Proof mining and informal proof theoretic reasoning: A case study on greedy approximation schemes

Thomas Powell

November 13, 2023

Abstract

We carry out a proof theoretic analysis of a proof by Darken et al. [2] that establishes convergence of greedy approximation schemes in uniformly smooth Banach spaces. Though the proof is by contradiction, we are able to extract computable rates of convergence that depend on the corresponding modulus of uniform smoothness for the space. Our quantitative result represents one of the first proof theoretic studies of greedy approximation schemes, whose applications include learning theory and neural networks [6]. We also use this case study as an opportunity to make explicit some of the informal proof theoretic reasoning that enables us to transform the original proof to one where computable rates are apparent. It is thus hoped that this paper serves a dual purpose as a new application of proof theory and an expository account of the underlying techniques.

1 Introduction

Applied proof theory (also known as proof mining) is a subfield of logic that uses ideas and techniques from proof theory to produce new theorems in different areas of mainstream mathematics. This usually proceeds via a careful analysis of existing nonconstructive proofs in those areas, and can result in both quantitative and qualitative improvements of the original theorems. While the use of proof theoretic techniques for this purpose was first proposed by Kreisel in the 1950s [20], the field was only brought to maturity in the last twenty years or so through the work of Kohlenbach and his collaborators, an overview of which is documented in the textbook [10] and the more recent survey papers [11, 13].

Progress in applied proof theory tends to assume one of two main forms: Concrete case studies in which proof theoretic techniques are used to obtain new results, often through the analysis of a single or a collection of related proofs; and metatheorems which explain those case studies as instances of general logical phenomena, typically guaranteeing the extractability of (highly
uniform) computational information within a specific setting. For example, early case studies in metric fixed point theory (e.g. [7, 8, 16]) were explained by Kohlenbach in [9], while the latest metatheorems of Pichke [23] cover a spate of recent case studies on accretive and monotone set-valued operators (including but not limited to [3, 12, 14, 15, 18, 21]).

Case studies in proof mining are typically published in specialized mathematical journals in the area of application. Here, the proof-theoretic 'workings' are often suppressed so that the main results can be presented in standard mathematical language. As such, it is not always clear precisely how proof theory was used to obtain those results. Metatheorems, on the other hand, are usually published in logic or generalist journals, and necessarily formulated using highly technical logical machinery (including sophisticated axiomatic systems, logical relations and higher-order recursion). While metatheorems explain what kind of quantitative results are possible, new applications almost always require additional ingenuity, and so the route from a metatheorem to a new mathematical theorem is rarely straightforward.

With this in mind, the present article attempts to strike an expository balance between highly mathematical case studies and the deep and logically sophisticated metatheorems: I present a new case study in convex optimization, but offer an alternative style of presentation where I attempt to make explicit some of the underlying proof theoretic manipulations that an applied proof theorist might carry out implicitly (or perhaps without even realising). I have presented these manipultions using a informal type of proof tree, which is certainly not standard in applied proof theory, and technically not necessary to prove the main results. But it is hoped that this presentation will be of value to readers less familiar with proof mining.

The subject I have selected for this paper is a relatively simply but beautiful proof on the convergence of greedy approximation schemes, specifically that of Theorem 3.4 of [2]. This theorem and its proof exhibit many of the characteristic features of case studies in applied proof theory, namely:
(i) The proof is at first glance non-constructive (establishing that a limit inferior must be zero by showing that it can't be positive), and yet one can nevertheless extract direct rates of convergence with very low computational complexity;
(ii) The theorem applies to arbitrary Banach spaces with certain geometric properties (in this case uniform smoothness), but the rates are highly uniform and only depend on the appropriate modulus of uniform smoothness;
(iii) The initial quantitative analysis can be extended to produce several qualitative strengthenings of the original result, inlcuding a weakening of the condition on the error terms, and an exension to fixed step sizes.

For this reason I felt that the analysis of this theorem would be an appropriate choice for my expository aims, given its representative nature, though it is
important to stress that the results of this case study are of interest in their own right, and represent a first application of proof theory to greedy approximation schemes. We anticipate that future case studies in this direction would be valuable, given that there exist a wealth of nonconstructive convergence proofs that depend geometric properties of Banach spaces (cf. [25]).

Structure of the paper

We begin in Section 2 by providing a self-contained overview of the relevant mathematical background, introducing greedy approximation schemes and uniformly smooth Banach spaces, and presenting the proof that we will analyse. We then formulate our task in proof theoretic terms by setting out the overall proof-theoretic structure of the argument Section 3. The two sections that follow analyse the proof, breaking things down into two distinct components: First, we deal with overarching combinatorial structure of the proof itself and produce an abstract convergence result for sequences of reals that satisfy a particular recursive inequality (Section 4). Then, in Section 5 we take a closer look at how uniform smoothness is used in the proof and reformulate this in terms of the corresponding proof-theoretic modulus, before putting everything together and stating the main quantitative result. We conclude by discussing the various ways in which this main result can be extended in a qualitative way in Section 6.

The paper has been deliberately written so that a reader who is more interested in how an applied proof theorist might manipulate a nonconstructive proof, and less so in the finer details of Banach spaces and their properties, can easily skip over the first part of Section 5 and still appreciate the main points.

2 Mathematical background

In this section we present the main subject of our case study, culminating in the convergence theorem whose proof we will analyse. We restrict ourselves to the absolute minimum required to be able to understand what follows. The reader interested in the deeper mathematical context is encouraged to consult the references, particularly the original paper of Darken et al. [2] in which our chosen proof is just one among a series of results on convex approximation schemes in Banach spaces, and the more recent textbook on greedy algorithms by Temlyakov [25]. For further background on Banach spaces, [1] is a standard textbook.

2.1 Greedy approximation schemes

The following definitions and notation are taken from [2]. Let X be a real Banach space, and suppose that $S \subseteq X$ is some arbitrary subset. Let co (S) denote the set of all convex combinations of elements of S, that is, objects of the form

$$
\lambda_{1} y_{1}+\ldots+\lambda_{n} y_{n}
$$

for $n \geq 1, y_{1}, \ldots, y_{n} \in S$ and $\lambda_{1}, \ldots, \lambda_{n} \in[0,1]$ with $\lambda_{1}+\ldots+\lambda_{n}=1$. Now suppose that $x^{*} \in \overline{\operatorname{co}(S)}$, where $\overline{\operatorname{co}(X)}$ denotes the closure of $\operatorname{co}(X)$. A natural question arises:

Can we construct incremental approximates to x^{*} from elements of $\operatorname{co}(X)$ where each approximant is improved by forming a convex combination with a single new element of S ?

In other words, we consider incremental sequences $\left\{x_{n}\right\}$ of the form

$$
\begin{equation*}
x_{0} \in S \quad \text { and } \quad x_{n+1}=\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} y_{n} \text { for } y_{n} \in S \text { and } \lambda_{n} \in[0,1) \tag{1}
\end{equation*}
$$

(we assume that $\lambda_{n}<1$ else we would have $x_{n+1}=y_{n} \in S$ and we are back where we started). The most natural way of choosing y_{n} and λ_{n} at each step is to require them to be optimal, which leads naturally to the following slightly more general notion:
Definition 2.1. A sequence $\left\{x_{n}\right\}$ of elements of X is called greedy with respect to $x^{*} \in X$ and S if

$$
\left\|x_{n+1}-x^{*}\right\| \leq \inf \left\{\left\|(1-\lambda) x_{n}+\lambda y-x^{*}\right\| \mid y \in S, \lambda \in[0,1)\right\}
$$

for all $n \in \mathbb{N}$.
To account for the fact that S may not be compact, and thus the infimum in the above definition not attained, we loosen the definition to incorporate error terms $\left\{\epsilon_{n}\right\}$. This is the main definition of greedy approximation scheme that will be used in what follows:
Definition 2.2. Let $\left\{\epsilon_{n}\right\}$ be a sequence of positive real numbers. A sequence $\left\{x_{n}\right\}$ of elements of X is called $\left\{\epsilon_{n}\right\}$-greedy with respect to $x^{*} \in X$ and S if

$$
\left\|x_{n+1}-x^{*}\right\| \leq \inf \left\{\left\|(1-\lambda) x_{n}+\lambda y-x^{*}\right\| \mid y \in S, \lambda \in[0,1)\right\}+\epsilon_{n}
$$

for all $n \in \mathbb{N}$.
For the case that X is a Hilbert space, greedy approximation schemes are studied by Jones [6], where convergence to $x^{*} \in \overline{\operatorname{co}(S)}$ with rate $\mathcal{O}(1 / \sqrt{n})$ proven. Jones also highlights the connection of such schemes to artificial neural networks where, roughly speaking, improving an approximant by combining with a new element of S corresponds can be seen as a generalisation of improving the accuracy of a neural network by adding an additional neuron (see [6, Section 4] or [2, Section 1.3] for further details of this connection).

When X is a general Banach space, on the other hand, convergence is no longer guaranteed. The example given in [2] is \mathbb{R}^{2} under the L^{1} norm: Here, if we take $S:=\{(0,-1),(2,1 / 2),(-2,1 / 2)\}$ then $(0,0) \in \operatorname{co}(S)$, the only greedy incremental scheme starting from $x_{0}:=(0,-1)$ is $x_{0}=x_{1}=x_{2}=\ldots$, since there is no way to strictly decrease the distance to $(0,0)$ through convex combinations with $(2,1 / 2)$ or $(-2,1 / 2)$. Geometrically speaking, the problem here is that the unit ball in this space is a diamond, and the line segment between $(0,-1)$ and
$(2,1 / 2)$ only intersects this unit ball at $(0,-1)$, which would not be the case with the Euclidean metric.

The critical issue turns out to be connected to the notion of smoothness (more informally, spaces where "balls don't have corners"). It turns out that one can establish convergence of greedy algorithms in general Banach spaces by assuming additional smoothness properties. However, the proofs are more difficult, and do not always come with corresponding rates. Establishing rates in such cases is one of the goals of this paper.

