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Introduction

In most applications of functional interpretations, the interpretation is a means to an end, a syntactic
translation that extracts witnesses from proofs. As a consequence, on the whole proof theorists pay lit-
tle attention to the structural properties of functional interpretations, though the use of interpretations
is central to their work.

This is a short note in which we discuss and bring together several works which view functional
interpretations from a more abstract perspective. Our ultimate aim is to construct a general abstract
framework in which a range of interpretations can be compared and better understood.

A rich variety of functional interpretations have been developed since Godel invented his prototype,
ranging from early examples used to prove foundational theorems to more exotic modern varieties
tailored specifically for the purpose of proof mining. It is natural, then, to ask whether we can isolate
the key features of functional interpretations and develop a unifying framework in which they can be
compared, either on a syntactic or a semantic level.

The question of unifying proof interpretations has been separately considered from each of these
perspectives, by Oliva and de Paiva respectively. de Paiva used the language of categorical logic to
gain a better semantic understanding of the Dialectica interpretation - constructing and studying the
Dialectica category [7]. This yielded some interesting results, notably that the Dialectica interpretation
itself behaves rather badly - and that the best that can be achieved in terms of a categorical semantics
is a model of linear logic. However, an interpretation of the linear modality ! via a comonad on the
category produced an elegant model of a variant of the Dialectica interpretation - the Diller-Nahm
interpretation.

Over a decade later, in his work on unifying functional interpretations [5], Oliva introduced, on a
syntactic level, a parametrised functional interpretation with a uniform soundness proof, from which
a large family of familiar interpretations could be retrieved.

This note attempts to combine these ideas in the construction of a uniform semantic framework for
functional interpretations, based on de Paiva’s Dialectica category. Studying interpretations in this
way yields insights into their structure that may appear hidden in a more syntactic presentation. The
idea is that many different interpretations can be modelled in an abstract way via comands on the
Dialectica category. While this has been observed before, by Biering in [1] for instance, we show that
these comonads arise in a uniform way from monads on the underlying type theory. In this respect our
approach differs from de Paiva’s original construction, in particular we emphasise the proof theoretic
meaning of our categorical constructions.

Variations on the Dialectica interpretation

A key feature of a functional interpretation is the way in which it interprets implication. Different
choices can result in interpretations with very different structural properties. Recall that the Dialectica



interpretation interprets
JuVzA(u, x) — FJvVyB(v,y)

as
3f, FVu, y(A(u, Fuy) — B(fu,y))

This defines a fairly strong interpretation, which is why it is so useful for extracting computational
information from proofs. The cost, however, is that in a wider sense it is fairly restrictive in terms
of the theories it admits. As previously observed, in order to verify even the basic logical axioms it
demands that formulas in the interpreted theory are decidable. While arithmetic is simple enough
to ensure this property, this is not the case for more complex systems (anything involving sets, for
instance, because the membership predicate € is not decidable).

However, by adjusting the way we interpret implication, this requirement can be bypassed and we
obtain functional interpretations that can be applied to a wide range of theories. A familiar example
of such an interpretation is Kreisel’s modified realizability. Here a witness for implication is simply a
tuple of functionals that takes a witness for the premise and produces a witness for the conclusion. In
other words, we interpret implication as:

3fVu, y(VxA(u, z) — B(fu,y))

Of course the interpreting theory is no longer a quantifier free calculus, it contains instances of the
universal quantifier, hence modified realizability is a weaker interpretation with regard to the principles
it will admit. In particular, it does not interpret Markov’s principle - Kreisel used this fact to prove
that Markov’s principle is underivable is subsystems of intuitionistic analysis.

A more refined interpretation for the purpose of eliminating the need for decidability was proposed
by Diller and Nahm. It stems from the observation that in a natural deduction proof, only finitely
many instances of the premise of an implication are used. Given that

VzA(z) - B
holds, then irrespective of decidability of formulas we can extract a finite set X such that
Ve e XA(z) > B
Motivated by this, the Diller-Nahm interpretation translates JuVxA(u,z) — JvVyB(v,y) as
3f, FVYu,y(Vx € FuyA(u,z) — B(fu,y))

where Fuy is a finite set. The interpreting theory in this case can be understood as a language of
functionals of finite type, much like Godel’s system T, in which the underlying type theory is enriched
with ‘finite set types’ X* for each type X, with an associated quantifier.

