : [0,∞) → [0,∞) be a nondecreasing function with
ψ(0) = 0. Suppose that {An} are asymptotically ψ-weakly contractive with modulus
σ in the sense that for all x, y ∈ X we have

‖x− y‖ ≤ b =⇒ ‖Anx−Any‖ ≤ ‖x− y‖ − ψ(‖x− y‖) + δ

for all δ, b > 0 and n ≥ σ(δ, b). Suppose in addition that {zn} is a sequence
satisfying

zn+1 = Qn((1− αn)zn + αnAnzn)

where {αn} is some sequence in (0, α] such that
∑∞
n=0 αn = ∞ with rate of di-

vergence r, and Qn : X → En+1 is some sequence of sunny nonexpansive re-
tractions. Let Q : X → E be a sunny nonexpansive retraction and suppose that
H∗[En+1, E, an] holds for all n ∈ N, where {an} is a sequence in (0, 1). Suppose
that d > 0 is such that Q0 ≤ d and Qn0 ≤ d for all n ∈ N. Fix some q ∈ E such
that ‖Anq − q‖ → 0 with rate f . Finally, let {xn} be any non-perturbed sequence
defined by

xn+1 = Q((1− αn)xn + αnAnxn)

and suppose that {zn} and {xn} are bounded. Then {‖Anzn‖} is also bounded, and
we choose c1, c2, c3, c4 > 0 be such that ‖zn‖ ≤ c1, ‖Anzn‖ ≤ c2, ‖xn − q‖ ≤ c3,
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‖xn − zn‖ ≤ c4 for all n ∈ N. Let R := 2(2(c1 + αc2) + d) + 1. Then whenever
h : (0,∞)→ N is such that for any δ > 0 we have

(30) an ≤ ω
(
R,

(αnδ)
2

4R

)
for all n ≥ h(δ), then ‖zn − q‖ → 0 with rate of convergence

Φψ,c3,c4,c5,α,r,σ,f,h(ε) :=

r

(
Nc3,c4,σ,f,h

(
1

2
min

{
ψ
(ε

4

)
,
ε

2α

})
, 2

∫ max{c3,c4}

ε/4

dt

ψ(t)

)
+ 1

where

Nc3,c4,σ,f,h(δ) := max

{
σ

(
δ

2
,max{c3, c4}

)
, f

(
δ

2

)
, h(δ)

}
Proof. To show that {‖Anzn‖} is bounded it is enough to observe that for suffi-
ciently large n we have

‖Anzn‖ ≤ ‖Anzn −Anq‖+ ‖Anq − q‖+ ‖q‖
≤ ‖zn − q‖ − ψ(‖zn − q‖) + 1 + ‖Anq − q‖+ ‖q‖

and so boundedness of {‖Anzn‖} follows from boundedness of {‖zn‖} and ‖Anq − q‖ →
0. We now start off the main proof by showing that ‖xn − q‖ → 0, which is estab-
lished in the standard way: Since q ∈ E and Q is a nonexpansive retraction, we
observe that for any δ > 0 we have

‖xn+1 − q‖ = ‖Q((1− αn)xn + αnAnxn)−Qq‖
≤ ‖(1− αn)xn + αnAnxn − q‖
≤ (1− αn) ‖xn − q‖+ αn ‖Anxn − q‖
≤ (1− αn) ‖xn − q‖+ αn ‖Anxn −Anq‖+ αn ‖Anq − q‖

≤ ‖xn − q‖ − αnψ(‖xn − q‖) + αn
δ

2
+ αn

δ

2

where for the last step we require that n ≥ σ( δ2 , c3) (from asymptotic contractivity

of {An} with modulus σ) and n ≥ f( δ2 ) (from ‖Anq − q‖ → 0 with rate f). In

other words, this holds for all n ≥ N1
c3,σ,f

(δ) where

N1
c3,σ,f (δ) := max

{
σ

(
δ

2
, c3

)
, f

(
δ

2

)}
Therefore by Lemma 3.1 applied to µn := ‖xn − q‖ and parameters ψ, α, r,N1

c3,σ,f

and c3 we have ‖xn − q‖ → 0 with rate

Φ1
ψ,c3,α,r,σ,f (ε) := r

(
N1
c3,σ,f

(
1

2
min

{
ψ
(ε

2

)
,
ε

α

})
, 2

∫ c3

ε/2

dt

ψ(t)

)
+ 1

We finish the proof by showing that ‖zn − xn‖ → 0. To this end, observe that
(31)
‖zn+1 − xn+1‖ = ‖Qn((1− αn)zn + αnAnzn)−Q((1− αn)xn + αnAnxn)‖

