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Abstract

In this paper we study Littlewood’s Tauberian theorem from a proof
theoretic perspective. We first use the Dialectica interpretation to pro-
duce an equivalent, finitary formulation of the theorem, and then carry
out an analysis of Wielandt’s proof to extract concrete witnessing terms.
We argue that our finitization can be viewed as a generalized Tauberian
remainder theorem, and we instantiate it to produce two concrete remain-
der theorems as a corollary, in terms of rates of convergence and rates
metastability, respectively. We rederive the standard remainder estimate
for Littlewood’s theorem as a special case of the former.

1 Introduction

The extraction of computational content from proofs is a central theme in logic
and theoretical computer science. Modern research on this topic encompasses
both foundational results (such as the correspondence between formal logic and
programming languages, the computational semantics of proofs, and complexity
theory), along with applications (including formal verification, and the use of
logical techniques to obtain numerical data from proofs in mathematics). This
paper forms a new contribution to the application of proof theory in mathe-
matics, using Gödel’s Dialectica interpretation [6] to give a computational in-
terpretation to Littlewood’s classic Tauberian theorem [17], and then analysing
a proof of the theorem to produce witnesses for its interpretation.

Ever since the pioneering work of Kreisel [15, 16] on the “unwinding” of
proofs, it has been clear that traditional logical methods, and in particular
proof interpretations such as the Dialectica, have a deep mathematical signif-
icance. This has been widely demonstrated in the last 30 years or so through
the proof mining program [10], which makes use of proof theoretic techniques
to not only obtain new quantitative information from nonconstructive proofs,
but also yield qualitative generalisations of theorems, along with deep struc-
tural insights into certain mathematical phenomena. An example of the latter
is the recent discovery [5] that the Dialectica interpretation is connected to a
fundamental correspondence principle between ‘soft’ and ‘hard’ statements in
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analysis as described by T. Tao [25], and that the interpretation can be viewed as
a method for ‘finitizing’ infinitary statements, particularly convergence proper-
ties. Thus using the Dialectica interpretation to explore computational aspects
of mathematical proofs can result in both useful numerical results and interest-
ing connections between logic and pure mathematics.

In this paper, we apply the Dialectica interpretation in this spirit to inves-
tigate the relationship between two forms of convergence, representing distinct
methods for summing an infinite sequence of real numbers {an}:

(i)

∞∑
i=0

ai and (ii) lim
x→1−

∞∑
i=0

aix
i

When the limit (ii) exists, we say that {an} is Abel summable. While normal
summability (i) implies Abel summability (ii), the converse is not true, although
a partial converse can be proven by imposing a growth condition on {an}. In
1897 A. Tauber first showed that an = o(1/n) suffices, but then in 1911 J. E.
Littlewood established an optimal order condition such that convergence of (ii)
implies (i), namely an = O(1/n) [17]. This celebrated theorem marked the
beginning of the lifelong collaboration between G. H. Hardy and Littlewood,
which began with the development of further theorems of Tauberian type, and
ultimately launched an area of analysis now knows as Tauberian theory [14].

It turns out that the proof theoretic analysis of Tauberian theorems gives
us interesting results. The Dialectica interpretation of these theorems can be
formulated in a very natural way as an implication between the appropriate
‘metastable’ variants of the relevant convergence properties – and when the lat-
ter are put in Cauchy form, the result is an elegant finitization along the lines
of Tao’s finite convergence principle [25]. However, obtaining the corresponding
bounds involves a careful analysis of the original proofs. Crucially, this process
of finitization and bound extraction has a relevance beyond mathematical logic:
So-called remainder estimates, which relate the convergence speed of different
methods of summability, have been widely studied in parallel with the develop-
ment of Tauberian theorems, forming a fascinating quantitative subfield of the
area (cf. [14, Chapter VII]). Our Dialectica interpretation of Littlewood’s the-
orem can be viewed as a generalised remainder theorem: Not only are we able
to rederive the canonical remainder estimate as a special case, but our finitary
theorem can be used to obtain meaningful numerical results that go beyond the
scope of traditional Tauberian remainder theory, for example, cases where the
summability methods do not even possess computable rates of convergence.

Above all, in this paper we build on our initial work [22] and present a case for
Tauberian theory as a potentially fruitful area of application for proof theoretic
techniques in general. Over the course of the last century, Tauberian theory
has been vastly expanded beyond Littlewood’s theorem, and we conjecture that
the proof-theoretic analysis of more complex Tauberian theorems could form an
interesting contribution to both applied proof theory and Tauberian remainder
theory. For example, we believe that several of the key ideas presented here
could subsequently be lifted to a more general setting and used to finitize e.g.
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integral analogues of Tauberian theorems using Karamata’s method.
To summarise, then, there are three main reasons why we have chosen Lit-

tlewood’s theorem as a candidate for a proof theoretic study:

1. The theorem is extremely simple to state, and from a logical perspec-
tive can be reformulated as a straightforward implication between Cauchy
convergence properties (Section 3). Proofs of the theorem, on the other
hand, are complex, and even the shortest method of proof discovered by
Karamata [8] involves subtle ideas from approximation theory. As such,
the Dialectica interpretation of Littlewood’s theorem is elegant and intu-
itive, but extracting the corresponding witnessing terms poses a challenge
(Section 5).

2. There is an existing interest in quantitative versions of Tauberian theorems
in the form of remainder estimates, which relate the convergence speed of
(ii) to that of (i). We are able to not only provide a generalisation of
the known estimate in the case of Littlewood’s theorem, but also show
that the latter falls out in a natural way from our proof-theoretic analysis
(Section 6).

3. Tauberian theory in general represents a new domain of application for
proof theoretic methods, and is an area replete with simple convergence
statements whose proofs make use of complex analytic techniques. As
such, an analysis of Littlewood’s theorem represents a step in a promising
new direction with great potential for further study. Concrete suggestions
for future research are given in the conclusion to this paper.

Though the central theme of this paper is the application of proof theoretic
methods in mathematics, we also consider our results to be of broader rele-
vance to the mathematical logic community: Through our use of the Dialectica
interpretation we are able impose a natural game semantics onto Tauberian the-
orems, along the lines of [2, 3], with our witnessing terms corresponding to a
winning strategy; The paper as a whole requires a careful analysis of the logical
structure of convergence properties that could be of interest to researchers in
constructive mathematics or formalization; Our remainder theorems in Section
6 involve concepts from computability theory such as Specker sequences, and
are formulated in terms of higher-order functionals, so that Theorem 6.7 is es-
sentially the specification of a type 3 functional program corresponding to a
variant of Littlewood’s theorem.

On a more general level, in recent years there has been a resurgence of inter-
est in the Dialectica interpretation outside of applied proof theory, encompassing
formalization [23], category theory (starting with [4]), and most recently new
connections with classical realizability [19] and the differential lambda calculus
[9]. Therefore we believe that a self-contained case study presenting a novel
example of how the Dialectica interpretation manifests in a natural way within
a beautiful area of pure mathematics will be of value in its own right.

For this reason, we have written the paper without assuming any prior knowl-
edge of either Tauberian theory or proof interpretations. We provide a brief
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overview of Tauberian theory in the next section, and introduce the relevant
aspects of the Dialectica interpretation as they are needed in later sections. Be-
yond this, we assume only a basic understanding of formal logic and a certain
fluency in elementary analysis, specifically convergent series and integrals.

Related work

Tauberian theory has grown into a large area of research, but applications of
proof theory in this area are currently limited to the author’s previous work
[22], on which this paper builds significantly (though in the other direction,
Tauberian theorems have been applied in proof theory by Weiermann to derive
ordinal bounds cf. [28] and most recently [29]). More generally, the results of
this paper represent one of very few applications of proof interpretations that
involve analytic methods in number theory (as broadly defined), beyond very
early case studies such as [16] and [18].