In his work on unifying functional interpretations, Oliva, observing the similarities between different
interpretations, defines a more general interpretation in which the verifying system of functionals is
enriched with an unspecified bounded quantifier Yo = tA(x), and implication is interpreted as

(A - B)I = Elf7 Fvuvy(vz C FuyAI(u?x) - Bl(fua y))

He identifies sufficient conditions under which the generalised quantifier produces a sound interpre-
tation, and shows that a large family of interpretations can be obtained via this general framework.
Aside from those mentioned above, instantiations of this parametrised interpretation include Stein’s
interpretations and the recent monotone interpretation, which will be discussed later.



When presented syntactically, one aspect of functional interpretations that remains hidden is the
difference between certain variants on a structural level. Interpretations like the Diller-Nahm are
far more flexible than the original Dialectica, not only because they are more widely applicable, but
because key interpreting functionals are canonical. The interpretation of contraction is much more
benign for the Diller-Nahm variant - since we allow quantification over finite sets in our verifying
system, contraction is satisfied by functionals Au.(u,u) and Auxize.{z1} U {z2}, since

Vu,x1, xa(Va € {z1} U {xa} A (u, ) = A (u, 1) A Ax(u, 22))

is valid. Comparing this to the Dialectica interpretation above, it is evident that the Diller-Nahm
should be better behaved. This contrast in structural behaviour becomes clear when we use the
language of category theory.

The Dialectica Category

From the Curry-Howard correspondence has emerged the area of categorical logic, in which a rich
semantics for type theories stems from the idea of representing propositions as objects in a category.
By associating logical connectives with constructions in the category, beginning with an interpretation
of atomic propositions we obtain interpretations of general propositions by induction on their structure.
Deductions I' - A in the type theory correspond to morphisms |I'| — |A|. In her thesis [7], de Paiva
investigated the Dialectica interpretation in this manner, constructing the Dialectica category. The
idea of the Dialectica category is to capture the interpretation’s treatment of implication internally.
In this section we largely follow the more general presentation given in [4].

Definition 0.1 (Dialectica Category). Suppose we are given a category T, which intuitively interprets
some type theory, and a pre-ordered fibration p: P — T which interprets formulae over the type theory.
We construct the Dialectica category Dial as follows.

e Objects of Dial consist of formulas a € P(U x X) over types U, X € T (which we abbreviate to
(U & X)). Intuitively we read these formulas as Iu¥Vza(u, ).

e Morphisms (U & X) — (V £ Y) consists of pairs of maps f: U -V, F:UxY — X of T
such that a(u, F(u,y)) < B(f(u),y) in P(U x Y), which we express as diagrams

U<~—+—X

The identity map is given by

. TX
id



and composition of

~
B!
Q

V<~—F"Y W<~——F—""-172

s given by
U<~—F——X

W<~—t— 27
where H(u, z) := F(u, G(f(u),2)). It is easy to check that Dial is indeed a category.

Of course, in order to do something useful with Dial we need some additional structure. The structure
of Dial is thoroughly investigated in [7] and [4], so here we give just a brief summary of the main
results. The essence of the next proposition is that provided the base category T and the fibration
p have structure we would expect from a model of propositions over a type theory, the Dialectica
category has structure we might expect from a model of a functional interpretation.

Proposition 0.2 (Structure of the Dialectica category). Suppose that p: P — T is a cartesian closed
fibration, and that in addition, T has finite coproducts, that P(0) =~ 1 and that the coprojections
X—>X+Y andY — X +Y induce an equivalence P(X +Y) ~P(X) x P(Y'). Then

e Dial is a symmetric monoidal closed category. The tensor product A® B of A = (U & X)

and B = (V £ Y) is the object AQ B = (U xV °®F X « Y') intuitively given by the pointwise
relation a ® B(u,v,x,y) iff a(u,z) A B(v,y). The unit is the object v = (1 « 1)
The function space of objects B = (V £ Y) and C = (W <& Z) is given by the obvious object
[B.C]= (WY x YV<z 12y o 7).
The adjunction Dial(A® B,C) = Dial(A,[B,C]) is easily verified.

e Dial has finite products, where the product of A and B in Dial is given by Ax B = (U xV oxp

X +Y), where intuitively (u,v)a x Bz iff uaz or vBz (for a precise categorical definition see [7]).
The terminal object is given by (1 « 0).