2.2 Geometric properties of Banach spaces

In what follows we present some basic facts about Banach spaces: Further details for this section can be found in e.g. [1, Chapter 2] and [25, Chapter 6]. Let X^{*} denote the dual of X, and $J: X \rightarrow 2^{X^{*}}$ the so-called normalized duality mapping function defined by

$$
J(x):=\left\{y \in X^{*} \mid y(x)=\|x\|^{2}=\|y\|^{2}\right\}
$$

A space X is defined to be smooth if J is single-valued, in which case we let $j: X \rightarrow X^{*}$ denote the corresponding unique duality map.

In the special case that X is a Hilbert space the duality mapping function is just the inner product $j(x)=\langle x,-\rangle$, and as such the duality mapping often plays the role of mimicking an inner product in Banach spaces. Crudely speaking, the nicer the duality mapping, the more X behaves like a Hilbert space. In this respect, an important notion is the modulus of smoothness defined by:

$$
\rho_{X}(t):=\sup \left\{\left.\frac{\|x+t y\|+\|x-t y\|}{2}-1 \right\rvert\,\|x\|=\|y\|=1\right\}
$$

for $t \in(0, \infty)$, which in a certain sense gives a quantitative measure of 'niceness' in this context. More specifically, the following standard lemma (cf. [25, Lemma 6.1]) connects the duality mapping function with the modulus of smoothness. We give its proof in full as this forms part of the overall proof that will be analysed.

Lemma 2.3. Take $x \neq 0$ and let $F_{x}:=j(x) /\|x\|$. Then

$$
\|x+t y\| \leq\|x\|\left(1+2 \rho_{X}(t\|y\| /\|x\|)\right)+t F_{x}(y)
$$

for any $y \in X$ and $t \in(0, \infty)$.
Proof. From the definition of ρ_{X} we obtain

$$
\|x+t y\|+\|x-t y\| \leq 2\|x\|\left(1+\rho_{X}(t\|y\| /\|x\|)\right)
$$

and using in addition that from $\left\|F_{x}\right\|=1$ we have

$$
\|x-t y\| \geq F_{x}(x-t y)=F_{x}(x)-t F_{x}(y)=\|x\|-t F_{x}(y)
$$

the result follows.

We are now ready to state the main property of Banach spaces that is of interest to us:
Definition 2.4. A Banach space X is uniformly smooth if

$$
\lim _{t \rightarrow 0} \frac{\rho_{X}(t)}{t}=0
$$

Remark 2.5. Using Lemma 2.3 in along with $\|x+t y\| \geq F_{x}(x+t y)=\|x\|+t F_{x}(y)$ proves

$$
0 \leq\|x+t y\|-\|x\|-t F_{x}(y) \leq 2 \rho_{X}(t\|y\| /\|x\|)
$$

For $\|x\|=\|y\|=1$ it follows that

$$
0 \leq \frac{\|x+t y\|-\|x\|}{t}-F_{x}(y) \leq \frac{2 \rho_{X}(t)}{t}
$$

and thus uniformly smooth spaces have the nice geometric property that

$$
\lim _{t \rightarrow 0}\left(\frac{\|x+t y\|-\|x\|}{t}\right)=F_{x}(y)
$$

and moreover the limit is attained uniformly in x, y. In other words, X has a uniformly Fréchet differentiable norm, and in fact this is an equivalent characterisation of being uniformly smooth.

2.3 Convergence of greedy incremental sequences in Banach spaces

We now state and prove the main result that we will analyse: Roughly speaking, this says that if X is uniformly smooth, if $\left\{x_{n}\right\}$ is an $\left\{\epsilon_{n}\right\}$-greedy approximation schemes with respect to x^{*}, then $x_{n} \rightarrow x^{*}$ provided that $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$. The material in this subsection is taken entirely from [2], with the proof only very slightly reformulated from its original presentation (the reader is strongly encouraged to consult Section 3 of [2] for comparison).

We first require a lemma that applies smoothness to greedy algorithms. The result below incorporates Lemma 3.3 of [2], along with part of the main proof of Theorem 3.4 from the same paper, and we have deliberately re-organised things in this way in order to separate out those parts of the proof that use functional analysis of some kind. This is convenient because it allows us, in the proof of Theorem 2.7, to focus on the main combinatorial structure of the overall proof, making it easier to organise the quantitative analysis that follow.

Lemma 2.6 (Cf. Lemma 3.3 of [2]). Let X be a Banach space with modulus of smoothness ρ_{X}. Suppose that $S \subseteq X$ and $x^{*} \in \overline{\operatorname{co}(X)}$, that $\left\{x_{n}\right\}$ is $\left\{\epsilon_{n}\right\}$-greedy with respect to x^{*} and S, and $K>0$ is such that $\sup \left\{\left\|y-x^{*}\right\| \mid y \in S\right\} \leq K$. Then for any $b>0$, if $b \leq\left\|x_{n}-x^{*}\right\|$ then

$$
\left\|x_{n+1}-x^{*}\right\| \leq(1-\alpha(b))\left\|x_{n}-x^{*}\right\|+\epsilon_{n}
$$

where

$$
\alpha(b):=\sup \left\{\left.\lambda\left(1-\frac{2 K}{b} \cdot \frac{\rho_{X}(u(b, \lambda))}{u(b, \lambda)}\right) \right\rvert\, \lambda \in[0,1)\right\}
$$

for $u(b, \lambda):=\lambda K /(1-\lambda) b$.
Proof. For $y \in S$ and $\lambda \in[0,1)$, writing

$$
\left\|(1-\lambda) x_{n}+\lambda y-x^{*}\right\|=\left\|(1-\lambda)\left(x_{n}-x^{*}\right)+\lambda\left(y-x^{*}\right)\right\|
$$

and applying Lemma 2.3 we have

$$
\begin{equation*}
\left\|(1-\lambda) x_{n}+\lambda y-x^{*}\right\| \leq(1-\lambda)\left(1+2 \rho_{X}\left(\frac{\lambda\left\|y-x^{*}\right\|}{(1-\lambda)\left\|x_{n}-x^{*}\right\|}\right)\right)\left\|x_{n}-x^{*}\right\|+\lambda F_{n}\left(y-x^{*}\right) \tag{2}
\end{equation*}
$$

where we write $F_{n}:=j\left(x_{n}-x^{*}\right) /\left\|x_{n}-x^{*}\right\|$. Using the standard fact that the modulus of smoothness is monotone, it follows from $b \leq\left\|x_{n}-x^{*}\right\|$ and $\left\|y-x^{*}\right\| \leq K$ for $y \in S$ that

$$
\begin{equation*}
(1-\lambda) \rho_{X}\left(\frac{\lambda\left\|y-x^{*}\right\|}{(1-\lambda)\left\|x_{n}-x^{*}\right\|}\right) \leq(1-\lambda) \rho_{X}\left(\frac{\lambda K}{(1-\lambda) b}\right)=\frac{\lambda K}{b} \cdot \frac{\rho_{X}(u(b, \lambda))}{u(b, \lambda)} \tag{3}
\end{equation*}
$$

for $u(b, \lambda)$ as defined in the statement of the result. Substituting (3) into (2) we obtain

$$
\begin{equation*}
\left\|(1-\lambda) x_{n}+\lambda y-x^{*}\right\| \leq\left[1-\lambda\left(1-\frac{2 K}{b} \cdot \frac{\rho_{X}(u(b, \lambda))}{u(b, \lambda)}\right)\right]\left\|x_{n}-x^{*}\right\|+\lambda F_{n}\left(y-x^{*}\right) \tag{4}
\end{equation*}
$$

Now, since $x^{*} \in \overline{\cos (S)}$, we can make $F_{n}\left(y-x^{*}\right)$ arbitrary small, in the sense that for all $\varepsilon>0$ there exists $y \in S$ such that $F_{n}\left(y-x^{*}\right) \leq \varepsilon$. To see this, pick some $z \in \operatorname{co}(S)$ such that $\left\|z-x^{*}\right\| \leq \varepsilon$. Writing $z=\sum_{i=1}^{k} \lambda_{i} y_{i}$ for $y_{i} \in S$, we must have $F_{n}\left(y_{i}-x^{*}\right) \leq \varepsilon$ for some $i=1, \ldots, k$, else

$$
\varepsilon=\varepsilon \sum_{i=1}^{k} \lambda_{i}<\sum_{i=1}^{k} \lambda_{i} F_{n}\left(y_{i}-x^{*}\right)=F_{n}\left(z-x^{*}\right) \leq\left\|z-x^{*}\right\| \leq \varepsilon
$$

Therefore $\inf \left\{F_{n}\left(y-x^{*}\right) \mid y \in S\right\} \leq 0$, and more generally

$$
\begin{aligned}
& \inf \left\{\left.\left[1-\lambda\left(1-\frac{2 K}{b} \cdot \frac{\rho_{X}(u(b, \lambda))}{u(b, \lambda)}\right)\right]\left\|x_{n}-x^{*}\right\|+\lambda F_{n}\left(y-x^{*}\right) \right\rvert\, y \in S, \lambda \in[0,1)\right\} \\
& \leq\left[1-\sup \left\{\left.\lambda\left(1-\frac{2 K}{b} \cdot \frac{\rho_{X}(u(b, \lambda))}{u(b, \lambda)}\right) \right\rvert\, \lambda \in[0,1)\right\}\right]\left\|x_{n}-x^{*}\right\|=(1-\alpha(b))\left\|x_{n}-x^{*}\right\|
\end{aligned}
$$

Thus combining the above with (4) and the definition of being $\left\{\epsilon_{n}\right\}$-greedy we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & \leq \inf \left\{\left\|(1-\lambda) x_{n}+\lambda y-x^{*}\right\| \mid y \in S \lambda \in[0,1)\right\}+\epsilon_{n} \\
& \leq(1-\alpha(b))\left\|x_{n}-x^{*}\right\|+\epsilon_{n}
\end{aligned}
$$

and the lemma is proven.

