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Abstract
We give a computational interpretation to an abstract in-
stance of Zorn’s lemma formulated as a wellfoundedness
principle in the language of arithmetic in all finite types.
This is achieved through Gödel’s functional interpretation,
and requires the introduction of a novel form of recursion
over non-wellfounded partial orders whose existence in the
model of total continuous functionals is proven using domain
theoretic techniques. We show that a realizer for the func-
tional interpretation of open induction over the lexicographic
ordering on sequences follows as a simple application of our
main results.
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1 Introduction
The correspondence between proofs and programs is one
of the most fundamental ideas in computer science. Initially
connecting intuitionistic logic with the typed lambda calcu-
lus, it has since been extended to incorporate a wide range
of theories and programming languages.
A challenging problem in this area is to give a computa-

tional interpretation to the axiom of choice in the setting
of classical logic. A number of ingenious solutions have
been proposed, ranging from Spector’s fundamental consis-
tency proof of classical analysis using bar recursion [25]
to more modern approaches, which include the Berardi-
Bezem-Coquand functional [2], optimal strategies in sequen-
tial games [9], and Krivine’s ‘quote’ and ‘clock’ [16].
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In this paper, we introduce both a new form of recursion
and a new computational interpretation of a choice axiom.
In contrast to the aforementioned works, which all focus on
variants of countable choice, we give a direct computational
interpretation to an axiomatic formulation of Zorn’s lemma.
Our work is closest in spirit to Berger’s realizability inter-
pretation of open induction on the lexicographic ordering
via open recursion [4] - an idea which was later transferred
to the setting of Gödel’s functional interpretation in [22].
However, a crucial difference here is that we do not work
with a concrete order, but a general parametrised variant of
Zorn’s lemma, from which induction on the lexicographic
ordering can be considered a special case.
After formulating an axiomatic version of Zorn’s lemma

in the language of Peano arithmetic in all finite types, we
study related forms of recursion on chain bounded partial
orders. In particular, we introduce a new recursive scheme
based on the notion of a ‘truncation’, and give precise domain
theoretic conditions under which the resulting fixpoint in
the partial continuous functionals is total (Theorem 4.9).
We then demonstrate that we can use our new form of

recursion to solve the functional interpretation of our vari-
ant of Zorn’s lemma. Our approach completely separates
the issues of correctness (that our program does what it’s
supposed to do) with that of totality (that our program is
well-defined). The main correctness result (Theorem 5.6) is
extremely general, and its proof short and direct, suggesting
that our realizing terms are natural in a fundamental way. To
establish totality wemake use of our earlier domain theoretic
results, and again provide conditions which ensure that our
computational interpretation is satisfied in the continuous
functionals. We conclude with a concrete example which ties
everything together, demonstrating that the functional inter-
pretation of open induction over the lexicographic ordering
can be given as a special case of our general result.
This work aims to achieve several things. Our new re-

cursive schemes on chain bounded partial orders form a
contribution to higher-order computability theory, which
we believe is of interest in its own right. The subsequent com-
putational interpretation of Zorn’s lemma is a new result in
proof theory, which we hope will lead to novel applications
in future work. Finally, through our general and abstract
setting we provide some fresh insights into known compu-
tational interpretations of variants of the axiom of choice,
particularly open recursion [4] and Spector’s original bar
recursion [25].
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2 Preliminaries
We begin by presenting some essential background material.
Gödel’s functional interpretation, which only appears from
Section 5 onwards, will be introduced later.

2.1 Zorn’s lemma
Zorn’s lemma is central to this article, and features not only
as a proof technique but also in the guise of an axiomatic
principle. In what follows, < will always denote a strict par-
tial order, and ≤ its reflexive closure.

Definition 2.1. We call a partially ordered set (𝑆, <) chain
bounded if every nonempty chain𝛾 ⊆ 𝑆 (i.e. nonempty totally
ordered subset of 𝑆) has an upper bound in 𝑆 , that is an
element 𝑢 ∈ 𝑆 such that 𝑥 ≤ 𝑢 for all 𝑥 ∈ 𝛾 .

Theorem 2.2 (Zorn’s lemma). Let (𝑆, <) be a nonempty par-
tially ordered set which is chain bounded. Then 𝑆 contains at
least one maximal element, that is an element 𝑥 ∈ 𝑆 such that
¬(𝑥 < 𝑦) for all 𝑦 ∈ 𝑆 .