Unfortunately, the Dialectica category does not have a natural cartesian closed structure - this boils
down to the fact that the Dialectica interpretation requires ‘definition by cases’ functionals in order to
model intuitionistic logic, and as might be expected, these functionals are not in the least bit natural
from a categorical perspective. Assuming that objects in the category are decidable the product and
tensor product collapse into one in the poset reflection and we obtain cartesian closed structure on the
level of provability, but this simply reflects the fact that the Dialectica interpretation is sound. Any
interesting categorical semantics will have a non-trivial notion of equality on proofs. Here we have
confirmation that the Dialectica interpretation behaves in a rather peculiar way on a structural level,
in that its underlying logic is essentially linear.



Proposition 0.3. A model of the modality-free multiplicative fragment of intuitionistic linear logic
consists of a symmetric monoidal closed category.

Of course, full linear logic contains the modality ! that allows us to regain intuitionistic logic (see [3]).
It’s defining axioms are the following:

I'-B TAVA+ B A+ B THA ,
rars (" —tiacs ) Ttacp ) wea Y

The categorical semantics of ! are not obvious. However, a number of categorical models have been
proposed - the one of interest here is that of Seely [8]:

Proposition 0.4. A model of the multiplicative-exponential fragment of intuitionistic linear logic
consists of a symmetric monoidal closed category with finite products, together with a comonad ! such
that

1. for each object A, !A has a comonoid structure (!A,ea: 1A — I,54: 1A -IAR'A) with respect to
the tensor product

2. there exist natural isomorphisms |AQ!B =!(A x B), I =!1 and moreover ! takes the comonoid
structure (A, A —> 1,A: A — A x A) to the comonoid structure in (1).

Proof. For details see [8]. Weakening and contraction are admitted by the existence of morphisms
!A > I and 'A »!A®!A [make clear contexts etc.]. The remaining rules are given by the fact that ! is
a comonad, and (!) in particular utilises the isomorphisms.

The following statement reflects the fact that we regain intuitionistic logic by taking implication to be

the linear formula !4 — B.

Proposition 0.5. Given a categorical model (C,!) of linear logic in the above sense, its Kleisli category
C, is cartesian closed.

Proof. Tt is a general fact that products in C can be lifted from products in C [function spaces] The
isomorphism !'A®!B =!(A x B) in C induces the following series of equivalences:

Cy(A x B,C) =~ C(I(A x B),C) = C(I1A®!B, C)

=~ C(IA,[!B,Cc) = C(A, !B, Clc) = Ci(4,[B, Clg,)
which verifies that the function space [B, —] in C; is right adjoint to (—) x B.

Having shown that Dial models modality free linear logic, de Paiva went about constructing a comonad
in the above sense and obtained a Dialectica model of full linear logic, and hence of intuitionistic logic.
The key feature of her comonad was that it could be related back to the world of functional
interpretations. Intuitively, the comonad sent the relation a(u,x) to the relation !a(u,x) := Vz €
xa(u, ), where x is some finite sequence of elements of type X.
Her model of intuitionistic implication !A — B became

Yz € Fuya(u,z) — B(fu,y)

which is precisely that of the Diller-Nahm interpretation, and so the Kleisli category Dial, provides a
categorical semantics of the Diller-Nahm interpretation at the level of proofs.



Thus de Paiva demonstrated that the procedure of enriching Gédel’s system T" with quantification
over finite sets in order to obtain the Diller-Nahm variant of the Dialectica interpretation is analogous
to constructing a certain comonad on her Dialectica category. Moreover, she demonstrated that a
meaningful categorical semantics exists for the Diller-Nahm interpretation, which indicates that some
interpretations have good structural properties not present in the Dialectica interpretation.

In what follows we extend de Paiva’s idea to deal with a range of familiar functional interpretations
by implementing a range of comonads. Our construction of comonads follows a more general route -
in particular it takes us closer to the underlying link between the Dialectica category and functional
interpretations. Our idea is to formulate an abstract notion of a bounded set in the base category T
and show that this structure gives rise, uniformly, to a comonad on Dial that corresponds to Oliva’s
generalised quantifier Yz = ¢.