The main result can now be stated and proved using little more than elementary analysis.

Theorem 2.7 (Cf. Theorem 3.4 of [2]). Let X be a Banach space with modulus of smoothness ρ_{X} and $S \subseteq X$ be bounded. Suppose that $x^{*} \in \overline{\operatorname{co}(X)}$, and that $\left\{x_{n}\right\}$ is $\left\{\epsilon_{n}\right\}$-greedy with respect to x^{*} and S for some sequence $\left\{\epsilon_{n}\right\}$ of positive reals with $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$. Then $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.

Proof. Define $a_{n}:=\left\|x_{n}-x^{*}\right\|$ and let $a_{\infty}:=\liminf _{n \rightarrow \infty} a_{n}$. Using the fact that $\left\{x_{n}\right\}$ is $\left\{\epsilon_{n}\right\}$-greedy, we have $a_{n+1} \leq a_{n}+\epsilon_{n}$, and thus more generally

$$
a_{n+m} \leq a_{n}+\sum_{i=n}^{n+m-1} \epsilon_{i} \leq a_{n}+\sum_{i=n}^{\infty} \epsilon_{i}
$$

for any $m, n \in \mathbb{N}$. But since $\sum_{i=n}^{\infty} \epsilon_{i} \rightarrow 0$ as $n \rightarrow \infty$, we must in fact have $a_{n} \rightarrow a_{\infty}$ as $n \rightarrow \infty$. It therefore suffices to show that $a_{\infty}=0$.

To this end, suppose for contradiction that $a_{\infty}>0$. Since S is bounded there exists $K>0$ is such that $\sup \left\{\left\|y-x^{*}\right\| \mid y \in S\right\} \leq K$. We must have $a_{\infty} / 2 \leq a_{n}$ for n sufficiently large, and so applying Lemma 2.6 we have

$$
a_{n+1} \leq\left(1-\alpha\left(a_{\infty} / 2\right)\right) a_{n}+\epsilon_{n}
$$

for n sufficiently large. Taking the limit as $n \rightarrow \infty$ and using that $a_{n} \rightarrow a_{\infty}$ and $\epsilon_{n} \rightarrow 0$ yields

$$
a_{\infty} \leq\left(1-\alpha\left(a_{\infty} / 2\right)\right) a_{\infty}
$$

and therefore $\alpha\left(a_{\infty} / 2\right) \leq 0$. Now consider the definition of $\alpha(b)$. We have $u(b, \lambda) \rightarrow 0$ as $\lambda \rightarrow 0$, and therefore by uniform smoothness of X it follows that

$$
\frac{\rho_{X}(u(\lambda, b))}{u(\lambda, b)} \rightarrow 0 \quad \text { as } \lambda \rightarrow 0
$$

from which we see that $\alpha(b)>0$ for any $b>0$, a contradiction for $b=a_{\infty} / 2$. Thus $a_{\infty}=0$ and we are done.

3 An informal analysis of the proof

In this section, we start to apply proof theoretic reasoning to the ideas presented so far. More specifically, we carry out a series of steps that apply to the high-level structure of the proof of Theorem 2.7. We represent the proof via a series of informal proof trees in natural deduction style, where inferences typically represent a whole series of formal steps conflated into one. Our main goal in representing the proof this way is to identify its main features, and then carry out a series of transformations on the proof which pay special attention to the following questions:

1. If we have used an assumption in part of the proof, can we in fact replace it with a weaker assumption?
2. Can we phrase formulas in a more uniform way by expressing them in terms of bounds?
3. How does computational information flow through the proof?

Most of these questions can be tackled formally using proof theoretic methods, such as logical metatheorems, majorizability, and variants of the Dialectica interpretation ([10] is the standard reference). However, here we aim to show how one might in practice apply these methods in spirit and in an informal manner, ignoring parts of the proof that are uninteresting and focusing on the key mathematical rather than logical steps. The end result presented in Sections 4 and 5 below, though arrived at through informal reasoning, is a perfectly rigorous proof of a computational version of Theorem 2.7. In relation to point 3 above, it will be helpful to give one basic definition:
Definition 3.1. For a sequence $\left\{x_{n}\right\}$ of elements in some metric space (X, d) along with a point $x^{*} \in X$, a rate of convergence for $x_{n} \rightarrow x$ as $n \rightarrow \infty$ is a function $f:(0, \infty) \rightarrow \mathbb{N}$ satisfying

$$
\forall \varepsilon>0 \forall n \geq f(\varepsilon)\left[d\left(x_{n}, x^{*}\right)<\varepsilon\right]
$$

Our main task will be to find a computable rate of convergence for $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$ in the context of Theorem 2.7.

3.1 The overall structure of the proof of Theorem 2.7

For the remainder of this section, we will fix several things. First, we let X denote a Banach space with ρ its modulus of smoothness, $S \subseteq X$ and $x^{*} \in X$. We suppose that $K>0$ is such that $\left\|y-x^{*}\right\| \leq K$ for all $y \in S$, which in particular exists whenever S is bounded. Finally, for now we let $\left\{x_{n}\right\}$ be an arbitrary sequence in X and $\left\{\epsilon_{n}\right\}$ an arbitrary sequence of nonnegative real numbers. We treat these throughout as global parameters, and also for convenience fix the notation $a_{n}:=\left\|x_{n}-x^{*}\right\|$. The goal is therefore to prove that $a_{n} \rightarrow 0$.

The main technical lemma we require - Lemma 2.6 - can then be represented as the single inference
where " $\left\{\epsilon_{n}\right\}$-greedy" is shorthand for the statement " $\left\{x_{n}\right\}$ is $\left\{\epsilon_{n}\right\}$-greedy" and the predicate P is defined by

$$
P\left(b, a, a^{\prime}, \epsilon\right):=a^{\prime} \leq(1-\alpha(b)) a^{\prime}+\epsilon
$$

for $\alpha(b)$ defined as in Lemma 2.6. Rather than going ahead and analysing the somewhat intricate proof of the lemma, we will leave it for now and consider how it fits in to the main proof of Theorem 2.7.

Letting $a_{\infty}:=\liminf _{n \rightarrow \infty} a_{n}$, the first step in the main proof has the overall form

$$
\begin{equation*}
\frac{\frac{\left\{\epsilon_{n}\right\} \text {-greedy }}{\forall n\left[a_{n+1} \leq a_{n}+\epsilon_{n}\right]} \quad \sum_{i=0}^{\infty} \epsilon_{i}<\infty}{a_{n} \rightarrow a_{\infty}} \tag{1}
\end{equation*}
$$

Of course, there are a number of additional (elementary) steps involved in inferring $a_{n} \rightarrow a_{\infty}$ from the two premisis, but for now the main thing we highlight is that the property of being $\left\{\epsilon_{n}\right\}$-greedy is used in a weak way, in that we only require $a_{n+1} \leq a_{n}+\epsilon_{n}$. We label this prooftree $\left(\Gamma_{1}\right)$ and will in future write it in shorthand as

$$
\begin{gathered}
\| \Gamma_{1} \\
a_{n} \rightarrow a_{\infty}
\end{gathered}
$$

We use a similar shorthand for other prooftrees. Moving on to the second main step of the proof, we now include an open assumption $\left\{a_{\infty}>0\right\}$ with the aim of reaching a contradiction. We start as follows:

$$
\frac{\frac{\left\{\epsilon_{n}\right\} \text {-greedy } x^{*} \in \overline{\operatorname{co}(S)}}{\forall b>0, n\left[b \leq a_{n} \Longrightarrow P\left(b, a_{n}, a_{n+1}, \epsilon_{n}\right)\right]}{ }^{\mathrm{L} 2.6}\left\{a_{\infty}>0\right\}}{\frac{\forall n\left[a_{\infty} / 2 \leq a_{n} \Longrightarrow P\left(a_{\infty} / 2, a_{n}, a_{n+1}, \epsilon_{n}\right)\right]}{\forall n \geq N\left[P\left(a_{\infty} / 2, a_{n}, a_{n+1}, \epsilon_{n}\right)\right]} \quad \forall n \geq N\left[a_{\infty} / 2 \leq a_{n}\right]} \quad\left(\Gamma_{2}\right)
$$

and we label this derivation $\left(\Gamma_{2}\right)$. Here, N is simply some natural number that we know to exist by definition of a_{∞}, and the conclusion of $\left(\Gamma_{2}\right)$ is simply the statement that

$$
a_{n+1} \leq\left(1-\alpha\left(a_{\infty} / 2\right)\right) a_{n}+\epsilon_{n}
$$

for n sufficiently large. Continuing, we have the following crucial inference:

$$
\begin{gather*}
\left\{a_{\infty}>0\right\} \\
\| \Gamma_{2} \tag{3}\\
\forall n \geq N\left[P\left(a_{\infty} / 2, a_{n}, a_{n+1}, \epsilon_{n}\right)\right] \quad{ }_{a_{n}} \rightarrow \Gamma_{1} \\
P\left(a_{\infty} / 2, a_{\infty}, a_{\infty}, 0\right)
\end{gather*}
$$

where we now take the limit as $n \rightarrow \infty$ to establish

$$
a_{\infty} \leq\left(1-\alpha\left(a_{\infty} / 2\right)\right) a_{\infty}
$$

We reach our contradiction by using uniform smoothness of the space, with an inference we mark as (\star) below, and from this can therefore derive $a_{\infty}=0$
using classical logic, eliminating the open assumption $\left\{a_{\infty}>0\right\}$:

$$
\begin{gather*}
\left\{a_{\infty}>0\right\} \tag{4}\\
\| \Gamma_{3} \\
\frac{P\left(a_{\infty} / 2, a_{\infty}, a_{\infty}, 0\right)}{\frac{X \text { is U. S. }}{\forall b>0[\alpha(b)>0]}}(\star) \\
\frac{\perp}{a_{\infty}=0} \Longrightarrow_{I}
\end{gather*}
$$

Formally, there is now one final step in the proof, namely:

$$
\begin{gather*}
\left\|\Gamma_{1} \quad\right\| \Gamma_{4} \tag{5}\\
a_{n} \rightarrow a_{\infty} \quad a_{\infty}=0 \\
a_{n} \rightarrow 0
\end{gather*}
$$

and thus expanding the definition of $\left(\Gamma_{6}\right)$ in full would give us a complete (informal) representation of the proof of Theorem 2.7. We now set out to analyse this proof with the three main questions posed at the beginning of the section in mind. We start at the bottom of the derivation and work back up.