2 Tauberian theorems

Tauberian theory is an extensive area of research which, taken in a very general
sense, is concerned with finding conditions under which summability methods
converge. For a comprehensive overview of the field, including an account of its
historical development and a survey of modern research in the area, the reader
is encourage to consult the standard textbook [14], though everything that we
require will be presented below.

The present paper involves just two simple summability methods for se-
quences of real numbers, namely the basic infinite sum of their elements, to-
gether with the power series they generate. To be more specific, let {an} be a
sequence of real numbers. For the remainder of this paper we will define {sn}
and F : [0, 1)→ R in terms of {an} as follows:

sn :=

n∑
i=0

ai and F (x) :=

∞∑
i=0

aix
i

Assuming that {|an|} is bounded above by some a > 0, it is clear that F is
well-defined on x ∈ [0, 1), since then

∞∑
i=0

|aixi| ≤ a
∞∑
i=0

xi =
a

1− x

However, the question of whether or not F (x) converges to some finite limit as
x → 1− is closely related to the convergence of {sn}. In one direction we have
a standard result:

Theorem 2.1 (Abel’s theorem). If limn→∞ sn = s and thus F (x) is well-
defined on [0, 1), then limx→1− F (x) = s.
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However, the converse of this theorem is not true: Setting an = (−1)n we
have

F (x) =

∞∑
i=0

(−1)ixi =
1

1 + x
→ 1

2

as x → 1−, but
∑∞
i=0(−1)i does not exist. Tauber’s theorem, from which

Tauberian theory derives its name, establishes a simple growth condition under
which a converse to Abel’s theorem does hold:

Theorem 2.2 (A. Tauber 1897 [27]). If limx→1− F (x) = s and an = o(1/n)
then limn→∞ sn = s.

Both Abel’s and Tauber’s theorems can be easily proven with little more
than elementary facts about convergent series (cf. [14, Chapter 1] and the
corresponding proof theoretic analysis in [22]). However, in 1911, Littlewood
established a ‘big-O’ strengthening of Tauber’s theorem, a much deeper result
which in some sense marked the beginning of Tauberian theory in earnest:

Theorem 2.3 (J. E. Littlewood 1911 [17]). If limx→1− F (x) = s and an =
O(1/n) then limn→∞ sn = s.

Littlewood showed that his growth condition an = O(1/n) is optimal in the
sense that for any sequence {bn} with limn→∞ bn = ∞ there exists a sequence
{an} with n|an| ≤ bn such that limx→1− F (x) exists but

∑∞
i=0 ai does not, al-

though together with Hardy [7] his Tauberian theorem was further strengthened,
in particular showing that a one-sided condition nan ≥ −C is sufficient.

A key feature that distinguishes both Littlewood’s and subsequent Taube-
rian theorems from Theorem 2.2 is the relative difficulty of proving them. Lit-
tlewood’s original proof was complex and involved repeated differentiation, and
while much simpler proofs were subsequently found (notably by Karamata [8]
and then Wielandt [30]), all of these rely on analytic methods, specifically tech-
niques for approximating continuous functions with polynomials.

Another good indication that Littlewood-style Tauberian theorems go fun-
damentally beyond elementary analysis is that optimal remainder estimates that
relate the convergence speed of F (x)→ s to that of sn → s are established using
numerical results from approximation theory, including bounds on the degree
and coefficients of polynomials that approximate piecewise continuous functions.
The canonical remainder estimate for Littlewood’s theorem is as follows:

Theorem 2.4 (cf. Korevaar [14] page 346). Suppose that an = O(1/n) and
there is some b > 0 such that

F (x) = s+O((1− x)b)

as x→ 1−. Then

sn = s+O
(

1

log(n)

)
as n→∞.
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Detailed outline of the paper

Following this brief introduction to the relevant background in Tauberian theory,
we are now in a position to give a more detailed outline of the main results of
the present paper. In recent work [22], the comparatively elementary proofs
of Abel’s and Tauber’s theorems were analysed, and finitary versions of these
theorems established. In what follows, we extend this idea to the much more
complex Littlewood Tauberian theorem, stating and proving a finitary version
of Theorem 2.3 in Section 5 and showing how this can be clearly understood in
terms of the Dialectica interpretation of implication. Before doing this, we give
a new, Cauchy reformulation of Littlewood’s theorem, and present a proof of
this reformulation that is inspired by Wielandt’s variation [30] of Karamata’s
method of proof [8].

We then combine our finitization with known bounds on polynomial approx-
imations to derive two remainder theorems for Littlewood’s theorem. The first
deals with the case where F (x) → s with some arbitrary computable rate of
convergence, while the second applies more generally still when F (x) → s as
x → 1− but without necessarily having a computable rate of convergence, in-
stead converting a rate of metastability of the former to a rate of metastability
for sn → s. Both of these form generalisations of Theorem 2.4, which we show
can be derived as a special case. The use of logical methods to obtain Tauberian
remainder estimates in this way is completely new.

3 A Cauchy variant of Littlewood’s theorem

We start by giving a new presentation of Littlewood’s theorem. In line with
standard approaches to analysing convergence theorems using proof theoretic
methods, we prefer to work with a reformulation of the theorem that minimises
its logical complexity. In particular, we seek a version of Theorem 2.3 which,
rather than referring directly to the limit s, expresses the relevant convergence
properties in an equivalent Cauchy form. In this way we also achieve a fully
finitary formulation of the theorem in Section 5, phrased in entirely in terms of
finite intervals of stability for F (x) and sn, and independent of any limit s.

Firstly, the assumption that F (x) → s as x → 1− will be replaced with a
natural Cauchy variant which says that for any δ > 0 we have |F (x)−F (y)| ≤ δ
for x, y sufficiently close to 1. While it would be natural to then also replace the
conclusion sn → s as n→∞ with the standard Cauchy property for convergent
sequences, the issue here is Littlewood’s theorem doesn’t just state that {sn}
converges, but that it converges to the same limit as F (x) as x→ 1−. Therefore
we instead formulate the conclusion as the following Cauchy property: for any
ε > 0 we have |sn − F (xm)| ≤ ε for sufficiently large m,n, where xm is some
canonical sequence in [0, 1) with xm → 1−. From this we can then retrieve
that sn → limx→1− F (x). For reasons that will become clear when we give our
proof of the theorem, we choose xm := e−1/m as our canonical sequence. We
present our Cauchy variant of Littlewood’s theorem below, and then prove that
the original result follows from it.
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Definition 3.1. As usual we write x ∈ (a, b) for a < x < b and x ∈ [a, b] for
a ≤ x ≤ b, and so on. For integers l,m, n we also write n ∈ [l,m] to denote
l ≤ n ≤ m.

Theorem 3.2 (Littlewood’s theorem, Cauchy variant). Suppose that there ex-
ists some C > 0 such that n|an| ≤ C for all n ∈ N, and that

∀δ > 0∃M∀x, y ∈ [e−1/M , 1)(|F (x)− F (y)| ≤ δ)

Then we have

∀ε > 0∃N∀m,n ≥ N(|sn − F (e−1/m)| ≤ ε)

Before proving this, we show that it can be used to derive the original for-
mulation of Littlewood’s theorem:

Proof of Theorem 2.3 from Theorem 3.2. If an = O(1/n) then by definition
there exists some C > 0 such that n|an| ≤ C for all n ∈ N. Furthermore,
if F (x) → s as x → 1− then for any δ > 0 there exists some 0 ≤ µ < 1 such
that

x ∈ [µ, 1) =⇒ |F (x)− s| ≤ δ

2

Let M be sufficiently large that e−1/M ≥ µ. Then x, y ∈ [e−1/M , 1) implies that

|F (x)− F (y)| ≤ |F (x)− s|+ |s− F (y)| ≤ δ

and so we have established the premise of Theorem 3.2. Therefore we can
conclude that for any ε > 0 there exists some N such that

m,n ≥ N =⇒ |sn − F (e−1/m)| ≤ ε

2

But since F (x) → s as x → 1− we can choose m0 ≥ N large enough so that
|F (e−1/m0)− s| ≤ ε/2, and then n ≥ N implies

|sn − s| ≤ |sn − F (e−1/m0)|+ |F (e−1/m0)− s| ≤ ε

and we’ve proven that sn → s as n→∞.