Comonads in the Dialectica Category

The Dialectica interpretation maps formulas « to formulas of form JuVzap(u,z) where ap(u,z) is
quantifier free. Under Oliva’s parametrised interpretation formulas are sent to JuVzac (u,z) where,
due to the interpretation of implication, ar(u,x) may contain instances of the generalised bounded
quantifier Vo = t. Our aim here is to enrich the base category so that we can construct formulas over
what are intuitively ‘bounded set types’, and add enough structure to the fibration p: P — T so that
we can model formulas Vo = tA(z) as objects in the Dialectica category.

We make the observation that the generalised quantifier Vo = ¢ acts only as an abbreviation in [6],
actual instantiations vary significantly on a syntactic level. It has a clear semantic meaning, though,
as membership of some bounded set, and our semantics identifies those terms that may differ on a
syntactic level but or which the abbreviation Yz = ¢ means essentially the same thing.

Oliva states three conditions that must be satisfied by the abbreviation Ya = tA(z) for it to behave
like a bounded quantifier. The first states that for any =-bounded formulas «, there must exist a term
by such that

Vo & byxoa(r) — alzg)

Suppose that T'p intuitively represents a collection of bounded sets of type p, so we can tentatively
write Vaf = blxoTp , then the meaning of b; is a map p — Tp that sends each x to a canonical bounded
set bix containing x.

The second condition is that there must exist a term by such that

Vaf = bexoxio(z) = Yo C z0(x)

for ¢ = 0,1. This time, we can view b as a map Tp x Tp — Tp that essentially acts as a union
operation. The final condition is the existence of a term b3 such that

Vaf £ bysta(x) - V2" £ tVr £ sza(z)

In other words, if z is bounded by ¢ then any element bounded by sz is also bounded by bsst. bs has
type (r = Tp) - (Tt — Tp). If we assume that T has the property of functoriality this condition
reduces to the requirement of a map b5: TTp — T'p. This all suggests that the structure we want to
attach to our underlying type theory is a monad sending objects X to bounded set objects T X, along
with a union operation TX x TX — TX.

However, in addition to the conditions above, the abbreviation Yz = ¢ must satisfy a handful
additional assumptions in order to ensure it behaves like a quantifier in general, and in an analogous
fashion we ask for a more robust categorical framework, namely a strong monad T - that is a monad
(T,p: TT = T,n: 1 = T) equipped with a natural transformation Cy x: UxTX — T(U x X) obeying



the relevant coherence conditions - and in addition natural isomorphisms T(X +Y) = TX x TY and
T0 = 1 (induced by the coprojections X - X +Y,Y — X +Y). The necessity of this additional
structure becomes evident in what follows. From this we obtain a union operation that coexists sensibly
with the monad:

Lemma 0.6. Suppose we are given cartesian closed category T with finite coproducts and a monad T
on T equipped with isomorphisms T(X +Y) = TX x TY and TO = 1. Then for any object X of T,
the object TX has a monoidal structure (TX,ex: 1 - TX,mx: TX x TX — TX) induced by the
monoidal structure (X,0 > X,v7: X + X - X).

Proof. Define ex, mx via the following diagrams.

T(X+X)<—TXxTX T0<—1

TX TX

Having introduced some structure on T that intuitively captures the notion of a bounded set, we
want to extend this to the fibration p: P — T and capture the notion of a bounded quantifier. Our
aim is that formulas Vo = xa(x) can be seen as objects of the fibre P(T'X).

Definition 0.7. The subfibre P.(TX) < P(TX) consists of formulas that satisfy a(x1 U x2) —
a(x1) A a(x2) for x1,x2 € TX.