3.2 Using $a_{\infty}=0$ in the final step

We start by considering precisely how the final step is proven, and asking whether we can extract any computational information at this stage. We first unwrap the definition of $a_{\infty}=0$ and try to formulate it in the simplest possible logical terms. It is not difficult to show that in the special case that $\left\{a_{n}\right\}$ is a sequence of nonnegative reals, the otherwise more complex statement the liminf of $\left\{a_{n}\right\}$ is equal to zero is equivalent to

$$
\begin{equation*}
\forall b>0, m \in \mathbb{N} \exists n \geq m\left[a_{n}<b\right] \tag{5}
\end{equation*}
$$

So assuming that we have proven (5), how exactly do we derive $a_{n} \rightarrow 0$ from $a_{n} \rightarrow a_{\infty}$? For a start, we observe that we do not require the general statement $a_{n} \rightarrow a_{\infty}$ at all: It is sufficient to notice that two premises used to prove this in $\left(\Gamma_{1}\right)$ - which is in general a more complex argument - can be combined with (5) in a simple way to establish $a_{n} \rightarrow 0$. To me more specific, suppose that $f:(0, \infty) \rightarrow \mathbb{N}$ is a rate of convergence for $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$ in the sense that

$$
\forall b>0\left[\sum_{i=f(b)}^{\infty} \epsilon_{i}<b\right]
$$

Then for any $n \geq f(b)$, using that $\forall n\left[a_{n+1} \leq a_{n}+\epsilon_{n}\right]$ we must have

$$
a_{n+k} \leq a_{n}+\sum_{i=n}^{n+k-1} \epsilon_{i} \leq a_{n}+\sum_{i=f(b)}^{\infty} \epsilon_{i}<a_{n}+b
$$

Now supposing that we have a computable bound for n in (5) for $m:=f(b)$ i.e. a function $\Phi:(0, \infty) \rightarrow \mathbb{N}$ such that

$$
\forall b>0 \exists n\left[f(b) \leq n \leq \Phi(b) \wedge a_{n}<b\right]
$$

then $b \mapsto \Phi(b / 2)$ must be a rate of convergence for $a_{n} \rightarrow 0$ since $a_{n}<b$ implies that $a_{n+k}<2 b$ for all $k \in \mathbb{N}$. So we have not only proved that $a_{n} \rightarrow 0$ but shown exactly what quantitative information we need from the assumption $a_{\infty}=0$ - in the simple form (5) - to obtain a rate. Essentially what we have done is transformed $\left(\Gamma_{6}\right)$ into the following computational derivation, which we accordingly label $\left(\Gamma_{5}^{c}\right)$:

$$
\begin{array}{ll}
\frac{\left\{\epsilon_{n}\right\} \text {-greedy }}{\forall n\left[a_{n+1} \leq a_{n}+\epsilon_{n}\right]} \quad \sum_{i=f(b)}^{\infty} \epsilon_{i}<b \quad \exists n\left[f(b) \leq n \leq \Phi(b) \wedge \Gamma_{n}^{c}<n\right] \\
\exists n \leq \Phi(b) \forall k\left[a_{n+k}<2 b\right]
\end{array}
$$

where now $\left(\Gamma_{4}^{c}\right)$ is a hypothetical derivation of

$$
\exists n\left[f(b) \leq n \leq \Phi(b) \wedge a_{n}<n\right]
$$

for some function Φ. The challenge is now has shifted to transforming the original derivation $\left(\Gamma_{4}\right)$ to a computational one $\left(\Gamma_{4}^{c}\right)$ so that we obtain such a Φ.

3.3 Simplifying (Γ_{4})

A crucial observation at this stage is that $\left(\Gamma_{4}\right)$ simplifies: Because we have only used $a_{\infty}=0$ in the weakened form,

$$
\begin{equation*}
\exists n \geq f(b)\left[a_{n}<b\right] \tag{6}
\end{equation*}
$$

where b is now some free variable, we can try to substitute this in the conclusion of $\left(\Gamma_{4}\right)$ and then replace the open assumption $\left\{a_{\infty}>0\right\}$ with the stronger negation of (6). i.e. the more concrete assumption

$$
\left\{\forall n \geq f(b)\left[a_{n} \geq b\right]\right\},
$$

and simplify the proof tree accordingly. This process involves a series of straightforward heuristic steps. Starting with $\left(\Gamma_{2}\right)$, we observe that here $\left\{a_{\infty}>0\right\}$ is simply used to establish that $\forall n \geq N\left[a_{\infty} / 2 \leq a_{n}\right]$ for sufficiently large N. For now we see if we can just replace $a_{\infty} / 2$ with b, and set $N:=f(b)$ as follows:

$$
\begin{equation*}
\frac{\frac{\left\{\epsilon_{n}\right\} \text {-greedy } x^{*} \in \overline{\operatorname{co}(S)}}{\forall b>0, n\left[b \leq a_{n} \Longrightarrow P\left(b, a_{n}, a_{n+1}, \epsilon_{n}\right)\right]} \text { L2.6 }\left\{\forall n \geq f(b)\left[a_{n} \geq b\right]\right\}}{\forall n \geq f(b)\left[P\left(b, a_{n}, a_{n+1}, \epsilon_{n}\right)\right]} \tag{2}
\end{equation*}
$$

Then $\left(\Gamma_{3}\right)$ becomes

$$
\begin{gather*}
\left.\qquad \forall n \geq f(b)\left[a_{n} \geq b\right]\right\} \\
\| \Gamma_{2}^{s} \tag{3}\\
\forall n \geq f(b)\left[P\left(b, a_{n}, a_{n+1}, \epsilon_{n}\right)\right] \quad a_{n} \rightarrow a_{\infty} \\
P\left(b, a_{\infty}, a_{\infty}, 0\right)
\end{gather*}
$$

and then the entire modified version of $\left(\Gamma_{4}\right)$ would be

$$
\begin{align*}
& \left\{\forall n \geq f(b)\left[a_{n} \geq b\right]\right\} \\
& \frac{\| \Gamma_{3}^{s}}{} \begin{array}{l}
\frac{X\left(b, a_{\infty}, a_{\infty}, 0\right)}{} \frac{\perp \text { is U.S. }}{\alpha(b)>0} \\
\exists n \geq f(b)\left[a_{n}<b\right]
\end{array}{ }_{I} \tag{4}
\end{align*}
$$

where here replacing $a_{\infty} / 2$ with b makes no difference to the way in which we derive a contradiction. We label this $\left(\Gamma_{4}^{s}\right)$ i.e. if not a fully computational then at least a simplified version of $\left(\Gamma_{4}\right)$.

3.4 Analysing $\left(\Gamma_{4}^{S}\right)$

Let us now summarise our position: We demonstrated that the precise way that $a_{\infty}=0$ is used means that in order to obtain a computable a rate of convergence for $a_{n} \rightarrow 0$ it suffices find a bound $\Phi(b)$ for the existential quantifier in $\exists n \geq$ $f(b)\left[a_{n}<b\right]$, where f is a rate of convergence for $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$. We propose to do this by analysing the simplified version of $\left(\Gamma_{4}\right)$ arrived at above.

We first note that if we can weaken the open assumption with a bound on how many $n \geq f(b)$ it needs to hold in order to reach a contradiction, then this will be exactly the bound we are looking for. In other words, we want to produce $\Phi(b)$ satisfying

$$
\begin{aligned}
&\left\{\forall n\left[\Phi(b) \geq n \geq f(b) \Longrightarrow a_{n} \geq b\right]\right\} \\
& \| \Gamma_{3}^{s} \\
& \perp
\end{aligned}
$$

Looking at the final derivation of the above, one observation is that $\alpha(b)$ is not necessarily computable, which might pose a problem if we want to use the fact that $\alpha(b)>0$ in a computational way. What we really need here is a computable function $\xi:(0, \infty) \rightarrow(0,1)$ witnessing the fact that $\alpha(b)>0$ i.e. such that $\alpha(b) \geq \xi(b)>0$ for any $b>0$. Let us for now assume that we have such a ξ, and come back to the problem of finding it later.

The most obvious obstacles to our aim is that we have taken a limit as $n \rightarrow$ ∞ to establish $P\left(b, a_{\infty}, a_{\infty}, 0\right)$ i.e.

$$
\begin{equation*}
a_{\infty} \leq(1-\alpha(b)) a_{\infty} \tag{7}
\end{equation*}
$$

and it is therefore not clear at first glance how we could weaken our open assumption $\left\{\forall n \geq f(b)\left[a_{n} \geq b\right]\right\}$ to being true only in a finite range. However, a natural question to ask here is the following: If $P\left(b, a_{n}, a_{n+1}, \epsilon_{n}\right)$ fails to be true in the limit - in the sense of (7) - can we show that it also fails to hold for n sufficiently large? In particular, here the only property of $a_{n} \rightarrow a_{\infty}$ that is important is that a_{n} and a_{n+1} converge to the same value, so could we replace this with a_{n} and a_{n+1} being sufficiently close together?