The following well-known application of Zorn’s lemma
will form a running illustration throughout the paper:

Example 2.3. Let 𝑅 be some nontrivial ring with unity, and
define (𝑆, ⊂) to be the set of all proper ideals of 𝑅 partially or-
dered by the strict subset relation. Then 𝑆 is nonempty since
{0} ∈ 𝑆 , and is also chain bounded since for any nonempty
chain 𝛾 , the set

⋃
𝑥 ∈𝛾 𝑥 is also a proper ideal of 𝑅 and thus an

element of 𝑆 . Therefore by Zorn’s lemma, 𝑆 has a maximal
element, or in other words, 𝑅 has a maximal ideal.

Our ability to apply Zorn’s lemma to establish the exis-
tence of maximal ideals relies crucially on the fact that the
upper bound

⋃
𝑥 ∈𝛾 𝑥 is also a proper ideal. This in turn is

due to the fact that 𝑥 being a proper ideal is a ‘piecewise’
property, in that it can be reduced to an infinite conjunc-
tion ranging over finite pieces of information about 𝑥 . We
now make this intuition precise, leading to a modification of
Zorn’s lemma (Theorem 2.8) close in spirit to open induction
as studied by Raoult [24]. This will form the basis of our
syntactic version of Zorn’s lemma presented in Section 3.

Definition 2.4. An approximation function on the set 𝑋
relative to some sets 𝐷 and 𝑈 is taken to be a mapping
[·]( ·) : 𝑋 × 𝐷 → 𝑈 , where the sets 𝐷 and 𝑈 will play the
following intuitive roles:

• 𝐷 is an index set of ‘sizes’,
• 𝑈 is a set of ‘approximations’ of elements of 𝑋 .

We call [𝑥]𝑑 ∈ 𝑈 the approximation of 𝑥 of size 𝑑 .

Definition 2.5. We say that (𝑋, <) is chain bounded with
respect to the approximation function [·] : 𝑋 ×𝐷 → 𝑈 if any
nonempty chain 𝛾 ⊆ 𝑋 has an upper bound 𝛾 ∈ 𝑋 satisfying
the additional property that for all 𝑑 ∈ 𝐷 there is some 𝑥 ∈ 𝛾

such that [𝛾]𝑑 = [𝑥]𝑑 .

Example 2.6. Let (2𝑅, ⊂) be the powerset of some set 𝑅,
and 𝐷 the set of all finite subsets of 𝑅. Let

𝑈 := {𝑓 : 𝑑 → {0, 1} | 𝑑 ∈ 𝐷}
and define [𝑥]𝑑 : 𝑑 → {0, 1} by

[𝑥]𝑑 (𝑎) = 1 ⇔ 𝑎 ∈ 𝑥 .

Then (2𝑅, ⊂) is chain bounded with respect to [·]. To see
this, given a chain 𝛾 let 𝛾 :=

⋃
𝑥 ∈𝛾 𝑥 and suppose that 𝑎 ∈ 𝛾 .

Then there must be some 𝑥𝑎 ∈ 𝛾 such that 𝑎 ∈ 𝑥𝑎 . For 𝑑 ∈ 𝐷

define 𝑥 := max⊂{𝑥𝑎 | 𝑎 ∈ 𝑑 ∩𝛾} ∈ 𝛾 , and note that 𝑥 is well
defined since 𝛾 is totally ordered. Now, if [𝛾]𝑑 (𝑎) = 1 then
𝑎 ∈ 𝑑 ∩ 𝛾 and thus 𝑎 ∈ 𝑥 , and so [𝑥]𝑑 (𝑎) = 1. On the other
hand, if [𝛾]𝑑 = 0 then 𝑎 ∉ 𝛾 and so 𝑎 ∉ 𝑥 (since 𝑎 ∈ 𝑥 trivially
implies 𝑎 ∈ 𝛾 , hence [𝑥]𝑑 (𝑎) = 0. Therefore [𝛾]𝑑 = [𝑥]𝑑 .

Definition 2.7. We call a predicate 𝑃 (𝑥) on 𝑋 piecewise
with respect to the approximation function [·] : 𝑋 ×𝐷 → 𝑈

if 𝑃 (𝑥) ⇔ (∀𝑑 ∈ 𝐷)𝑄 ( [𝑥]𝑑 ) for some predicate 𝑄 (𝑢) on𝑈 .

Theorem 2.8. Let (𝑋, <) be a partially ordered set which is
chain bounded w.r.t. the approximation function [·] : 𝑋 ×𝐷 →
𝑈 , and 𝑃 (𝑥) a predicate on 𝑋 which is piecewise w.r.t the same
function. Then whenever 𝑃 (𝑥) holds for some 𝑥 ∈ 𝑋 , there
exists 𝑦 ∈ 𝑋 such that 𝑃 (𝑦) holds but ¬𝑃 (𝑧) whenever 𝑦 < 𝑧.