We now give a proof of Theorem 3.2, which will be analysed in the next
section. This is an adaptation of Wielandt’s proof of the original theorem [30]
(see also [14, Chapter I.12]). Roughly speaking, this proof strategy, which dates
back to Karamata [8], is based on representing the partial sums sn as step
functions, and using integral theory to show that these approach F (e−1/m) as
m→∞. Our use of integrals in this way requires us to replace the discontinuous
step function with a polynomial approximation to it. That we are able to
find such polynomials for arbitrary errors relies on a result from approximation
theory, and we begin by stating this in the exact form in which it is needed:
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Lemma 3.3. Define χ : [0,∞)→ R to be

χ(t) :=

{
1 if t ∈ [0, 1]

0 otherwise

Then for any ε > 0 there exists a polynomial P with P (0) = 0 and P (1) = 1
satisfying ∫ ∞

0

|χ(t)− P (e−t)|
t

dt < ε (1)

Proof sketch. This is a standard result (cf. [13] or [14, Chapter I.11–12] for
full details), and so we just sketch the idea. We first consider the function
f : [0, 1]→ R defined by

f(t) :=
χ(log(1/t))− t

t(1− t)

which is Lipschitz continuous on both [0, 1/e) and [1/e, 1] and has a single jump
discontinuity at t = 1/e. It is a well known fact that such functions can be
approximated to arbitrary precision by polynomials, so we pick some polynomial
p such that ∫ 1

0

|f(t)− p(t)| dt < ε

and then set P (t) := t + t(1 − t)p(t), noting that P (0) = 0 and P (1) = 1.
Substituting t = e−u in the above integral we have∫ 1

0

|f(t)− p(t)| dt =

∫ ∞
0

|χ(u)− P (e−u)|
1− e−u

du

and applying the standard inequality 1 + x ≤ ex in the form 1− e−u ≤ u yields

|χ(u)− P (e−u)|
u

≤ |χ(u)− P (e−u)|
1− e−u

for 0 < u, and therefore∫ ∞
0

χ(u)− P (e−u)

u
du ≤

∫ 1

0

|f(t)− p(t)| dt < ε

which completes the proof.

We are now ready to apply the above lemma to prove our Cauchy variant of
Littlewood’s theorem.

Proof of Theorem 3.2. Fix ε > 0 for the remainder of the proof, and let P (t)
be as in Lemma 3.3 for error ε/4C. We let a : [0,∞)→ R be the discontinuous
step function corresponding to {an}, defined by a(t) := an for t ∈ [n, n + 1),
and define

IP (n) :=

∫ ∞
0

a(t)P (e−t/n) dt

Our main strategy is to show that
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(i) |sn − IP (n)| ≤ ε/2 for all n ∈ N and,

(ii) |IP (n)− F (e−1/m)| ≤ ε/2 for sufficiently large m,n.

Then putting these together we have

|sn − F (e−1/m)| ≤ |sn − IP (n)|+ |IP (n)− F (e−1/m)| ≤ ε

for sufficiently large m,n, and since ε was arbitrary the theorem is proved. We
tackle each of these in turn, using the growth condition n|an| ≤ C for (i) and
convergence of F (x) as x→ 1− for (ii).

For (i), we first note that that

sn =

∫ n

0

a(t) dt =

∫ ∞
0

a(t)χ(t/n) dt

and therefore

|sn − IP (n)| ≤
∫ ∞
0

|a(t)| · |χ(t/n)− P (e−t/n)| dt (2)

Now for any n ∈ N we have n|an| ≤ C and therefore for n ≥ 1 and t ∈ [n, n+1):

|a(t)| = |an| ≤
C

n
≤ 2C

n+ 1
≤ 2C

t
(3)

Similarly, for t ∈ (0, 1), assuming w.l.o.g. that |a0| ≤ C (otherwise we can just
modify the constant and set C ′ := max{|a0|, C}), we also have |a(t)| = |a0| ≤
C ≤ 2C/t, and thus it follows that |a(t)| ≤ 2C/t for all t ∈ (0,∞). Therefore
from (2) we have

|sn − IP (n)| ≤ 2C

∫ ∞
0

|χ(t/n)− P (e−t/n)|
t

dt

≤ 2C

∫ ∞
0

|χ(u)− P (e−u)|
u

du <
ε

2

(4)

using the substitution u = t/n and the property of P .
To prove (ii), we first note that by Lemma 3.3 we know that P (0) = 0 and

P (1) = 1, which implies that P (t) =
∑d
i=1 cit

i for some d ∈ N and c1, . . . , cd
with

∑d
i=1 ci = 1. Writing out IP (n) as

IP (n) =

d∑
i=1

ci

∫ ∞
0

a(t)e−it/n dt (5)

and observing that for any α > 0 we have∫ ∞
0

a(t)e−αt dt =

∞∑
k=0

ak

∫ k+1

k

e−αt dt

=

∞∑
k=0

ake
−αk

∫ 1

0

e−αt dt = F (e−α)

∫ 1

0

e−αt dt

(6)
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then combining (5) and (6) we have

IP (n) =

d∑
i=1

ciF (e−i/n)

∫ 1

0

e−it/n dt (7)

Using now that
∑d
i=1 ci = 1 and thus

F (e−1/m) =

d∑
i=1

ciF (e−1/m)

it follows from (7) that

|IP (n)− F (e−1/m)|

=

∣∣∣∣∣
d∑
i=1

ci

(
F (e−i/n)

∫ 1

0

e−it/n dt− F (e−1/m)

)∣∣∣∣∣
≤

d∑
i=1

|ci| · |F (e−i/n)

∫ 1

0

e−it/n dt− F (e−1/m)|

≤
d∑
i=1

|ci| ·
(
F (e−1/n)

(∫ 1

0

e−it/n dt− 1

)
+ (F (e−i/n)− F (e−1/m))

)

≤
d∑
i=1

|ci| ·
(
L

∣∣∣∣∫ 1

0

e−it/n dt− 1

∣∣∣∣+ |F (e−i/n)− F (e−1/m)|
)

(8)

where for the last step we use that |F (x)| must be bounded above by some
L > 0 as x→ 1−. Now for any fixed i = 1, . . . , d we have

lim
n→∞

∫ 1

0

e−it/n dt = 1

and by our Cauchy convergence condition |F (e−i/n)−F (e−1/m)| → 0 as m,n→
∞. It therefore follows from (8) that we can choose m,n sufficiently large so
that |IP (n)− F (e−1/m)| ≤ ε/2. This proves (ii), and we’re done

4 The Dialectica interpretation

Having motivated and presented Littlewood’s Tauberian theorem, in a Cauchy
form whose simplified logical structure makes it easier to interpret, we now
briefly outline the logical technique used to finitize the theorem: Gödel’s Di-
alectica interpretation. It is important to note that this paper is not a rigorous
study of the Dialectica itself – rather the interpretation acts as a guide in how to
correctly formulate our finitary version of Littlewood’s theorem, along with the
subsequent remainder theorems. As such, exact details of the interpretation and
the surrounding theory are not important here, and a prior familiarity with the
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interpretation not required to appreciate our quantitative theorems. With this
in mind, we restrict our attention to key features of the interpretation that play
a role in what follows. For detailed background on the Dialectica interpretation
see e.g. [1] or [10].

4.1 The basic interpretation, and how it is used in this paper

Numerous different variants of the Dialectica interpretation have been explored
over the years, ranging from Gödel’s original interpretation to specialised ver-
sions used in proof mining [10] or the theory of programming languages [19, 20].
In its standard form the Dialectica assigns to any formula A in some for-
mal (semi) intuitionistic theory PI a logically equivalent formula of the form
AD = ∃x∀yAD(x, y) in some higher-order variant Pω of that theory, where

• AD(x, y) is ‘computationally neutral’ (typically quantifier free or decid-
able),

• the free variables of ∃x∀yAD(x, y) are the same as those of A,

• x and y are (potentially empty) tuples of terms in all finite types, where
these types depend on A.