Objects of P(TX) are just arbitrary formulas that range over bounded sets of elements of type X.
However, we argue that formulas in the subfibre P, (7X), namely those that are closed under union,
are precisely those that intuitively have the form Vz = xa(z) for some a € P(X). The way to capture
this intuition is to demand that the map P.(7'X) — P(X) induced by reindexing along the unit map
nx has a right adjoint !x, i.e.
P.(TX) P(TX)—2

S

The idea is that Vo = xa(z) :=la(x). Let lyx: P(U x X) — P, (U x TX) denote the U-indexed

extension of !y

P(X)

Proposition 0.8 (Main Result). The map !: Dial — Dial sending objects oo € P(U x X) to
lux(a) € Po(U x TX) extends to a comonad on Dial such that

1. for each object A, 'A has a comonoid structure (!A,ea: 1A — I,54: 1A -IAR'A) with respect to
the tensor product

2. there exist natural isomorphisms |AQ!B =!(A x B), I =!1 and moreover ! takes the comonoid
structure (A, A - 1,A: A — A x A) to the comonoid structure in (1).

Proof. First we show that ! extends to a functor. It acts on morphisms by sending

U<~—+—Xf



to
U~ 7x

f TFOCUﬁy
|4 <—,iﬁi TY
and it remains to show that this is well defined, i.e.
(m1, TF o Cyy)*(la) < (f x id)*(18)
The following diagram commutes,

i w1, F
UxY 4 sy —" rax

UXUY\L \L(m,mjxy) lUan

UXT)?Fm)[]XT(UXY)mUXTX

the left hand side by the properties of strength and the right hand side by naturality of 7.
Notice that
(U xnx) o (w1, F)*(la) = (1, F)* o (m1,mx)* ()

We have (71, nx)*(la) < o by definition of !, and hence
(1, F)* o (1, nx)* (') < (1, F)* ()

Also,
(UxTF)o(m,Cuy)o (U xny))*(la) = (U x ny)* o (71, TF o Cyy)*(la)

By commutativity of the diagram we obtain
(U xny)* o (m, TF o Cyy)*(la) < (71, F)* ()
[because P.() preserved under Cyy and T'F] we know that
(U xny)* o(m,TFoCpy)*(la) e P,(U x TY)
therefore using the adjunction
(m1, TF o Cyy)*(te) <!(my, F)*(a) <!(f x id)*(5)

where the second inequality comes from the hypothesis (71, F)*(a) < (f x id)*(8) But [naturality in
first component] !(f x id)*(8) ~ (f x id)*(!8), and hence

(m1,TF o Cyy)*(la) < (f x id)*(15)

which confirms that ! is well defined on morphisms. Functorality follows by properties of strength.



To show that ! defines a comonad on Dial we need to exhibit natural transformations ! = 1 and
II'=!. For any object a € P(U x X) there is a map !a — « given by

U~—Ff 71X
id X

U<~—p— X

That this is indeed a morphism follows because by definition (71, 7x) * () < « is equivalent to la <la.
The map !a —!la is given by

U<~—F—7TXx
id e

U<—}—TTX
50 (71, pux)*(l) lies in P, (U x TTX). Therefore (w1, ux)*(la) <Nev iff

(m1,nrX)* (m1, px ) * (o) <la

But of course (1, nrX)*(m1, ux)* collapses to the identity by monad laws, so our morphism is once

again well defined. Naturality of these components are easily verified. The comonad laws are inherited
from the monad laws of T'.

Natural isomorphisms !A®!B =!(A x B), I =!1 are induced from the natural isomorphisms T(X +
Y) 2 TX xTY and T0 =~ 1 [reindexing preserved products, ! right adjoint so preserves products]
The image of the comonoid structure (A4, A — 1,A: A — A x A) under ! defines a comonoid
structure (14,e4: 1A — I,64: 1A -!A®!A) on !4 induced by the monoid structure (T'X,ex: 1 —
TX mx:TX xTX -TX)[O

Thus the comonad ! extends Dial to a Seely model of linear logic.

Examples of Functional Interpretations

In this section we implement our construction and exhibit categorical models of several variants of the
Dialectica interpretation.

The Diller-Nahm interpretation

We examine de Paiva’s original construction is some detail. Her comonad is based on the monad on
the base category that sends types X to the free commutative monoid X* generated by X, in other
words finite strings of elements of X, identified up to reordering. nyx: X — X* sends elements of X to
singleton sequences, and px: X** — X* intuitively sends a sequence of element of X* to a sequence
of elements of X by ‘removing brackets’. Commutativity means that we obtain natural isomorphisms
(X +Y)* =@ X* x Y*. The induced union map is the operation of concatenation.