≤‖Q((1− αn)zn + αnAnzn)−Q((1− αn)xn + αnAnxn)‖
+ ‖Qn((1− αn)zn + αnAnzn)−Q((1− αn)zn + αnAnzn)‖
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We consider at the two summands on the right hand side in turn. Fix some δ > 0.
First of all, since Q is nonexpansive we have

(32)

‖Q((1− αn)zn + αnAnzn)−Q((1− αn)xn + αnAnxn)‖
≤ (1− αn) ‖zn − xn‖+ αn ‖Anzn −Anxn‖
≤ ‖zn − xn‖ − αnψ(‖zn − xn‖) + αnδ/2

for all n ≥ σ(δ/2, c4). We now focus on the second term and use the convergence
property of {En}. More specifically, our aim to is show that when n is sufficiently
large we have:

(33) ‖Qn((1− αn)zn + αnAnzn)−Q((1− αn)zn + αnAnzn)‖ ≤ αnδ/2

Noting that

(34) ‖(1− αn)zn + αnAnzn‖ ≤ ‖zn‖+ αn ‖Anzn‖ ≤ c1 + αc2

we can apply Lemma 6.4 to the sunny nonexpansive retractions Qn, Q with

x := (1− αn)zn + αnAnzn

b := c1 + αc2

ε :=

(
αnδ

2

)2

To be more precise, by (34) we have ‖x‖ ≤ c1 + αc2 = b, by assumption we
have Q0, Qn0 ≤ d, our definition of R satisfies R = 2(2b + d) + 1, and finally the
assumption (30) together with an ∈ (0, 1) implies that an ≤ a := min{1, ω(R, εR )}
for epsilon as defined above and all n ≥ h(δ). Therefore from H∗[En+1, E, an] we

have H∗[En+1, E, a] and thus by Lemma 6.4 ‖Qnx−Qx‖2 ≤ ε, and instantiating
our values for x and ε we have established (33) for all n ≥ h(δ). Now, putting
together (31)–(33) we have

‖zn+1 − xn+1‖ ≤ ‖zn − xn‖ − αnψ(‖zn − xn‖) + αnδ

whenever n ≥ σ( δ2 , c4) and n ≥ h(δ), or alternatively n ≥ N2
c4,σ,h

(δ) for

N2
c4,σ,h(δ) := max

{
σ

(
δ

2
, c4

)
, h(δ)

}
Therefore Lemma 3.1 can be applied again, this time to µn := ‖zn − xn‖ and
parameters ψ, α, r, N2

c4,σ,h
and c4 to establish that ‖zn − xn‖ → 0 with rate

Φ2
ψ,c4,α,r,N1

(ε) := r

(
N2
c4,σ,h

(
1

2
min

{
ψ
(ε

2

)
,
ε

α

})
, 2

∫ c4

ε/2

dt

ψ(t)

)
+ 1

To complete the proof and obtain the final rate of convergence, we assume w.l.o.g.
that σ is monotone in its second argument and r is monotone in both arguments
(in practise this would always be the case, and this harmless assumption allows
for a slightly more compact rate of convergence, which would otherwise require
additional uses of the maximum operator). First, using the monotonicity property
of σ we see that Nc3,c4,σ,f,h as defined in the statement of the theorem satisfies
Nc3,c4,σ,f,h(δ) ≥ N1

c4,σ,f
(δ), N2

c4,σ,h
(δ) for all δ > 0, and using this together with

monotonicity of r for Φ(ε) as defined in the statement of the theorem we have
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(suppressing subscripts) Φ(ε) ≥ Φ1(ε/2),Φ2(ε/2), and therefore for all n ≥ Φ(ε) it
follows that

‖zn − q‖ ≤ ‖xn − q‖+ ‖zn − xn‖ ≤
ε

2
+
ε

2
= ε.

Thus ‖zn − q‖ → 0 with the stated rate of convergence. �

Remark 6.7. In special cases, the condition (30) can be simplified. For example, if
an := 1

n and αn := α for all n ∈ N, then (30) automatically holds for

h(δ) :=
1

ω (R, (αδ)2/R)

For a more detailed analysis of what this condition means in uniformly smooth
spaces, see Remark 6.9.

6.1. Perturbed schemes for computing fixpoints of ψ-weakly contractive
mappings. Theorem 6.6 is very general, and in the case where we replace {An}
with a single ψ-weakly contractive mapping T we obtain a much simpler result as
a direct corollary.