To be more precise, AD(x, y) is defined by induction over the logical structure
of A as follows:

AD := A if A is computationally neutral

(A ∧B)D := ∃x, u∀y, v(AD(x, y) ∧BD(u, v))

(A ∨B)D := ∃b, x, u∀y, v(AD(x, y) ∨b BD(u, v))

(A =⇒ B)D := ∃f, g∀x, v(AD(x, gxv) =⇒ BD(fx, v))

(∃zA[z])D := ∃z, x∀uAD[z](x, u)

(∀zA[z])D := ∃f∀z, uAD[z](fz, y)

where in the interpretation of disjunction b is a boolean or natural number and
P ∨b Q is shorthand for

(b = 0 =⇒ P ) ∧ (b 6= 0 =⇒ Q)

The most fundamental results concerning the Dialectica interpretation are sound-
ness theorems, which guarantee that whenever A is provable in PI , a computable
witnessing term for AD can be extracted from the proof:

Intuitionistic soundness theorem: If PI ` A then we can extract, from the
proof of A, some term t in Pω such that Pω ` ∀yAD(t, y).

The original soundness theorem due to Gödel instantiates PI as Heyting
arithmetic and Pω as System T, though many more soundness theorems have
been developed since. In the case of classical theories PC , it is not always

11



possible to extract computable terms that witness the Dialectica interpretation
of formulas. However, here one can instead precompose the Dialectica with a
negative translation AN that embeds PC into its intuitionistic variant PI :

Classical soundness theorem: If PC ` A then we can extract, from the proof
of A, some term t in Pω such that Pω ` ∀y(AN )D(t, y).

The value of the soundness theorems for applied proof theory lies primarily
in the fact that they set out conditions under which it is theoretically possible
to extract computational content from proofs, determine the precise shape that
this computational information should take, and provide a recipe for extracting
realizing terms from formalized versions of those proofs. However, outside of
formal program synthesis (to obtain verified programs via a proof assistant,
for example), the soundness theorems are rarely applied step-by-step to fully
formalized proofs. Rather, the interpretation is used in an informal way to guide
the extraction process, in conjunction with ordinary mathematical intuition.

More concretely, in our case the Dialectica interpretation dictates the way in
which we formulate our finitary Tauberian theorem (Theorem 5.3 below), and
(in its classical variant) shows us how to obtain meaningful remainder theorems
even when no computable rates of convergence exist in Section 6.2. However,
our quantitative results are all proven ‘by-hand’ and without the rigorous ap-
plication of logical methods. So while the soundness proof for the Dialectica
interpretation certainly helped guide our analysis of the proof of Theorem 3.2,
we do not include any formal details. We instead prefer to present our proof of
the finitary theorem in an ordinary mathematical style. It should, however, be
clear that the proof of Theorem 5.3 directly mirrors and forms a computational
analogue to that of Theorem 3.2.

4.2 The interpretation of implication

The characterising feature of the Dialectica interpretation that sets it apart from
similar proof interpretations such as modified realizability is its interpretation
of implication. It is this that informs our computational interpretation of Lit-
tlewood’s theorem, and so it is important to give some insight into its meaning.
In interpreting implication, we are required to choose a Skolemisation of the
formula:

∃x∀yAD(x, y) =⇒ ∃u∀vBD(u, v)

There are various options available, but the Dialectica selects the ‘least noncon-
structive’ of these, which turns out to be:

∀x∃u∀v∃y(AD(x, y) =⇒ BD(u, v)) (9)

(for the reasoning behind this choice see e.g. [10, pp. 128–129]). Bringing
the existential quantifiers ∃u and ∃y to the front as functions gives us exactly
(A =⇒ B)D. Happily, the formula (9) can be given an elegant reading in
terms of game semantics, as a game between ∃loise and ∀belard where ∃loise
seeks to prove AD =⇒ BD while ∀belard attempts to contradict ∃loise by
proving AD ∧ ¬BD:
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1. ∀belard begins by proposing a witness x such that ∀yAD(x, y) holds, with
the aim of disproving BD.

2. ∃loise responds by proposing a witness u such that ∀vBD(u, v) is true.

3. ∀belard now tried to contradict ∃loise’s witness for BD by proposing a
counterexample v such that ¬BD(u, v).

4. ∃loise responds by contradicting ∀belard’s original claim that AD is true
by providing a counterexample y such that ¬AD(x, y).

Thus a pair of function f, g that witness (A =⇒ B)D represent nothing other
than a winning strategy for ∃loise in the above game, and this intuitive reading
of the Dialectica interpretation in this case is outlined in its abstract form here
as it is important in understanding our game-theoretic reading of Littlewood’s
theorem in Section 5.3 below.

5 A finitary Littlewood Tauberian theorem

We now motivate and present our computational interpretation of Theorem 3.2.
We characterise this as a ‘finitary’ Tauberian theorem because its statement
only refers to finite parts of the input data: Rather than asking that F (x)→ s
as x → 1− for some limit s, we only require that |F (x) − F (y)| is sufficiently
small within some fixed range [l, r] ⊂ [0, 1) (see also Remark 5.4 below which
further justifies how this statement can be viewed as finitary). Similarly, the
growth condition is replaced by an assumption that n|an| ≤ C for n ≤ p for
some suitable p. Finally, our conclusion is also finitary in nature: instead of
proving that sn → s as n → ∞, we establish that |sn − F (e−1/m)| is suffi-
ciently small within some finite range N ≤ m,n ≤ k. In this sense, our notion
of finitary coincides with what T. Tao regards as the ‘hard’ version of a soft
analytical statement [25]. Nevertheless, despite only referring to finite parts
of the data, our finitary theorem is equivalent to Theorem 3.2, and therefore
also Littlewood’s original formulation of the ‘big-O′ Tauberian theorem, in the
same way that the Dialectica interpretation of implication (9) is equivalent to
A =⇒ B. We discuss this further in Section 5.4.

5.1 The logical structure of Littlewood’s theorem

In order to make the quantifier structure of Theorem 3.2 precise, we first intro-
duce some predicate annotations.

Definition 5.1. Fixing some {an} and C > 0, the formulas A(p), B(δ,M, l) and
D(ε,N, k) are defined as follows:

A(p) := ∀n ≤ p(n|an| ≤ C)

B(δ,M, l) := ∀x, y ∈ [e−1/M , e−1/(M+l)](|F (x)− F (y)| ≤ δ)
D(ε,N, k) := ∀m,n ∈ [N,N + k](|sn − F (e−1/m)| ≤ ε)
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The overall structure of Littlewood’s theorem (and indeed Tauberian theo-
rems in general) is an implication of the form

(convergence) ∧ (growth condition) =⇒ (convergence)

Technically, the quantifier structure of such an implication is rather complex,
as each convergence property is a ∀∃∀ statement. However, just as in the prior
analysis of simple Tauberian theorems in [22], an inspection of the proof of
Theorem 3.2 reveals that we have in fact proven something stronger: For any
ε > 0 there is a concrete δ dependent only on ε, namely δε := ε/4

∑d
i=1 |ci|,

such that |F (x) − F (y)| ≤ δε for all x, y sufficiently close to 1 implies that
|sn − F (e−1/m)| ≤ ε for all m,n sufficiently large (we do not justify this in
detail at this point as this will be implicitly proven in Theorem 5.3 below).
This is clearly a quantitative strengthening of the theorem, and renders it of
the form

∀ε[∀pA(p) ∧ ∃M∀l B(δε,M, l) =⇒ ∃N∀kD(ε,N, k)] (10)

Now, taking the Dialectica interpretation of the premise of (10) gives us

∀ε[∃M∀p, l (A(p) ∧B(δε,M, l)) =⇒ ∃N∀kD(ε,N, k)]

and the Dialectica interpretation of the above implication as in (9) yields the
following as a final Skolemisation of the Littlewood Tauberian theorem in its
Cauchy formulation:

∀ε,M∃N∀k∃p, l[A(p) ∧B(δε,M, l) =⇒ D(ε,N, k)] (11)

5.2 The finitary theorem

Our finitary version of Littlewood’s theorem corresponds to the Dialectica in-
terpretation of Theorem 3.2 in the form (11). More importantly, we analyse the
proof of Theorem 3.2 to provide concrete bounds on N in terms of ε and M and
on p and l in terms of ε,M and k, parametrised by the big-O bound C > 0,
together with a uniform bound a > 0 for the sequence {|an|}, the latter being
necessary since we can no longer derive boundedness of {|an|} from the growth
condition, as we now only assume a finitary version of an = O(1/n).