Proof. Let 𝑆 := {𝑥 ∈ 𝑋 | 𝑃 (𝑥)}, and take some nonempty
chain 𝛾 ⊆ 𝑆 . Our first step is to show that 𝛾 ∈ 𝑆 , from which
it follows that (𝑆, <) is chain bounded. Since 𝑃 (𝑥) ⇔ (∀𝑑 ∈
𝐷)𝑄 ( [𝑥]𝑑 ) for some predicate 𝑄 (𝑢), it suffices to show that
𝑄 ( [𝛾]𝑑 ) for all 𝑑 ∈ 𝐷 . But using that for any 𝑑 there exists
some 𝑥 ∈ 𝛾 ⊆ 𝑆 with [𝛾]𝑑 = [𝑥]𝑑 we’re done, since 𝑄 ( [𝑥]𝑑 )
follows from 𝑃 (𝑥). Now, suppose that 𝑃 (𝑥) holds for some
𝑥 ∈ 𝑋 , and thus 𝑆 is nonempty. By Zorn’s lemma, 𝑆 contains
a maximal element𝑦. We clearly have 𝑃 (𝑦), and if𝑦 < 𝑧 then
𝑧 ∉ 𝑆 and thus ¬𝑃 (𝑧). □

Example 2.9. Let (2𝑅, ⊂) be the powerset of some nontriv-
ial ring 𝑅, with [𝑥]𝑑 defined as in Example 2.6, and let 𝑃 (𝑥)
be denote the predicate ‘𝑥 is a proper ideal of 𝑅’. Then this is
a piecewise predicate w.r.t. [·], since each condition of being
a proper ideal can be formulated in a piecewise way. For
instance, 0 ∈ 𝑥 is equivalent to

∀𝑑 (0 ∈ 𝑑 ⇒ [𝑥]𝑑 (0) = 1)
and analogously for 1 ∉ 𝑥 . Similarly, closure of 𝑥 under
addition can be formulated in a piecewise way as

∀𝑑, 𝑟, 𝑟 ′ ({𝑟, 𝑟 ′, 𝑟 + 𝑟 ′} ⊆ 𝑑 ∧ [𝑥]𝑑 (𝑟 ) = [𝑥]𝑑 (𝑟 ′) = 1
⇒ [𝑥]𝑑 (𝑟 + 𝑟 ′) = 1)

and analogously for closure under left and right sided mul-
tiplication. Therefore the existence of a maximal ideal also
follows fromTheorem 2.8 above. Note that since in 𝑟, 𝑟 ′ above
are always elements of the finite set 𝑑 , ∀𝑟, 𝑟 ′ can be treated
as a bounded quantifier, and so ‘𝑥 is a proper ideal of 𝑅’ is
piecewise even with respect to some quantifier-free 𝑄 (𝑢).
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2.2 Formal theories of arithmetic
In the remainder of this article, our definitions and results
typically take place in one of the following settings:

• Within a formal theory of arithmetic in higher-types
(syntactic);

• Within a type structure of continuous functionals, ei-
ther the total or partial (semantic).

We now outline both of these settings in turn. Our basic
formal system will be the standard theories of Peano (resp.
Heyting) arithmetic in all finite types PA𝜔 (HA𝜔 ). For us, the
finite types T will be generated by the following grammar:

𝜌, 𝜏 ::= B | N | 𝜌 × 𝜏 | 𝜌∗ | 𝜌 → 𝜏

These represent base types for booleans B and natural num-
bers N, and in addition to the usual function type 𝜌 → 𝜏

include cartesian products 𝜌 × 𝜏 and finite sequence types
𝜌∗ as primitives. Note that alternatively, we could work over
a minimal type structure N | 𝜌 → 𝜏 and code up products
and finite sequences as derived constructions.

For full definitions of PA𝜔 resp.HA𝜔 the reader is directed
to e.g. [1, 14, 26], bearing in mind that officially we would
need to extend the canonical theories presented there with
additional constants and axioms for dealing with cartesian
products and list operations, which is nevertheless entirely
standard (for details see e.g. [26, Chapter I.8] and [27]).
Terms of PA𝜔 resp. HA𝜔 are those of Gödel’s System T

(with product and sequence types). We denote by 0𝜌 : 𝜌 a
canonical zero object of type 𝜌 . Formulas of PA𝜔 (resp.HA𝜔 )
include atomic formulas =B and =N for equality at base types,
and are built using the usual logical connectives, together
with quantifiers for each type. Axioms and rules include
those of full classical (resp. intuitionistic) logic, non-logical
axioms for the constants symbols together with equality
axioms and the axiom of induction. Equality at higher types
is defined inductively e.g. 𝑓 =𝜌→𝜏 𝑔 := ∀𝑥𝜌 (𝑓 𝑥 = 𝑔𝑥), and
we include axioms for extensionality, so that our formulation
of PA𝜔 corresponds to the fully extensional E-PA𝜔 of [14].