Corollary 6.8 (cf. Theorem 3.5 of [7]). Suppose that X is a uniformly smooth
space with a modulus τ , and suppose ψ is a nondecreasing function with ψ(0) = 0.
Let T : E → X be a ψ-weakly contractive mapping and suppose that {zn} satisfies

zn+1 = Qn((1− αn)zn + αnTzn)

where {αn} is some sequence in (0, α] such that
∑∞
n=0 αn = ∞ with rate of di-

vergence r, and Qn : X → En+1 ⊆ E is some sequence of sunny nonexpansive
retractions. Let Q : X → E be a sunny nonexpansive retraction and suppose that
H∗[En+1, E, an] holds for all n ∈ N, where {an} is a sequence in (0, 1). Suppose
that d > 0 is such that Q0 ≤ d and Qn0 ≤ d for all n ∈ N. Let q be a fixpoint of
T . Suppose that {zn} is bounded. Then {‖Tzn‖} is also bounded, and we choose
c1, c2, c3 > 0 such that ‖zn‖ ≤ c1, ‖Tzn‖ ≤ c2 and ‖z0 − q‖ ≤ c3 for all n ∈ N. Let
R := 2(2(c1 + αc2) + d) + 1. Then whenever h : (0,∞) → N is such that for any
δ > 0 we have

(35) an ≤ ωτ
(
R,

(αnδ)
2

4R

)
for all n ≥ h(δ) and ωτ as defined in Remark 5.5, then ‖zn − q‖ → 0 with rate of
convergence

Φψ,c3,α,r,h(ε) := r

(
h

(
1

2
min

{
ψ
(ε

4

)
,
ε

2α

})
, 2

∫ 2c3

ε/4

dt

ψ(t)

)
+ 1

Proof. We apply Theorem 6.6 with An = T . Clearly σ(δ, b) = 0 and also since
‖Tq − q‖ = 0 we have f(δ) = 0. Defining {xn} by x0 := z0 and

xn+1 = Q((1− αn)xn + αnTxn)

we have (using that Q is a nonexpansive retraction):

‖xn+1 − q‖ ≤ (1− αn) ‖xn − q‖+ αn ‖Txn − Tq‖
≤ ‖xn − q‖ − αnψ(‖xn − q‖)
≤ ‖xn − q‖
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and therefore ‖xn − q‖ ≤ ‖x0 − q‖ = ‖z0 − q‖ ≤ c3 for all n ∈ N. Thus bounded-
ness of {xn} can be derived in this case and c3 is an upper bound for {‖xn − q‖},
which also implies that ‖xn − zn‖ ≤ c4 for c4 := 2c3. Then the result follows from
putting this data into Theorem 6.6, and observing that in this case, N(δ) = h(δ)
and max{c3, c4} = 2c3. �

Remark 6.9. Corollary 6.8 forms a quantitative version of Theorem 3.5 of [7]. The
only assumption which does not obviously translate is the condition (35). Let
gX(δ) := ρX(δ)/δ where ρX is the modulus of smoothness of X (cf. Section 2.2).
It is known that when X is a uniformly smooth then for ‖x‖ , ‖y‖ ≤ d then

‖Jx− Jy‖ ≤ 8dgX(16Ld−1 ‖x− y‖)

where 1 < L < 1.7 is the so-called Figiel constant [15]. In this sense, modulo some
constants, we can informally view g−1X as a modulus of continuity for the duality
mapping, and thus (35) would correspond to

gX(an) ≤ (αnδ)
2

and thus h would be a modulus of convergence for√
gX(an)

αn
→ 0 as n→∞

which is the limiting condition given in Theorem 3.5 of [7].

7. Concluding remarks

There are several ways in which this work could be extended. The most obvious
direction for future research is to consider further variants and generalisations of
asymptotically weakly contractive mappings (or indeed closely related families of
mappings such as the asymptotically nonexpansive mappings, which have already
been studied in applied proof theory in [24, 25] but for which several interesting
convergence results not hitherto analysed from a proof theoretic perspective are
established in the second part of [2]). In this paper we have selected a handful
of case studies to exemplify our approach, but a great deal of work on mappings
of weakly contractive and related type has been done in the last decade, much of
which may be amenable to the kind of quantitative analysis we carry out here.

Secondly, throughout this paper we have assumed that q acts as a fixpoint of
some limit of the sequence {An} (this is typically implicit in our main theorems
but explicit in their corollaries). However, it is natural to ask whether this as-
sumption can be weakened in some way and replaced by the existence of arbitrary
ε-approximate fixpoints. This is done in the related papers [23, 24] and there are
many other examples in applied proof theory, and here could potentially then lead
to moduli of uniqueness of fixpoints of asymptotically weakly contractive mappings.

Finally, along with [23, 24, 25, 30] our paper represents a further instance of
common situation in applied proof theory where concrete numerical results have
been obtained through the quantitative analysis of abstract recursive inequalities
(which here form the main topic of Section 3). We believe it would be useful to
undertake a comprehensive quantitative study of these abstract recursive schemes,
bringing together known results and establishing new ones. Not only would this be
of interest in its own right, but it would provide a valuable repository of quantitative
lemmas which could then be applied in concrete situations.
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