For argument's sake, let us take some $\delta>0$. Then there exists some $k \geq f(b)$ such that $a_{k}-a_{k+1}<\delta$ and $\epsilon_{k}<\delta$. Then from $P\left(b, a_{k}, a_{k+1}, \epsilon_{k}\right)$ and $\alpha(b) \geq \xi(b)$ it follows that

$$
a_{k+1} \leq(1-\xi(b))\left(a_{k+1}+\delta\right)+\delta
$$

which can be rearranged as

$$
\begin{equation*}
\frac{\xi(b) \cdot a_{k+1}}{2-\xi(b)} \leq \delta \tag{8}
\end{equation*}
$$

assuming that $\xi(b)<2$, which we can force to be the case if necessary. But (8) fails for e.g.

$$
\delta_{\xi, b}:=\frac{1}{2} \xi(b) \cdot b
$$

using also that $b \leq a_{k+1}$, we have reached a contradiction without using the whole the limit as $n \rightarrow \infty$. Let Γ_{6} be defined by

$$
\begin{aligned}
& \left\{\forall n \geq f(b)\left[a_{n} \geq b\right]\right\} \\
& \| \Gamma_{2}^{s} \\
& \xrightarrow{\| \Gamma_{1}} \quad \frac{\sum_{i=0}^{\infty} \epsilon_{i}<\infty}{\epsilon_{n} \rightarrow 0}
\end{aligned}
$$

Then we have obtained our contradiction as follows:

$$
\begin{gathered}
\left\{\forall n \geq f(b)\left[a_{n} \geq b\right]\right\} \\
\| \Gamma_{6} \\
\qquad \frac{\exists k \geq f(b)\left[b \leq a_{k+1} \wedge P\left(b, a_{k}, a_{k+1}, \epsilon_{k}\right) \wedge a_{k}-a_{k+1}, \epsilon_{k}<\delta_{\xi, b}\right]}{} \begin{array}{l}
\frac{X \text { is U. S. }}{\alpha(b) \geq \xi(b)>0}
\end{array}{ }^{(\star)}
\end{gathered}
$$

The question now becomes: How much of the open assumption $\left\{\forall n \geq f(b)\left[a_{n} \geq b\right]\right\}$ do we need to obtain this contradiction? Inspecting $\left(\Gamma_{6}\right)$ it is readily apparent that if $\Psi(b)$ is a bound on a witness for $\exists k \geq f(b)\left[a_{k}-a_{k+1}<\delta_{\xi, b}\right]$, then we can replace the open assumption with

$$
\left\{\forall n\left[\Psi(b)+1 \geq n \geq f(b) \Longrightarrow a_{n} \geq b\right]\right\}
$$

(here the +1 coming from our additional use of the assumption for $b \leq a_{k+1}$), and thus $\Psi(b)+1$ is a rate of convergence for $a_{n} \rightarrow 0$.

3.5 The final step

All that remains in order to obtain our rate of convergence (modulo some assumptions involving uniform smoothness that we have delegated to later) is to analyse the following fragment of our modified proof tree:

$$
\frac{\| \Gamma_{1} \quad \frac{\sum_{i=0}^{\infty} \epsilon_{i}<\infty}{a_{n} \rightarrow a_{\infty}} \frac{\epsilon_{n} \rightarrow 0}{\exists k \geq f(b)\left[a_{k}-a_{k+1}, \epsilon_{k}<\delta_{\xi, b}\right]}}{\text { 的 }}
$$

We will actually provide a bound $\Gamma(N, \delta)$ for the more general statement

$$
\begin{equation*}
\forall N, \delta \exists k \geq N\left[a_{k}-a_{k+1}, \epsilon_{k}<\delta\right] \tag{9}
\end{equation*}
$$

and then

$$
\Phi(b):=\Gamma\left(f(b), \delta_{\xi, b}\right)+1
$$

would be our rate of convergence for $a_{n} \rightarrow 0$. Witnessing (9) turns out to be simpler that it might look. From $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$ we clearly have $\epsilon_{i}<\delta$ for all i sufficiently large (where this can be made precise using the rate of convergence f). Finding k such that $a_{k}-a_{k+1}<\delta$ doesn't require the assumption $a_{n} \rightarrow a_{\infty}$ at all: It suffices that we know that $\left\{a_{n}\right\}$ is bounded above by some $K>0$. If it were the case that $a_{k}-a_{k+1} \geq \delta$ for all $k \geq N$, we would have $a_{N} \geq a_{N+i}-i \delta$ for all $i \in \mathbb{N}$, which is a contradiction for i sufficiently large since $\left\{a_{n}\right\}$ is a sequence of nonnegative reals.

We have now processed the entire proof in an informal manner, and we are ready to put things back together in a formal way. The following section now presents everything we have done in an ordinary formal setting.

4 A preliminary quantitative result

We begin by presenting the content of Section 3.5 as a lemma, noting that the weaker condition $\epsilon_{n} \rightarrow 0$ suffices. It is helpful to introduce some notation:
Definition 4.1. Given a pair of natural numbers m, n with $m \leq n$, we define $[m, n]:=\{m, m+1, \ldots, n-1, n\}$, and thus $k \in[m, n]$ is equivalent to $m \leq k \leq n$.

Lemma 4.2. Let $\left\{a_{n}\right\}$ be a sequence of nonnegative reals bounded above by $K>0$ and $\left\{\epsilon_{n}\right\}$ a sequence of nonnegative reals with $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ with rate f. Let

$$
\Gamma(N, \delta):=\max \{N, f(\delta)\}+\lceil K / \delta\rceil
$$

Then for any $\delta>0$ and $N \in \mathbb{N}$ there exists some $N \leq k \leq \Gamma(N, \delta)$ such that a_{n} $a_{n+1}<\delta$ and $\epsilon_{n}<\delta$.

Proof. Let $N_{1}:=\max \{N, f(\delta)\}$ and suppose for contradiction that $a_{k}-a_{k+1} \geq \delta$ for all $k \in\left[N_{1}, N_{1}+i\right]$. Then for any $i \in \mathbb{N}$ we have

$$
K \geq a_{N_{1}} \geq a_{N_{1}+1}+\delta \geq a_{N_{1}+2}+2 \delta \geq \ldots \geq a_{N_{1}+i+1}+(i+1) \delta \geq(i+1) \delta
$$

which is a contradiction for $i:=\lceil K / \delta\rceil$. Thus there exists $k \in\left[N_{1}, N_{1}+i\right] \subseteq$ $\left[N, N_{1}+i\right]$ such that $a_{k}-a_{k+1}<\delta$. Since $N_{1} \geq f(\delta)$ we must also have $\epsilon_{k} \leq \delta$ since $\sum_{i=N_{1}}^{\infty} \epsilon_{i}<\delta$ for this k.

The remaining work of Section 3 is now contained in the following result, which we carefully formulate to avoid any explicit mention of the underlying Banach space. Furthermore, we make the harmless assumption that our rate of convergence for $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$ is monotone in the sense that

$$
\varepsilon \leq \delta \Longrightarrow f(\varepsilon) \geq f(\delta)
$$

for the simple reason that this allows us to express our derived rate of convergence in a more concise way.

Lemma 4.3. Let $\left\{a_{n}\right\}$ be a sequence of nonnegative reals bounded above by $K>0$ and satisfying $a_{n+1} \leq a_{n}+\epsilon_{n}$ where $\left\{\epsilon_{n}\right\}$ is a sequence of nonnegative reals such that $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$ with (monotone) rate f. Suppose furthermore that these satisfy:

$$
b \leq a_{n} \Longrightarrow a_{n+1} \leq(1-\alpha(b)) a_{n}+\epsilon_{n}
$$

for all $b>0$ and $n \in \mathbb{N}$, where $\alpha:(0, \infty) \rightarrow(0, \infty)$ is an arbitrary function. Then $a_{n} \rightarrow 0$, and a computable rate of convergence is given by

$$
\Phi(b):=f(\psi(b))+\left\lceil\frac{K}{\psi(b)}\right\rceil+1 \quad \text { for } \quad \psi(b):=\frac{b}{4} \cdot \xi\left(\frac{b}{2}\right)
$$

for any computable function $\xi:(0, \infty) \rightarrow(0,1)$ satisfying $\alpha(b) \geq \xi(b)$ for all $b>0$.
Proof. Fix $b, \delta>0$ and suppose that $a_{n} \geq b$ for all $n \in[f(b), \Gamma(f(b), \delta)+1]$ where Γ is defined as in Lemma 4.2. By the same lemma, there exists some $k \in$ $[f(b), \Gamma(f(b), \delta)]$ such that $a_{k}-a_{k+1}<\delta$ and $\epsilon_{k}<\delta$. In addition, it follows from our assumption that $a_{k+1} \geq b$ and $a_{k+1} \leq(1-\alpha(b)) a_{k}+\epsilon_{k}$, therefore reasoning exactly as in Section 3.4 we reach a contradiction for $\delta_{\xi, b}:=\frac{1}{2} \xi(b) \cdot b$.

Therefore our assumption was false, and it follows that there exists some

$$
\begin{equation*}
f(b) \leq n \leq \Gamma\left(f(b), \delta_{\xi, b}\right)+1=\max \left\{f(b), f\left(\delta_{\xi, b}\right)\right\}+\left\lceil K / \delta_{\xi, b}\right\rceil+1 \tag{10}
\end{equation*}
$$

such that $a_{n}<b$. Using $\delta_{\xi, b}<b$ together with monotonicity of f we can simplify the right hand side to

$$
\begin{equation*}
f\left(\delta_{\xi, b}\right)+\left\lceil K / \delta_{\xi, b}\right\rceil+1 \tag{11}
\end{equation*}
$$

Reasoning now as in Section 3.2, since $n \geq f(b)$ we have $a_{n+m} \leq a_{n}+b<2 b$ for all $m \in \mathbb{N}$, and thus substituting $b \mapsto b / 2$ in (11) gives us a rate of convergence for $a_{n} \rightarrow 0$. Unwinding the definitions gives the result.

We will now see that the above lemma contains almost everything that we need to give a computational interpretation to Theorem 2.7.