Theorem 3.2 relies crucially on the existence of approximating polynomials
as set out in Lemma 3.3. The first step in our analysis is to examine the proof
of Theorem 3.2 and identify exactly which numerical aspects of Lemma 3.3 are
required to obtain witnesses for (11). It turns out that it is sufficient to have,
for any ε > 0, bounds on both the degree d and the sum of the magnitude of
the coefficients

∑d
i=1 |ci| for a polynomial P (x) = c1x+ . . .+cdx

d satisfying (1).
We can express this more precisely as follows:

Definition 5.2. Let χ be defined as in Lemma 3.3. We define a modulus of
polynomial approximation for χ to be any function Ω : (0,∞)→ (0,∞)× (0,∞)
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such that for any ε > 0 there exists a polynomial P (x) =
∑d
i=1 cix

i satisfying
Lemma 3.3 with error ε, such that

d ≤ Ω0(ε) and

d∑
i=1

|ci| ≤ Ω1(ε)

where Ω(ε) = (Ω0(ε),Ω1(ε)).

We now state and prove our finitary Tauberian theorem in terms of some
generic modulus of polynomial approximation Ω, before supplying a concrete
modulus in Lemma 5.5.

Theorem 5.3 (Finitary Tauberian theorem). Suppose that C > 0 is some
real number, a > 0 is a bound on {|an|}, and Ω is a modulus of polynomial
approximation for χ. Fix ε > 0 and let b, v and δ be defined by

(b, v) := Ω
( ε

8C

)
δ :=

ε

4v

Given M ∈ N, define N ∈ N by

N := b ·max

{⌈L
δ

⌉
,M

}
for L :=

a

1− e−1/M
+ δ

Finally, given k ∈ N define p, l ∈ N by

l := N + k −M

p := (N + k) ·max

{⌈
log

(
a(N + k)

δ

)⌉
, 1

}
Then from

n|an| ≤ C for all n ≤ p (12)

and
|F (x)− F (y)| ≤ δ for all x, y ∈ [e−1/M , e−1/(M+l)] (13)

it follows that

|sn − F (e−1/m)| ≤ ε for all m,n ∈ [N,N + k]

Remark 5.4. We can actually say something more precise instead of (13): We
in fact only need |F (x) − F (y)| ≤ δ for all x, y := e−i/n, e−1/m for i ≤ b
and m,n/i ∈ [M,M + l], and so in reality the assumption only needs to hold
for a finite number of points. In addition to this, we note that even though
the computation of F (x) technically requires the whole of the sequence {an},
within any closed interval [l, r] ∈ [0, 1) the power series has a uniform rate of
convergence, namely

∞∑
i=n

|aixi| ≤
axn

1− x
≤ arn

1− r
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and so we could also adapt (13) so that it only refers to finite sums of the form∑n
i=0 aix

i for sufficiently large n depending on M , l and δ. However, we leave
our slightly simpler formulation as it is, as it is mathematically cleaner and
sufficient for deriving remainder theorems in the next section.

Our proof of Theorem 5.3 forms a constructive analysis of the proof of The-
orem 3.2. In the original proof, we fix ε > 0, and letting P (t) be a suitable
polynomial approximation to χ, the proof splits into two main branches, namely:

∀pA(p) =⇒ ∀n(|sn − IP (n)| ≤ ε/2)

∃M∀l B(δε,M, l) =⇒ ∃N∀m,n ≥ N(|IP (n)− F (e−1/m)| ≤ ε/2)

where A(p) and B(δ,M, l) are as in Definition 5.1. We analyse each branch in
turn, extracting our witness for p from the former, and our witness for l in the
latter. Our analysis broadly follows the soundness theorem for the Dialectica,
but we use several tricks along the way. We note that this combination of formal
logical methods with ordinary mathematical intuition is standard in applied
proof theory, and key to its success.

Proof of Theorem 5.3. We follow the structure of the proof of Theorem 3.2,
but backwards, carrying out precise numerical calculations along the way. We
suppose for contradiction that

ε < |sn − F (e−1/m)|

for some m,n ∈ [N,N + k]. Now let P (x) = cdx
d + . . .+ c1x be the polynomial

that satisfies Lemma 3.3 for error ε/8C, noting that d ≤ b and
∑d
i=1 |ci| ≤ v.

Define a : [0,∞)→ R and IP as in the proof of Theorem 3.2. Then we have

ε < |sn − IP (n)|+ |IP (n)− F (e−1/m)|

and therefore either

(i) ε/2 < |sn − IP (n)| for some n ≤ N + k or,

(ii) ε/2 < |IP (n)− F (e−1/m)| for some m,n ∈ [N,N + k].

We treat each possibility in turn, each leading to a contradiction in (12) or (13)
respectively.

Case (i): ε/2 < |sn − IP (n)| for n ≤ N + k. We first observe that p ≥ N + k
and therefore for any t ≥ p we have

t

n
≥ t

N + k
≥ p

N + k
≥ 1

and thus χ(t/n) = 0 for t ∈ [p,∞). Therefore using that an ≤ a for all n ∈ N
we have ∫ ∞

p

|a(t)| · |χ(t/n)− P (e−t/n)| dt ≤ a
∫ ∞
p

|P (e−t/n)| dt
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Now, for any x ∈ [0, 1) we have

|P (x)| ≤
d∑
i=1

|ci|xi ≤ x ·
d∑
i=1

|ci| ≤ xv

and therefore

a

∫ ∞
p

|P (e−t/n)| dt ≤ av
∫ ∞
p

e−t/n dt = avne−p/n (14)

Using again that n ≤ N + k and thus

p ≥ n · log
(an
δ

)
we obtain δ/an ≥ e−p/n and therefore

avne−p/n ≤ vδ =
ε

4
(15)

Using (2) together with (14) and (15) we have

ε

2
< |sn − IP (n)| ≤

∫ p

0

|a(t)| · |χ(t/n)− P (e−t/n)| dt+
ε

4

and therefore
ε

4
<

∫ p

0

|a(t)| · |χ(t/n)− P (e−t/n)| dt

But by (12), and using a similar argument to that in the proof of Theorem 3.2,
we have |a(t)| ≤ 2C/t for all t ∈ (0, p] and thus using (4):

ε

4
< 2C

∫ p

0

|χ(t/n)− P (e−t/n)|
t

dt

≤ 2C

∫ ∞
0

|χ(t/n)− P (e−t/n)|
t

dt

< 2C · ε
8C

=
ε

4

contradicting the construction of P (t).