P, (U x TX) consists of those formulas in P(U x TX) such that 8(u,x) if and only if (u,{z)) for
all € x. The map P,(U x TX) — P(U x X) induced by re-indexing along U x nx has right adjoint,
sending a(u, z) to Yo € xa(u, x).

The construction given in [7] is in many ways more elegant that the one given here, in that it has
a more abstract formulation. This is in part due to the fact that in de Paiva’s setting the free monad
extends to a fibred monad, and we get the following useful property, that

o ———> o
I [
I |

Y

Y
UxX—(UxX)*

nu x

By properties of strength, we can decompose this as
al
/ | \
|
|
|
|
Y

Ux X*

UxX

*

a a
|
[
|
[
[
[

- — = — — — =

Ux X)*

Nuxx
If we define the preorder P,(U x T'X) to be those objects in P(U x TX) that for which
B (U xnx)"' )"

Y A
Ux X* (U x X)*
U, X
then the following diagram commutes
B
|
/ | \
1 l 1
(Uxnx) B ; (U xnx) B)*
| |
| I I
| Y I
| UxX* [
\% Y
UxX Nuxx (U x X)*

and comparing with diagram [?] reveals that (U x nx)flﬁ < ain P(U x X) precisely when § < o' in
P, (U x X*), so the required adjoint is given by

!U,Xa = Oél = CU,X_l(Oé*)

10



Of course de Paiva’s more abstract formulation corresponds precisely to what we would expect intu-
itively.

Kreisel’s modified realizability

A model for modified realizability can be obtained, rather trivially, from the monad that sends types X
to the terminal object 1 of the base category. The fact that this defined a strong monad is immediate,
as is the existence of the required natural isomorphisms.

In this case the map U x nx is just the projection U x X 5 U, and provided T has enough structure
the re-indexing map

P(U) > P(U x X)

has the familiar right-adjoint Vx corresponding to quantification over the whole of X, sending the
formula a(u, z) to Yeo(u, z).

Stein’s family of interpretations

Full details not typeset - heavy syntax! Family parametrised by integer n, quantifiers of type level < n
left untouched while quantifiers of type level = n pulled out as an infinite set of witnesses indezed by
elements of the pure type (n — 1), here presented as functionals of type (n — 1) — p. Formulas «
interpreted as IuVzVTo, (u, x) where x type level = n, T type level < n and «,, contains only universal
quantifiers of type level < n. Implication treated as

af, FVu, yVﬂ,y(Vi("*l)VTcyn(u, Fuyi, T) — Bn(fu,y))

On a semantic level interpretation based on the monad T, where T, (X x X) = T,(X) x 1 where
T,.(X) identifies functionals f, g when rng(f) = rng(g). Syntactic treatment of interpretation is easily
understood on a semantic level - in fact key functionals needed to satisfy Oliva’s conditions can be
related to categorical constructions

The bounded interpretation

The bounded functional interpretation was designed explicitly for the extraction of information from
proofs. It is not concerned with obtaining precise witnesses, but rather upper bounds for witnesses,
and this weakening makes the interpretation extremely flexible both structurally and in terms of the
range of non-logical axioms it will admit. It was originally defined to interpret ILZ,, intuitionistic
logic in finite types enriched with axioms defining Bezem’s majorizability relations <} on all types p.
Oliva observed that the full interpretation does not exist as a direct instantiation of his parametrised
interpretation: this is due to its complex treatment of quantifiers. We do not give full details of the
interpretation here (for that the reader is referred to [2] and [5]), but make the important remark
remark when restricted to the propositional part of the theory, the interpretation does, in fact, fit
directly into the general framework.

Propositions o in I L%, are translated to gug’xag(u, x) where u and x are self majorizing, the mono-

tone quantifiers 3 and V just quantify over self-majorizing elements, and ap contains only bounded
quantifiers. The translation follows from a relativization of quantifiers followed by the usual Skolem-
ization. The key point is that implication is interpreted as

Af, FVu,y(Vo <* Fuyap(u,x) = B(fu,y))

11



and so the propositional fragment is essentially only concerned with monotone functionals. Note that
this is an instantiation of the parametrised quantifier Yo = t where ¢ is some upper bounded set of a
preorder. This motivates the abstract treatment we give below, based on a category of preorders.