5 Handling uniform smoothness

Throughout Sections 3 and 4 we have postponed the fact that we need to deal with uniform smoothness in a computational way. So far, our computational analysis has dealt with nothing beyond sequences of real numbers. Interestingly, and as is very often the case in applied proof theory, these results on the convergence of sequence of reals contain the core computational content of the original proof (see [5] for a comprehensive survey on the general importance of such results in analysis, and [22] for a recent discussion of the role they play in the context of applied proof theory, which also contains references to some the many places in which quantitative version of such results have played a role). Indeed, the only computational role that uniform smoothness plays in the proof of Theorem 2.7 is in establishing that $\alpha(b)>0$ for α defined as in Lemma 2.6, which explicitly involves the modulus of smoothness ρ_{X}, or more precisely, a rate of convergence for $\rho_{X}(t) / t \rightarrow 0$ as $t \rightarrow 0$.

For the vast majority of case studies in applied proof theory that take place in uniformly smooth Banach spaces, such a rate of convergence is essentially all that is required (though see [4] for an example where additional properties of the modulus of smoothness are needed). In such cases, it is often convenient reformulate the proof using the following alternative definition of uniform smoothness: A Banach space is uniformly smooth if and only if for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
\|x\|=1 \wedge\|y\| \leq \delta \Longrightarrow\|x+y\|+\|x-y\| \leq 2+\varepsilon\|y\| \tag{12}
\end{equation*}
$$

for any $x, y \in X$. This characterisation of uniform smoothness is simpler from a logical perspective, and admits a direct computational interpretation in the form of a so-called modulus of uniform smoothness $\omega:(0, \infty) \rightarrow(0, \infty)$, which is defined to be any function that for any $\varepsilon>0$ returns some witness for δ in (12). Moduli of uniform smoothness, which are distinct from the (uniquely defined) modulus of smoothness, were first used in [17] and appear in many other places in the applied proof theory literature as a quantitative analogue of uniform smoothness, where they are equivalent to rates of convergence for $\rho_{X}(t) / t \rightarrow 0$ as $t \rightarrow 0$.

For the purpose of our case study, our main task is therefore to reformulate the main lemmas on uniform smoothness in terms of the simpler logical modulus. We start with Lemma 2.3:

Lemma 5.1. Let (X, ω) be a uniformly smooth Banach space with modulus of uniform smoothness ω. Take $x \neq 0$ and let $F_{x}:=j(x) /\|x\|$. Then

$$
\frac{t\|y\|}{\|x\|} \leq \omega(\varepsilon) \Longrightarrow\|x+t y\| \leq\|x\|\left(1+\frac{\varepsilon t\|y\|}{\|x\|}\right)+t F_{x}(y)
$$

for any $y \in X$ and $t \in(0, \infty)$.
Proof. Analogous to the proof of Lemma 2.3.

We now give a reformulation of the main lemma used.
Lemma 5.2. Let (X, ω) be a uniformly smooth Banach space. Suppose that $S \subseteq X$ and $x^{*} \in \overline{\operatorname{co}(X)}$, that $\left\{x_{n}\right\}$ is $\left\{\epsilon_{n}\right\}$-greedy with respect to x^{*} and S, and $K>0$ is such that $\sup \left\{\left\|y-x^{*}\right\| \mid y \in S\right\} \leq K$. Using our notation $a_{n}:=\left\|x_{n}-x^{*}\right\|$, any $b>0$, if $b \leq a_{n}$ then

$$
a_{n+1} \leq(1-\alpha(b)) a_{n}+\epsilon_{n}
$$

for

$$
\alpha(b):=\sup \left\{\left.\frac{b \cdot \omega(\varepsilon \cdot b) \cdot(1-\varepsilon K)}{2 K} \right\rvert\, \varepsilon \in(0,1)\right\}
$$

Proof. Applying Lemma 5.1 in an analogous way to the proof of Lemma 5.2 we see that for any $\varepsilon>0$, if

$$
\frac{\lambda K}{(1-\lambda) b} \leq \omega(\varepsilon b)
$$

then

$$
\begin{aligned}
\left(\left\|(1-\lambda) x_{n}+\lambda y-x^{*}\right\|\right. & \leq(1-\lambda) a_{n}\left(1+\frac{\varepsilon \lambda K}{(1-\lambda)}\right)+\lambda F_{n}\left(y-x^{*}\right) \\
& \leq(1-\lambda(1-\varepsilon K)) a_{n}+\lambda F_{n}\left(y-x^{*}\right)
\end{aligned}
$$

using the shorthand $F_{n}:=F_{x_{n}-x^{*}}$. Now, if we define $\lambda_{\varepsilon}:=b \cdot \omega(\varepsilon \cdot b) / 2 K$ for arbitrary $\varepsilon \in(0,1)$ then $\lambda \in[0,1)$ and we can show that the premise of the above holds, and so in particular

$$
\begin{aligned}
& \inf \left\{\left\|(1-\lambda) x_{n}+\lambda y-x^{*}\right\| \mid y \in S, \lambda \in[0,1)\right\} \\
& \leq \inf \left\{\left(1-\lambda_{\varepsilon}(1-\varepsilon K)\right) a_{n}+\lambda_{\varepsilon} F_{n}\left(y-x^{*}\right) \mid y \in S, \varepsilon \in(0,1)\right\} \\
& \leq\left(1-\sup \left\{\lambda_{\varepsilon}(1-\varepsilon K) \mid \varepsilon \in(0,1)\right\}\right) a_{n}
\end{aligned}
$$

from which the main result follows.
Now proving that $\alpha(b)>0$ for any $b>0$ is extremely direct, since the expression inside the supremum must be positive for any $\varepsilon<1 / K$. We are now ready to present the computational version of Theorem 2.7.

Theorem 5.3. Let (X, ω) be a uniformly smooth Banach space. Suppose that $S \subseteq X$ and $x^{*} \in \overline{\operatorname{co}(X)}$, that $\left\{x_{n}\right\}$ is $\left\{\epsilon_{n}\right\}$-greedy with respect to x^{*} and S for some sequence $\left\{\epsilon_{n}\right\}$ of positive reals such that $\sum_{i=0}^{\infty} \epsilon_{n}<\infty$ with (monotone) rate f. Suppose that $K>0$ is such that $\sup \left\{\left\|y-x^{*}\right\| \mid y \in S\right\} \leq K$. Then $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$ with rate of convergence given by

$$
\Phi(b):=f(\psi(b))+\left\lceil\frac{K}{\psi(b)}\right]+1 \quad \text { for } \quad \psi(b):=\frac{b^{2}}{32} \cdot \omega\left(\frac{b}{4 K}\right)
$$

Proof. We apply Lemma 4.3 for $a_{n}:=\left\|x_{n}-x^{*}\right\|$, where the main condition holds by Lemma 5.2 and the fact that $a_{n+1} \leq a_{n}+\epsilon_{n}$. For the rate of convergence,
setting $\varepsilon:=1 / 2 K$ in the definition of $\alpha(b)$ allows us to define computable ξ in a suitable way, namely

$$
\alpha(b) \geq \frac{b}{4 K} \cdot \omega\left(\frac{b}{2 K}\right)=: \xi(b)
$$

and substituting this into the Φ as defined in Lemma 4.3 gives the rate.

6 Extensions

Having obtained the main result, we now discuss directions ways in which, by taking a closer look at the quantitative proofs, we can further generalise it. These typically revolve around looking at precisely how certain assumptions or hypotheses are used, and whether they can be weakened. In doing so we hope to illustrate that much of the power of proof theoretic reasoning lies not merely in the ability to directly unwind a particular proof, but in deriving qualitative strengthenings of results by analysing those proofs further.

6.1 Weakening the convergence condition on $\left\{\epsilon_{n}\right\}$

One of the benefits of presenting the computational core of the original proof in such a simple and abstract way is that we can already start to make connections with existing results in the proof mining literature, with an eye to improving the result if possible. Lemma 4.3 identifies the main "recursive inequality" that plays a role in the original proof, namely

$$
b \leq a_{n} \Longrightarrow a_{n+1} \leq(1-\alpha(b)) a_{n}+\epsilon_{n}
$$

Such recursive inequalities are widely used in proof mining, and the one above turns out to be very similar to an inequality already considered by the author in [24] (though in the very different setting of weakly contractive mappings), namely

$$
a_{n+1} \leq a_{n}-\psi\left(a_{n}\right)+\epsilon_{n}
$$

for the case that $\psi(b):=\alpha(b) \cdot b$. There it is shown that $a_{n} \rightarrow 0$ with computable rate, but under the weaker condition that $\epsilon_{n} \rightarrow 0$. We now show that we can adapt the above proof to establish the same result, also under this weaker condition.

Lemma 6.1 (Strengthening of Lemma 4.3). Let $\left\{a_{n}\right\}$ be a sequence of nonnegative reals bounded above by $K>0$, and $\left\{\epsilon_{n}\right\}$ a sequence of nonnegative reals such that $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ with rate f. Suppose furthermore that these satisfy:

$$
b \leq a_{n} \Longrightarrow a_{n+1} \leq(1-\alpha(b)) a_{n}+\epsilon_{n}
$$

for all $b>0$ and $n \in \mathbb{N}$, where $\alpha:[0, \infty) \rightarrow[0, \infty)$ is an arbitrary function with $\alpha(0)=0$ and $\alpha(b)>0$ for $b>0$. Then $a_{n} \rightarrow 0$, with the same a computable rate of convergence as in Lemma 4.3.

Proof. By very similar reasoning to the proof of Lemma 4.3 we can show that there exists some

$$
f(\psi(2 b)) \leq n \leq \Phi(2 b)
$$

such that $a_{n}<b$. We now show directly that $a_{m}<2 b$ for all $m \geq n$. For this we use induction. For the induction step, there are two cases to consider: Either $a_{m}<b$, in which case

$$
a_{m+1} \leq(1-\alpha(b)) a_{m}+\epsilon_{m}<b+b=2 b
$$

where here we use that $\epsilon_{m}<\psi(2 b)<b$. On the other hand, if $b \leq a_{m}<2 b$ then

$$
a_{m+1} \leq a_{m}-\alpha(b) \cdot b+\epsilon_{m} \leq a_{m}<2 b
$$

where for the final inequality we use $\epsilon_{m}<\psi(2 b)=\frac{b}{2} \cdot \xi(b)<b \cdot \alpha(b)$.
Corollary 6.2. Theorem 5.3 holds, with the same rate of convergence, but under the weaker assumption that $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ with (monotone) rate f.