Case (ii): ε/2 < |IP (n)− F (e−1/m)| for m,n ∈ [N,N + k]. First of all, define

εα := 1−
∫ 1

0

e−αt dt

For α > 0 we have

e−α ≤
∫ 1

0

e−αt dt ≤ 1

and therefore
0 ≤ εα ≤ 1− e−α ≤ α (16)
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Now, analogously to (8) we see that

ε

2
< |IP (n)− F (e−1/m)|

≤
d∑
i=1

|ci| · |F (e−i/n)(1− εi/n)− F (e−1/m)|

≤
d∑
i=1

|ci| · (εi/n|F (e−i/n)|+ |F (e−i/n)− F (e−1/m)|)

(17)

We first aim to bound the term εi/n|F (e−i/n)| uniformly for i = 1, . . . , d. Using
bM ≤ N ≤ n ≤ N + k we have

1

M + l
=

1

N + k
≤ i

n
≤ b

N
≤ b

bM
=

1

M
(18)

So to bound |F (e−i/n)| we observe from (18) that e−i/n ∈ [e−1/M , e−1/(M+l)]
and thus by condition (13)

|F (e−i/n)| ≤ |F (e−1/M )|+ δ ≤ a

1− e−1/M
+ δ = L (19)

where for the second inequality we have used that

F (x) ≤ a
∞∑
i=0

xi =
a

1− x

for x ∈ [0, 1). Therefore from (16), (18) and (19) we have

εi/n|F (e−i/n)| ≤ i

n
· |F (e−i/n)| ≤ b

N
· L ≤ δ (20)

where the final inequality follows from the definition of N . Finally, analogously
to (18) we have 1/(M + l) ≤ 1/m ≤ 1/M and thus e−1/m ∈ [e−1/M , e−1/(M+l)],
and so from (13) we have

|F (e−i/n)− F (e−1/m)| ≤ δ (21)

Finally, putting together (17), (20) and (21) we have

ε

2
<

d∑
i=1

|ci| · (δ + δ) ≤ 2vδ =
ε

2

a contradiction. This completes the proof.

We conclude by giving a concrete modulus of polynomial approximation,
which can be obtained using standard results from approximation theory, in
particular Korevaar [13].
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Lemma 5.5. There are constants A,B > 0 such that

Ω(ε) :=

(
A

ε
,B1/ε

)
is a modulus of polynomial approximation for χ and ε ∈ (0, 1] (note that we can
just set Ω(ε) := Ω(1) for ε ≥ 1).

Proof. We adapt Korevaar [13] in a straightforward way. Let f : [0, 1] → R be
any function that is continuous except for a finite number of jump discontinu-
ities, and such that there exists a constant a such that |f(x)− f(y)| ≤ a|x− y|
for x, y in any subinterval on which f is continuous. Then it can be shown
(cf. [13, Theorem 4.1]) that there exist constants H1 and H2 such that for any
positive integer n there exists a polynomial pn(x) = αnx

n + . . . + α1x + α0 of
degree n and with |αi| ≤ H23n for all i = 0, 1, . . . , n such that∫ 1

0

|f(t)− pn(t)| dt < H1

n+ 1

Now let f be as in the proof of Lemma 5.5, and H1, H2 be the constants
corresponding to this function. Then, just as in that proof, we set Pn(t) =
t+ t(1− t)pn(t) and have∫ ∞

0

|χ(t)− Pn(e−t)|
t

dt <
H1

n+ 1

noting that Pn(t) = cn+2t
n+2 + . . . c1t has degree n+ 2, and that

n+2∑
i=1

|ci| ≤ 2

n∑
i=0

|αi|+ 1 ≤ 2(n+ 1)H23n + 1 ≤ H36n

for suitable H3 ≥ 1 depending on H2. Now, for any ε > 0 it is clear that setting
P (t) := Pn(t) for n := dH1/εe we have∫ ∞

0

|χ(t)− P (e−t)|
t

dt < ε

and that for ε ∈ (0, 1]:

deg(P ) = dH1/εe+ 2 ≤ H1 + 3

ε

and so we can set A := H1 + 3. Finally, for ε ∈ (0, 1] we have

n+2∑
i=1

|ci| ≤ H36dH1/εe ≤ B1/ε

for a suitable choice of B, depending on H1 and H3.
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5.3 A game semantics for Littlewood’s theorem

Though the statement of our finitary theorem is somewhat complex, using the
game-theoretic narrative from Section 4.2 we can give Theorem 5.3 a slightly
more dynamic character, as setting out a winning strategy in a game corre-
sponding to the Littlewood Tauberian theorem. Here, ∃loise sets out to foil
∀belard’s attempt to disprove Littlewood’s theorem by showing that an =
O(1/n), F (x)→ s and sn 6→ s all hold together:

1. ∀belard starts by picking some ε > 0, assuming that n|an| ≤ C for all
n ∈ N, and proposing some M ∈ N such that |F (x) − F (y)| ≤ δ for all
x, y ∈ [e−1/M , 1). The aim is to show that it is now not the case that
|sn − F (e−1/m)| ≤ ε for sufficiently large m,n.

2. ∃loise responds by putting forward anN ∈ N such that |sn−F (e−1/m)| ≤ ε
for all m,n ≥ N .

3. ∀belard rejects this by attempting to find a counterexample to the last
move, playing k ∈ N and claiming that ε < |sn − F (e−1/m)| for some
n,m ∈ [N,N + k].

4. If ∀belard’s attempt worked, then ∃loise responds by producing a pair
l, p ∈ N which demonstrate that one of ∀belard’s original assumptions was
false:

• either C < n|an| for some n ≤ p, or

• δ < |F (x)− F (y)| for some x, y ∈ [e−1/M , e−1/(M+l)].

A winning strategy for ∃loise constitutes a proof of the Littlewood Tauberian
theorem, and such a winning strategy is provided by Theorem 5.3 in presenting
bounds for winning moves for ∃loise in terms of any play from ∀belard .

5.4 Obtaining the original Tauberian theorem from its finitization

We conclude this section by remarking that Theorem 5.3 is completely equivalent
to the standard Tauberian theorem. This follows directly from the general fact
that a formula is logically equivalent to its Dialectica interpretation, but for
completeness we show how the original variant follows from the finitary one,
noting that there is no content to the proof beyond standard predicate logic.

Proof of Theorem 3.2 from Theorem 5.3. Suppose for contradiction that the con-
ditions of Theorem 3.2 holds but the conclusion is false. This means that there
exists some ε > 0 such that

∀N∃m,n ≥ N(|sn − F (e−1/m)| > ε) (22)

Let δ > 0 be defined as in Theorem 5.3 relative to this ε, and pick M such that

∀x, y ∈ [e−1/M , 1)(|F (x)− F (y)| ≤ δ)
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Now let N ∈ N be defined as in Theorem 5.3 relative to ε and M . By (22) there
exists m,n ≥ N such that |sn − F (e−1/m)| > ε. Finally, let l and p be defined
as in Theorem 5.3 relative to ε,N and k := max{m,n}. Then (12) and (13)
hold, but the conclusion of Theorem 5.3 fails.

6 Remainder theorems

The final contribution in this paper is to use our finitization of Littlewood’s
theorem to (re)derive a series of general “remainder theorems”. Remainder
theorems have been widely studied in Tauberian theory, and the standard esti-
mate for Littlewood’s theorem (Theorem 2.4) has been broadly generalised to
more powerful Tauberian theorems (cf. [14, Chapter VII]). Our contribution in
the present paper does not seek to improve or replace existing remainder the-
orems (though whether there are situations where proof theoretic methods are
indeed able to produce improved remainder theorems in Tauberian theory is a
fastinating open question), but generalises them in a slightly different direction:

• We show that standard remainder theorems, and in particular Theorem
2.4, can be rederived in a ‘proof-theoretic’ way from, and form an instance
of, our finitization of Tauber’s theorem.

• In the case where no rates of convergence exists, we can instead use our
finitization to produce a ‘metastable’ remainder theorem.

For us, a remainder theorem will be a quantitative form of the Tauberian
theorem which specializes the finitary theorem of the previous section in the
following ways:

(i) We assume that an = O(1/n) rather than reformulating the growth con-
dition in a finitary way,

(ii) For simplicity, we take as an additional parameter some L > 0 that bounds
|F (x)| on x ∈ [0, 1) (which exists by the assumption that F (x)→ s),

(ii) We convert some quantitative measure of the convergence speed of F (x)→
s as x→ 1− to a measure of the convergence speed of sn → s as n→∞.