Let the objects of T be preorders orders [bottom element?] (A, <4), and morphisms f: (4,<) —
(B, <) be order preserving maps. We can construct products, coproducts and exponentials in our
category of preorders in the usual way (in B4, f <pa g if and only if Va(fa <p ga)).

Taking account of the additional structure on T, we define bounded sets of a preorder (A, <4) to
be sets {ala < m A m € M} for some finite set M < A. We will abbreviate this to |M.

Proposition 0.9. The map B: T — T that sends preorders A to their set of bounded sets B(A) is a
strong monad on T.

Proof We need to define B on morphisms. Given f: A — B and a bounded set |M € B(A), f({M)
need not be a bounded set in B, so we define B(f)(|M) =|f({M) =|f(M) because f is monotone.
We need to verify that given, in addition, g: B — C, that B(gf) = B(g)B(f).

Given | M € B(A), B(g)B(/)(IM) = B(g) Lf(IM) = B(g)(L (M) =Lg(LF(M)) =Laf(M) =]
gfIM = B(gf)| M, which verifies functoriality.

Next, we show that B forms a monad on T. We define the family of maps n4: A — B(A) as the
maps that sends elements a € A to bounded sets [{a}. These components are clearly monotone, and
naturality is easily verified.

We also need maps pua: BB(A) — B(A). B is idempotent in that BB(A) =~ B(A). pa simply
sends bounded sets in BB(A) to the union of their bounding sets [?]. Again, that the components are
monotone and natural in A are easily verified.

The monad laws follow naturally from our definitions, so the only work left is to define strength
maps Cap: A x B(B) » B(A x B). Forae Aand [N € B(B) we set Ca p(a,|N) :=[({a}, N). It
is straightforward to show that the relevant diagrams commute and that these maps indeed define a
strength on the monad.[]

In addition, we clearly have isomorphisms B(A + B) = B(A) x B(B) which induce the obvious union
map, sending (|M, |[N) to the set bounded by maximal elements of M U N.

The idea, of course, is that given a suitable fibration over T this structure induces a comonad !
that sends formulas a(u,z) to la(u, | M) := Vo €| Ma(u,z) where | M € BX. Our resulting model
corresponds exactly to the bounded interpretation - contraction, for instance, is modelled by

Yu, 1, x2(Ve < max xizo0(u, z) = alu,z1) A a(u, 2))

which is precisely that given by the bounded interpretation.

Further remarks

To summarise: our purpose has been to Oliva’s uniform treatment of functional interpretations to the
world of preordered fibrations. Oliva shows that different interpretations arise as instantiations of a
parametrised interpretation in which implication is interpreted as

3f, B, y(Ve © Fuya(u, z) = 5(fu,y))

We present a general construction of a comonad on the Dialectica category, from simple structures on
the base category, that models the linear modality !, and hence produce a family of cartesian closed
Kleisli categories in which implication is modelled as a map

la =
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in Dial , where the comonads ! correspond directly to Oliva’s generalised bounded quantifier x = ¢. In
this way we provide categorical models for a number of familiar interpretations, and a general semantic
framework in which they can be compared.

Our work highlights the fact that, despite the rather peculiar features of the Dialectica interpre-
tation, by enriching the interpreting system with some kind of bounded quantifier we obtain variants
that posses excellent structural properties: by interpreting the contraction axiom in a canonical man-
ner we gain a model of the —, A, 1 fragment of logic that identifies proofs that are equivalent under
normalisation, which is not the situation with the messy definition by case functionals required for the
Dialectica interpretation.

A nice feature of the work begun by de Paiva is its natural link to linear logic and in particu-
lar the categorical semantics of linear logic, where the rather mysterious model of Seely is given a
concrete illustration by the Dialectica category. We have already referenced the work of Biering [1],
which demonstrates that there is certainly potential for the cateogorical semantics of the Dialectica
interpretation to be explored further.

However, while it is always important to be able to step back and see things from an abstract
perspective, the key significance of functional interpretations today lies in what they are capable of as
tools in logic. While the main features of functional interpretations can be expressed in the language
of category theory, many of their more interesting aspects lie outside of our framework.
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