Proof. Exactly as in the proof of Theorem 5.3, but replacing Lemma 4.3 with Lemma 6.1 and extending the domain of α to $[0, \infty)$ by setting $\alpha(0)=0$..

6.2 Rates of convergence for fixed step sizes

A natural question to ask once we have established convergence of greedy approximations schemes for optimal step sizes is whether we can establish ana analogous result when the step sizes are fixed in advance. A number of results of this kind, for $\lambda_{n}:=1 /(n+1)$, are provided in [2] in the special case that X has modulus of smoothness of the form $\rho(u) \leq \gamma u^{t}$ for $t>1$. These results are established by introducing new abstract convergence results for sequences of real numbers. Here, we instead ask whether results along these lines are already possible by analysing and refining the existing proof.

For Theorem 5.3, the main point where a particular value of λ is considered is the proof of Lemma 5.2, where we instantiate $\lambda_{\varepsilon}:=b \cdot \omega(\varepsilon \cdot b) / 2 K$ to establish $a_{n+1} \leq(1-\alpha(b)) a_{n}+\epsilon_{n}$ for fixed b but arbitrary n. Thus at first glance, it doesn't seem possible to convert this into a local condition on λ_{n}, since the value is dependent only on b. However, referring to the proof of Theorem 4.3, we require this inequality to hold only in the case that $n \in[f(\psi(b)), \Phi(b)]$, so it might suffice to assume that $\lambda_{\varepsilon}:=b \cdot \omega(\varepsilon \cdot b) / 2 K$ for n in this range. We now prove this, first stating another modified form of Lemma 4.3. Interestingly, this version of the lemma doesn't seem to work under the weakened hypothesis $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$, whose proof uses that the main recursive inequality to holds for all n to obtain convergence.
Lemma 6.3. Let $\left\{a_{n}\right\}$ be a sequence of nonnegative reals bounded above by $K>0$ and satisfying $a_{n+1} \leq a_{n}+\epsilon_{n}$ where $\left\{\epsilon_{n}\right\}$ is a sequence of nonnegative reals with $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$ with rate f. Let $\alpha:(0, \infty) \rightarrow(0, \infty)$ be an arbitrary function and define

$$
\Phi(b):=f(\psi(b))+\left\lceil\frac{K}{\psi(b)}\right\rceil+1 \quad \text { for } \quad \psi(b):=\frac{b}{4} \cdot \xi\left(\frac{b}{2}\right)
$$

for any computable function $\xi:(0, \infty) \rightarrow(0,1)$. Then whenever

$$
b \leq a_{n} \Longrightarrow a_{n+1} \leq(1-\xi(b)) a_{n}+\epsilon_{n}
$$

for all $b>0$ and $n \in[f(\psi(2 b)), \Phi(2 b)]$, then $a_{n} \rightarrow 0$ with rate of convergence Φ.
Proof. Analogous to the proof of Lemma 4.3, but now keeping track of how the main inequality is used. Fix $b>0$ and define $\delta_{\xi, b}:=\frac{1}{2} \xi(b) \cdot b=\psi(2 b)$. Suppose that $a_{n} \geq b$ for all $n \in\left[f(\psi(2 b)), \Gamma\left(f(b), \delta_{\xi, b}\right)+1\right]=[f(b), \Phi(2 b)]$ where Γ is defined as in Lemma 4.2. Then there exists some $k \in\left[f(\psi(2 b)), \Gamma\left(f(b), \delta_{\xi, b}\right)\right]$ such that $a_{k}-a_{k+1}<\delta_{\xi, b}$ and $\epsilon_{k}<\delta_{\xi, b}$. In addition, it follows from our assumption that $a_{k+1} \geq b$, and since $k \in[f(\psi(2 b))$, $\Phi(2 b)]$ we have $a_{k+1} \leq(1-$ $\alpha(b)) a_{k}+\epsilon_{k}$, therefore reasoning exactly as in Section 3.4 we reach a contradiction. Therefore our assumption was false, and it follows that there exists some $n \in[f(\psi(b)), \Phi(2 b)]$ such that $a_{n}<b$. Reasoning now as in Section 3.2, since $n \geq f(b)$ we have $a_{n+m} \leq a_{n}+b<2 b$ for all $m \in \mathbb{N}$, and thus Φ is a rate of convergence for $a_{n} \rightarrow 0$.

Theorem 6.4. Let (X, ω) be a uniformly smooth Banach space. Suppose that $S \subseteq X$ and $x^{*} \in \overline{\operatorname{co}(X)}$. Suppose that $\left\{x_{n}\right\}$ is some sequence of approximants to x^{*} satisfying $\left\|x_{n+1}-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\|+\epsilon_{n}$ and

$$
\left\|x_{n+1}-x^{*}\right\| \leq \inf \left\{\left\|\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} y\right\| \| y \in S\right\}+\epsilon_{n}
$$

for all $n \in \mathbb{N}$, a sequence $\left\{\epsilon_{n}\right\}$ of positive reals such that $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$ with rate f, and some fixed sequence $\left\{\lambda_{n}\right\}$ of step sizes in $[0,1)$. Let $K>0$ be such that $\left\|y-x^{*}\right\| \leq K$ for all $y \in S$. Finally, suppose that $\xi:(0, \infty) \rightarrow(0,1)$ is such that for all $b>0$ there exists $\varepsilon \in(0,1)$ such that

$$
\xi(b) \leq \lambda_{n}(1-\varepsilon K) \quad \text { and } \quad \lambda_{n} \leq \frac{b \cdot \omega(\varepsilon \cdot b)}{2 K}
$$

for all $n \in[f(\psi(b)), \Phi(b)]$ for ψ and Φ as defined in Lemma 6.3. Then $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$ with rate Φ.

Proof. We apply Lemma 6.3. Setting $a_{n}:=\left\|x_{n}-x^{*}\right\|$, all we need to do is show that $a_{n+1} \leq(1-\xi(b)) a_{n}+\epsilon_{n}$ for all $n \in[f(\psi(b)), \Phi(b)]$. So picking such an n, arguing as in the proof of Lemma 5.2, if $b \leq a_{n}$ then there exists $\varepsilon \in(0,1)$ such that $\lambda_{n} \leq b \cdot \omega(\varepsilon \cdot b) / 2 K$ and therefore

$$
\begin{aligned}
\left\|\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} y\right\| & \leq\left(1-\lambda_{n}(1-\varepsilon K)\right) a_{n}+\lambda_{n} F_{n}\left(y-x^{*}\right) \\
& \leq(1-\xi(b)) a_{n}+\lambda_{n} F_{n}\left(y-x^{*}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
a_{n+1} & \leq \inf \left\{\left\|\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} y\right\| \mid y \in S\right\}+\epsilon_{n} \\
& \leq(1-\xi(b)) a_{n}+\inf \left\{\lambda_{n} F_{n}\left(y-x^{*}\right) \mid y \in S\right\}+\epsilon_{n} \\
& \leq(1-\xi(b)) a_{n}+\epsilon_{n}
\end{aligned}
$$

using that $\inf \left\{\lambda_{n} F_{n}\left(y-x^{*}\right) \mid y \in S\right\} \leq 0$ as in Lemma 2.6. Thus all conditions of the Lemma 6.3 are satisfied and we obtain the result.

It is instructive to compare our Theorem 6.4 with the rates of convergence given in Section 3.2 of [2], notably their Theorem 3.5. The latter focuses on the special case that $\rho(u) \leq \gamma u^{t}$ for $t>1$ (which would correspond to a modulus of uniform smoothness of power type $1 /(t-1)$), and demonstrates that by fixing $\lambda_{n}:=1 /(n+1)$ we can obtain greedy approximation schemes that converge with $\left\|x_{n}-x^{*}\right\|=\mathcal{O}\left(1 / n^{1-1 / t}\right)$. This involves adapting their general proof idea to this special case, and using a different combinatorial result on convergence sequences of real numbers. Our result above, though likely giving less optimal bounds in this specific case, applies more generally to any modulus of uniform smoothness, and incorporates a range of conditions on the fixed step sizes $\left\{\lambda_{n}\right\}$.

We do not claim that our result for fixed step sizes should necessarily be preferred to the quantitative results in [2], which in particular capture a large class of uniformly smooth Banach spaces, including the L_{p} spaces. Rather we offer a more general quantitative result that was, moreover, obtained in a different way through the proof theoretic analysis of a nonconstructive proof. The following example shows that we can still use our general result to produce rates in concrete situations.
Example 6.5. Consider the simple case that

$$
\omega(\varepsilon):=\varepsilon^{r} \quad \xi(b):=b^{s} \quad \lambda_{n}:=n^{-t}
$$

for $r, s, t>0$. We can use the above theorem to generate conditions on these exponents such that the assumptions are satisfied. Suppose for simplicity that $\sum_{i=0}^{\infty} \epsilon_{i}<\infty$ with rate $f(\delta)=\mathcal{O}(1 / \delta)$, so that there would exist constants K_{1}, K_{2} with $K_{1} \leq K_{2}$ such that

$$
\frac{K_{1}}{b^{1+s}} \leq f(\psi(b))<\Phi(b) \leq \frac{K_{2}}{b^{1+s}}
$$

For simplicity we can choose to always set $\varepsilon:=1 / 2 K$ for any $b>0$, so the two conditions on λ_{n} and ξ become

$$
2 b^{s} \leq \lambda_{n} \quad \text { and } \quad \lambda_{n} \leq\left(\frac{b}{2 K}\right)^{1+r}
$$

for $n \in[f(\psi(b)), \Phi(b)]$. But for n in this range we have

$$
\left(\frac{b^{1+s}}{K_{2}}\right)^{t} \leq \Phi(b)^{-t} \leq \lambda_{n}=n^{-t} \leq f(\psi(b))^{-t} \leq\left(\frac{b^{1+s}}{K_{1}}\right)^{t}
$$