These results will form generalisations of Theorem 2.4, and are possible due to
the analysis of the proof of Theorem 3.2 and the resulting witnesses of its Dialec-
tica interpretation given in Theorem 5.3. A key step towards these remainder
theorems is the following corollary of Theorem 5.3, which we gain through our
assumptions (i) and (ii) above:

Corollary 6.1. Suppose that there exists some C > 0 such that n|an| ≤ C
for all n ∈ N, and let L > 0 be a bound on |F (x)| for x ∈ [0, 1). Define
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α : (0,∞)→ (0,∞), β : N× N→ N and γ : (0,∞)× N× N→ N as follows:

α(ε) :=
ε

4Ω1(ε/8C)

β(ε,M) := Ω0 (ε/8C) ·max

{⌈ L

α(ε)

⌉
,M

}
γ(ε,M, k) := β(ε,M) + k −M

for Ω as given in Lemma 5.5. Then we have

∀ε,M, k[B(α(ε),M, γ(ε,M, k)) =⇒ D(ε, β(ε,M), k)] (23)

where the formulas B(δ,M, l) and D(ε,N, k) are defined as in Section 5.1.

Proof. Directly from Theorem 5.3, noting that δ = α(ε), N = β(ε,M) and
l = γ(ε,M, k), with the only difference that in Theorem 5.3 we have L =
a/(1− e−1/M ) + δ. However, its only role there is to act as a bound for |F (x)|
(cf. (19)), and so can be replaced by a general bound on |F (x)|. Note that the
premise (12) trivially holds if we just assume that n|an| ≤ C for all n ∈ N as
we do here, and so p plays no role.

Letting P stand for the statement that F (x) converges as x → 1−, and
Q the statement that sn converges as n → ∞, (23) is essentially a Dialectica
interpretation of P =⇒ Q. Our remainder theorems take the form of a
computational interpretation of modus ponens:

P ∗ (P =⇒ Q)D

Q∗

where P ∗ and Q∗ are suitable computational interpretations of P and Q, specif-
ically either direct rates of convergence or rates of metastability. Both of these
concepts will be carefully motivated and defined below.

6.1 A remainder theorem for rates of convergence

The canonical remainder estimate for Littlewood’s theorem set out as The-
orem 2.4 says that whenever F (x) converges with exponential rate, then sn
converges with inverse logarithmic rate. This is a special example of a general
phenomenon, which we make precise here, whereby we can convert any com-
putable rate of convergence for F (x) into a corresponding computable rate of
convergence for sn. We now state and prove this remainder theorem it using
our finitary Tauberian theorem in the form of Corollary 6.1, and then rederive
Theorem 2.4 as a special case.

Definition 6.2. We define a rate of convergence for F (x) as x → 1− to be any
function φ : (0,∞)→ N satisfying

∀δ > 0∃M ≤ φ(δ)∀x, y ∈ [e−1/M , 1)(|F (x)− F (y)| ≤ δ)
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Similarly, a rate of convergence for sn → limx→1− F (x) as n→∞ is defined to
be any function ψ : (0,∞)→ N satisfying

∀ε > 0∃N ≤ ψ(ε)∀m,n ≥ N(|sn − F (e−1/m)| ≤ ε)

We say that a rate of convergence is computable if, when restricted to rational
inputs ε ∈ (0,∞), it forms a computable function in the usual sense.

Theorem 6.3 (First remainder theorem). Suppose that there exists some C > 0
such that n|an| ≤ C for all n ∈ N, and let L > 0 be a bound on |F (x)| for
x ∈ [0, 1). Suppose that there exists a computable rate of convergence φ for F (x)
as x → 1−. Then a computable rate of convergence for sn → limx→1− F (x) is
given by

ψ(ε) := β(ε, φ(α(ε)))

where α and β are defined as in Corollary 6.1.

Proof. Letting B(δ,M, l) and D(ε,N, k) be defined as in Section 5.1, φ being a
rate of convergence for F (x) as x→ 1− is equivalent to the formula

∀δ > 0∃M ≤ φ(δ)∀l B(δ,M, l)

In particular, for any ε > 0 and k ∈ N there exists M ≤ φ(α(ε)) such that

∀k B(α(ε),M, γ(ε,M, k))

where γ is as in Corollary 6.1. Therefore from (23) we see that for N := β(ε,M)
we have ∀kD(ε,N, k) or equivalently

∀m,n ≥ N(|sn − F (e−1/m)| ≤ ε).

Finally, we observe that β is monotone in its second argument and thus

N = β(ε,M) ≤ β(ε, φ(α(ε))) = ψ(ε)

and since ε > 0 is arbitrary we have shown that ψ is a rate of convergence for
sn → limx→1− F (x). We finally note that Ω, α, β and γ are all computable, so
ψ is also computable.

We can now give a concrete instance of this remainder theorem that corre-
sponds directly to Theorem 2.4:

Corollary 6.4. Suppose that there exists some C > 0 such that n|an| ≤ C for
all n ∈ N, and let L > 0 be a bound on |F (x)| for x ∈ [0, 1). Suppose that F (x)
converges with rate of convergence φ where

φ(δ) ≤ aδ−b

for some a, b > 0. Then there exists a rate of convergence ψ for sn → limx→1− F (x)
with

ψ(ε) ≤ K1/ε

for ε ∈ (0, 1], where K is a suitable constant depending on C, L, a and b.
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Proof. By our Theorem 6.3 and using the definition of Ω0 for ε ∈ (0, 1] from
Lemma 5.5 we have

ψ(ε) = β(ε, φ(α(ε))) ≤ β
(
ε,

a

α(ε)b

)
=

8AC

ε
·max

{⌈ L

α(ε)

⌉
,

a

α(ε)b

}
Substituting in the definition of Ω1 together with the fact that ε ≥ e−1/ε we
have

α(ε) =
ε

4B8C/ε
≥ K−1/ε1

for a suitable constant K1 dependent on B and C, and therefore:

ψ(ε) ≤ 8AC

ε
·max{dLK1/ε

1 e, aK
b/ε
1 }

which means that we can find a sufficiently large constantK in terms ofA,B,C, L, a
and b such that

ψ(ε) ≤ K1/ε

and so we’re done.

We now show that this latter result is simply a reformulation, using ‘proof-
theoretic’ rates of convergence, of the standard remainder estimate for Little-
wood’s theorem:

Proof of Theorem 2.4 from Corollary 6.4. Suppose that

F (x) = s+O((1− x)b)

for some b > 0, or equivalently

|F (x)− s| ≤ a(1− x)b

for some a > 0. Let M ∈ N be arbitrary and suppose that x, y ∈ [e−1/M , 1).
Then

|F (x)− F (y)| ≤ |F (x)− s|+ |s− F (y)|

≤ 2a(1− e−1/M )b ≤ 2a

M b

for the last line using the inequality 1 + x ≤ ex for x = −1/M . But then this
implies that |F (x)− F (y)| ≤ δ for any x, y ∈ [e−1/M , 1), provided that

M ≥ (2a/δ)1/b

Therefore φ(δ) = (2a)1/bδ−1/b is a rate of convergence for F (x) as x → 1− in
our sense. By Corollary 6.4 it follows that there is some constant K > 0 such
that for any ε ∈ (0, 1] we have

∀m,n ≥ K2/ε(|sn − F (e−1/m)| ≤ ε/2)
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Choosing m ∈ N so that |F (e−1/m)− s| ≤ ε/2, we therefore have

∀n ≥ K2/ε(|sn − s| ≤ ε)

for any ε ∈ (0, 1]. We can invert this, since fixing n ∈ N and setting ε :=
2 log(K)/ log(n) given us K2/ε = n, and thus for sufficiently large n we have

|sn − s| ≤
2 log(K)

log(n)

and from this it follows that

sn = s+O
(

1

log(n)

)
and so Theorem 2.4 is proved.