so our two conditions are satisfied if

$$
2 b^{s} \leq\left(\frac{b^{1+s}}{K_{2}}\right)^{t} \quad \text { and } \quad\left(\frac{b^{1+s}}{K_{1}}\right)^{t} \leq\left(\frac{b}{2 K}\right)^{1+r}
$$

for sufficiently small $b>0$. Here, the first condition above is satisfied if

$$
b \leq\left(\frac{1}{K_{2} 2^{1 / t}}\right)^{1 /(s / t-1-s)} \text { and } s / t-1-s>0
$$

where allowing for sufficiently small b the main condition is

$$
t<\frac{s}{1+s}
$$

Similarly, the second condition is satisfied if

$$
b \leq\left(K_{1}\left(\frac{1}{2 K}\right)^{(1+r) t}\right)^{1 /((1+s)-(1+r) / t)} \text { and }(1+s)-(1+r) / t>0
$$

where the main condition is

$$
\frac{1+r}{1+s}<t
$$

Setting $r=1$ (corresponding to a 'mathematical' modulus of uniform smoothness of power 2, which would be the case for e.g. $X=L_{2}$) and $s=3$, we would need to pick t such that

$$
\frac{1}{2}<t<\frac{3}{4}
$$

Then for fixed $\lambda_{n}:=n^{-t}$ for t in this range, we would have $x_{n} \rightarrow x^{*}$ with rate

$$
\Phi(b):=\mathcal{O}\left(1 / b^{4}\right)
$$

6.3 Approximations to $\overline{\operatorname{co}(S)}$

Finally, we note that an alternative hypothesis we can consider weakening is $x^{*} \in \overline{\operatorname{co}(S)}$, which is used to establish that for any x_{n}, we can always find some $y \in S$ such that $F_{x_{n}-x^{*}}\left(y-x^{*}\right)$ is arbitrarily small. To do this, recall that we pick $z:=\sum_{i=1}^{n} a_{i} y_{i}$ with $y_{i} \in S$ such that $\left\|z-x^{*}\right\| \leq \delta / 2$, and then it follows that $F_{x_{n}-x^{*}}\left(y_{i}-x^{*}\right) \leq \delta$ for some i, else we would have

$$
\delta \geq\left\|F_{x_{n}-x^{*}}\right\|\left\|z-x^{*}\right\| \geq F_{x_{n}-x^{*}}\left(z-x^{*}\right)=\sum_{i=1}^{n} F_{x_{n}-x^{*}}\left(y_{i}\right)>\delta \sum_{i=1}^{n} a_{i}=\delta
$$

Fixing now some $b, \delta>0$, if there exists $z \in \operatorname{co}(S)$ with $\left\|z-x^{*}\right\| \leq \delta / 2$, then in Lemma 5.2 we would have

$$
\begin{aligned}
a_{n+1} & \leq \inf \left\{[1+\lambda(\varepsilon K-1)] a_{n}+\lambda F_{n}\left(y-x^{*}\right) \mid y \in S \lambda \in[0,1]\right\}+\epsilon_{n} \\
& \leq\left[1-\frac{b \cdot \omega(\varepsilon \cdot b) \cdot(1-\varepsilon K)}{2 K}\right] a_{n}+\frac{b \cdot \omega(\varepsilon \cdot b) \cdot F_{n}\left(y_{i}-x^{*}\right)}{2 K}+\epsilon_{n} \\
& \leq\left[1-\frac{b \cdot \omega(\varepsilon \cdot b) \cdot(1-\varepsilon K)}{2 K}\right] a_{n}+\delta+\epsilon_{n}
\end{aligned}
$$

where y_{i} is such that $F_{n}\left(y_{i}-x^{*}\right) \leq \delta$. In this way we could modify the main proof to obtain a rate of convergence for $x_{n} \rightarrow x^{*}$ that can be verified up to $b>0$ provided we can show the existence of $z \in \operatorname{co}(S)$ such that $\left\|z-x^{*}\right\| \leq \delta$ for δ sufficiently small depending on b. We do not discuss the details of this extension in any depth, but mention it simply to highlight that further generalisations are possible.

7 Conclusion

We have presented a new application of proof theory, where through the analysis of a nonconstructive convergence proof we are able to not only extract an explicit rate of convergence, but also provide several qualitative generalisations of the original theorem. The purpose of this work was twofold: (i) to apply proof theoretic techniques in a hitherto unexplored part of approximation theory, and (ii) to present the extraction process in a different way, emphasising the underlying proof theoretic steps that were performed in the analysis. Both of these points give rise, in turn, to directions for future work:

Firstly, It would be interesting to explore whether there are further applications of proof theory on the convergence of greedy approximation schemes in Hilbert and Banach spaces. This forms a rich area, covered in depth by the recent textbook [25] and also in many places in the machine learning literature (e.g. [26]). Here convergence proofs in general Banach spaces typically resort to geometric properties of those spaces, specifically variants of uniform smoothness, a property that can be universally axiomatised via the corresponding modulus and thus falls within existing metatheorems that guarantee the extractability of effective bounds [17].

Secondly, an attempt to systematise the kind high-level manipulations on proof trees outlined in Section 3 and capture them within some specialised formal system could represent a fascinating project aimed at eventually automating aspects of applied proof theory. This idea would align well with the use of proof assistants, as discussed in [19], but would represent a significant challenge: While the straightforward extraction of computational content from formal proofs in a brute force manner can of course be done purely mechanically, by implementing the relevant proof interpretations, automating the high-level mathematical reasoning essential to the success of applied proof theory is another matter entirely, and may well require the development of sophisticated proof systems that are tailored to applications in a specific area.

References

[1] Chidume, C. Geometric Properties of Banach Spaces and Nonlinear Iterations. Springer, 2009.
[2] Darken, C., Donahue, M. J., Gurvits, L., and Sontag, E. Rates of convex approximation in non-Hilbert spaces. Constructive Approximation 13 (1997), 187-220.
[3] Dinis, B., and Pinto, P. Quantitative results on the multi-parameters proximal point algorithm. Journal of Convex Analysis 28, 3 (2021), 729750.
[4] Findling, R., and Kohlenbach, U. Rates of convergence and metastability for Chidume's algorithm for the approximation of zeros of accretive operators in Banach spaces. Preprint, 2023.
[5] Franci, B., and Grammatico, S. Convergence of sequences: A survey. Annual Reviews in Control 53 (2022), 161-186.
[6] Jones, L. A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. The Annals of Statistics 20, 1 (1992), 608-613.
[7] Kohlenbach, U. A quantitative version of a theorem due to Borwein-Reich-Shafrir. Numerical Functional Analysis and Optimization 22 (2001), 641-656.
[8] Kohlenbach, U. Uniform asymptotic regularity for Mann iterates. Journal of Mathematical Analysis and Applications 279 (2003), 531-544.
[9] Kohlenbach, U. Some logical metatheorems with applications in functional analysis. Transactions of the American Mathematical Society 357, 1 (2005), 89-128.
[10] Kohlenbach, U. Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer Monographs in Mathematics. Springer, 2008.
[11] Коhlenbach, U. Recent progress in proof mining in nonlinear analysis. IFCoLoG Journal of Logics and their Applications 10, 4 (2017), 3361-3410.
[12] Kohlenbach, U. A polynomial rate of asymptotic regularity for compositions of projections in Hilbert space. Foundations of Computational Mathematics 19 (2019), 83-99.
[13] Kohlenbach, U. Proof-theoretic methods in nonlinear analysis. In Proceedings of the International Congress of Mathematicians 2018, vol. 2. World Scientific, 2019, pp. 61-82.
[14] Kohlenbach, U. Quantitative analysis of a Halpern-type Proximal Point Algorithm for accretive operators in Banach spaces. Journal of Nonlinear and Convex Analysis 21, 9 (2020), 2125-2138.
[15] Kohlenbach, U., and Koutsoukou-Argyraki, A. Rates of convergence and metastability for abstract cauchy problems generated by accretive operators. Journal of Mathematical Analysis and Applications 423 (2015), 1089-1112.
[16] Kohlenbach, U., and Leuştean, L. Mann iterates of directionally nonexpansive mappings in hyper- bolic spaces. Abstract and Applied Analysis 2003, 8 (2003), 449-477.
[17] Kohlenbach, U., and Leuştean, L. On the computation content of convergence proofs via Banach limits. Philosophical Transactions of the Royal Society A 370 (2012), 3449-3463.
[18] Kohlenbach, U., and Powell, T. Rates of convergence for iterative solutions of equations involving set-valued accretive operators. Computers and Mathematics with Applications 80 (2020), 490-503.
[19] Koutsoukou-Argyraki, A. On preserving the computational content of mathematical proofs: Toy examples for a formalising strategy. In Connecting with Computability. CiE 2021 (2021), vol. 12813 of LNCS, Springer, pp. 285-296.
[20] Kreisel, G. On the interpretation of non-finitist proofs, Part I. Journal of Symbolic Logic 16 (1951), 241-267.
[21] Leuştean, L., Nicolae, A., and Sipoş, A. An abstract proximal point algorithm. Journal of Global Optimization 72, 3 (2018), 553-577.
[22] Neri, M., and Powell, T. A computational study of a class of recursive inequalities. Journal of Logic and Analysis 15, 3 (2023), 1-48.
[23] Pischke, N. Logical metatheorems for accretive and (generalized) monotone set-valued operators. To appear in: Journal of Mathematical Logic, 2023.
[24] Powell, T., and Wiesnet, F. Rates of convergence for asymptotically weakly contractive mappings in normed spaces. Numerical Functional Analysis and Optimization 42, 15 (2021), 1802-1838.
[25] Temlyakov, V. N. Greedy Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2011.
[26] Tewari, A., Ravikumar, P., and Dhillon, I. Greedy algorithms for structurally constrained high dimensional problems. In Advances in Neural Information Processing Systems (2011), J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds., vol. 24, Curran Associates, Inc.