6.2 A remainder theorem for rates of metastability

Our first remainder theorem applies to the situation where both F (x) and sn
converge with computable rates. However, it is well known that it is not in
general the case that convergent sequences possess computable rates of con-
vergence. The canonical counterexamples here are so-called Specker sequences
[24], bounded and monotonically increasing sequences of rational numbers whose
limit is not a computable real number. This phenomenon can be lifted to the
case of power series as follows:

Proposition 6.5. There exists a sequence {an} with an = O(1/n), such that
F (x) converges as x → 1−, but with no computable rate of convergence in the
sense of Definition 6.2.

Proof. We make use of the proof of Proposition 3.2 of [22]. There it was shown
that for any Specker sequence {qn}, defining

an :=
qm+1 − qm

2m−1
for m = dlog2(n)e

we obtain a sequence satisfying an = o(1/n) (and so in particular an = O(1/n))
and s2n = qn+1, and so therefore sn → q where q is the noncomputable limit
of the Specker sequence. This then implies that sn has no computable rate of
convergence. Now, by Abel’s theorem (cf. Theorem 2.1), since sn converges then
so does F (x) as x → 1−. But supposing for that F (x) possesses a computable
rate of convergence. Then by Theorem 6.3, {sn} also has a computable rate of
convergence, a contradiction.

The above proposition shows us that there are situations where Theorem
6.3 cannot apply, where F (x) → s as x → 1− but with no computable rate of
convergence. However, we now show that we can use our finitary Tauberian
theorem also in the case where we do not have computable rates, to instead
convert computable rates of metastability for F (x) → s to corresponding rates
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of metastability for sn → s. First of all, we need to define what a rate of
metastability means in this context. Cauchy convergence in general is a ∀∃∀
statement i.e. of the form

∀ε∃N∀k P (ε,N, k) (24)

for some computationally neutral inner formula P . The existence of Specker
sequences demonstrates that there are instances of formulas of this logical form
where we cannot produce a computable bound on witnesses satisfying its Di-
alectica interpretation i.e. there is no computable φ satisfying

∀ε∃N ≤ φ(ε)∀k P (ε,N, k)

Generally, this is because the proofs of such statements use classical reasoning,
and so the intuitionistic soundness theorem which would normally imply the
existence of a computable φ does not apply. However, we can instead apply the
Dialectica interpretation in its classical form, by precomposing formulas with a
negative translation. In particular, it is typically the case that for ∀∃∀ formulas,
the following is provable intuitionistically, even when (24) is not:

∀ε¬¬∃N∀k P (ε,N, k) (25)

Applying the Dialectica interpretation to (25), we are instead asked to find a
witness for N in the following formula:

∀ε, g∃N P (ε,N, g(N))

In the case of Cauchy convergence, a functional Φ : (0,∞)× (N→ N)→ N that
bounds N in terms of ε and g i.e.

∀ε, g∃N ≤ Φ(ε, g)P (ε,N, g(N)) (26)

is known as a rate of metastability. Metastable convergence theorems and the
key role that they play in analysis as finitizations of ‘soft’ convergence state-
ments is discussed in an essay by T. Tao [25] and used in [26], and the connection
with the Dialectica interpretation is explored in [10] and particularly [5]. It is
usually possible to extract rates of metastability from convergence proofs even
when direct rates of convergence are not possible, and the extraction of such
metastable bounds is a standard result in applied proof theory [11, 12, 21]. We
can define rates of metastability for the two relevant convergence properties
here following the pattern described above, and these should both be viewed as
bounds on witnessing terms for the combined negative translation plus Dialec-
tica interpretation of the respective properties.

Definition 6.6. We define a rate of metastability for F (x) as x→ 1− to be any
functional Φ : (0,∞)× (N→ N)→ N satisfying

∀δ > 0, h : N→ N∃M ≤ Φ(δ, h)

∀x, y ∈ [e−1/M , e−1/(M+h(M))](|F (x)− F (y)| ≤ δ)
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Similarly, a rate of metastability for sn → limx→1− F (x) as n → ∞ is defined
to be any function Ψ : (0,∞)× (N→ N)→ N satisfying

∀ε > 0, g : N→ N∃N ≤ Ψ(ε, g)

∀m,n ∈ [N,N + g(N)](|sn − F (e−1/m)| ≤ ε)

We say that a rate of metastability is computable if, when restricted to rational
inputs ε ∈ (0,∞), it forms a computable functional relative to the oracle g :
N→ N in the usual sense.

We now generalise our first remainder theorem so that it also applies in the
case where F (x)→ s as x→ 1−, without a computable rate of convergence but
with a computable rate of metastability.

Theorem 6.7 (Second remainder theorem). Suppose that there exists some
C > 0 such that n|an| ≤ C for all n ∈ N, and let L > 0 be a bound on |F (x)|
for x ∈ [0, 1). Suppose that Φ is a computable rate of metastability for F (x)
as x→ 1−. Then a computable rate of metastability for sn → limx→1− F (x) is
given by

Ψ(ε, g) := β(ε,Φ(α(ε), hε,g))

for hε,g : N→ N defined by

hε,g(k) := γ(α(ε), k, g(β(ε, k)))

where α, β and γ are defined as in Corollary 6.1.

Proof. Again, letting B(δ,M, l) and D(ε,N, l) be defined as in Section 5.1, if Φ
is a rate of metastability for F (x) as x→ 1− then

∀δ > 0, h∃M ≤ Φ(δ, h)B(δ,M, h(M))

In particular, for any ε > 0 and g : N→ N, setting δ = α(ε) and h = hε,g there
exists M ≤ Φ(α(ε), hε,g) such that

B(α(ε),M, γ(α(ε),M, g(β(ε,M))))

and therefore setting N := β(ε,M), it follows from (23) that

D(ε,N, g(N))

By monotonicity of β we have

N = β(ε,M) ≤ β(ε,Φ(α(ε), hε,g)) = Ψ(ε, g)

and since ε and g were arbitrary we have shown that Ψ is a rate of metastability
for sn → limx→1− F (x).

Remark 6.8. We observe that aside from generalising the traditional remainder
estimate, Theorem 6.7 also gives us concrete witnesses to the Dialectica inter-
pretation of Littlewood’s theorem that could be applied as part of the extraction
of witnessing terms from proofs where Littlewood’s theorem is used in rule-form
as a step in some nonconstructive argument.
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7 Concluding remarks

In this paper, we have given a computational interpretation via Gödel’s Di-
alectica interpretation to Littlewood’s celebrated Tauberian theorem. The im-
mediate relevance of this computational Tauberian theorem is demonstrated
by rederiving standard remainder estimates and generalising them for arbitrary
rates of convergence, and even the case where no computable rate of convergence
exists. But more generally, we obtain a natural finitization of Littlewood’s theo-
rem, along with an intuitive constructive reading in terms of a winning strategy
in a two player game, and we consider this to be of independent interest. It is
also hoped that our case study is self-contained enough that it will form an useful
illustration of how the Dialectica interpretation can be applied in mathematics
to obtain quantitative information from proofs.

However, above all we see this paper as a forming a stepping stone to deeper
results in quantitative Tauberian theory, bringing initial ideas sketched in [22]
to bear on a much more complex Tauberian theorem, and demonstrating in turn
that the Dialectica can be used to both rederive and generalise known numerical
results in this area. We propose Tauberian theory as a area where there is a
great deal of potential for applying proof-theoretic methods, and conclude with
the following questions:

1. Can we extend the ideas presented here to the more complex Tauberian
theorems later proved by Hardy and Littlewood in e.g. [7], to integral
analogues of Tauberian theorems using Karamata’s method as discussed
in [14, Chapter I.13–14], or to even deeper results in Tauberian theory
involving Fourier transformations and Wiener kernels cf. [14, Chapter
II]?

2. Can we use techniques from proof theory to make further contributions
to Tauberian remainder theory? In particular, are there Tauberian the-
orems with no known remainder estimates, for which the application of
proof-theoretic methods could produce not just generalisations of exist-
ing remainder estimates as in this case, but improved or even brand new
remainder theorems?
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