The canonical models for PA𝜔 include the type structures
of all set-theoretic functionals S𝜔 together with total con-
tinuous functional C𝜔 . However, the majority of recursive
schemes which have been used to interpret the axiom of
choice (including essentially all known variants of bar recur-
sion) are no longer satisfiable in S𝜔 , and instead have C𝜔 as
their canonical model. In the remainder of this section, we
outline some key facts about this model.

2.3 The continuous functionals in all finite types
In one sentence, the type structure C𝜔 of continuous func-
tionals consists of functionals which only require a finite
piece of information about their input to compute a finite
piece of information about their output. Over the years, they

have turned out to form an elegant and robust class of func-
tionals, and in particular are the standard model for bar
recursive extensions of the primitive recursive functionals.
There are various ways of characterising the continuous

functionals, dating back to Kleene [13] (whose construction
was based on associates) and Kreisel [15] (who instead used
formal neighbourhoods). However, here we follow the do-
main theoretic approach of Ershov [8], who demonstrated
that the continuous functionals can be constructed as the
extensional collapse of the total objects in the type struc-
ture P𝜔 of partial continuous functionals. This in particular
provides us with a simple method for showing that our new
recursive schemes are satisfied in C𝜔 , namely proving that
the corresponding fixpoints in P𝜔 represent total objects.
For accomprehensive account of all this, the reader is encour-
aged to consult [18] or the recent book [17]. Here we provide
no more than a brief overview of the relevant theory.

For each finite type 𝜎 , we define the domain 𝑃𝜎 of partial
continuous functionals of that type as follows: 𝑃B := B⊥
and 𝑃N := N⊥ where B⊥ resp. N⊥ are the usual flat do-
mains of booleans and natural numbers, 𝑃𝜌×𝜏 := 𝑃𝜌 × 𝑃𝜏 ,
𝑃𝜎∗ := {[𝑥0, . . . , 𝑥𝑛−1] | 𝑛 ∈ N and 𝑥𝑖 ∈ 𝑃𝜎 }∪{⊥} and finally
𝑃𝜌→𝜏 := [𝑃𝜌 → 𝑃𝜏 ] where [𝐷 → 𝐸] denotes the domain of
all functions between 𝑋 and 𝑌 which are continuous in the
domain theoretic sense (i.e. are monotone and preserve lubs
of chains). We write P𝜔 := {𝑃𝜎 }𝜎 ∈T for this type structure
of partial continuous functionals.

For each type 𝜎 , we define the set 𝑇𝜎 ⊂ 𝑃𝜎 of total objects
in the usual way as 𝑇B := B and 𝑇N := N, 𝑇𝜌×𝜏 := 𝑇𝜌 × 𝑇𝜏 ,
𝑇𝜎∗ := {[𝑥0, . . . , 𝑥𝑛−1] | 𝑛 ∈ N and 𝑥𝑖 ∈ 𝑇𝜎 } and finally
𝑇𝜌→𝜏 := {𝑓 ∈ 𝑃𝜌→𝜏 : ∀𝑥 (𝑥 ∈ 𝑇𝜎 ⇒ 𝑓 𝑥 ∈ 𝑇𝜏 )}. Further-
more, we define an equivalence relation ≈𝜎 on 𝑇𝜎 to equate
total objects that agree on total inputs: 𝑥 ≈B 𝑦 iff 𝑥 = 𝑦 and
similarly for ≈N, (𝑥, 𝑥 ′) ≈𝜌×𝜏 (𝑦,𝑦 ′) iff 𝑥 ≈𝜌 𝑦 and 𝑦 ≈𝜏 𝑦

′,
[𝑥0, . . . , 𝑥𝑛−1] ≈𝜎∗ [𝑦0, . . . , 𝑦𝑚−1] iff 𝑛 = 𝑚 and 𝑥𝑖 ≈𝜎 𝑦𝑖 for
all 𝑖 < 𝑛 and finally 𝑓 ≈𝜌→𝜏 𝑔 iff 𝑓 𝑥 ≈𝜏 𝑔𝑥 for all 𝑥 ∈ 𝑇𝜌 .
It turns out that all total objects are hereditarily exten-

sional, in the sense that if 𝑓 ∈ 𝑇𝜌→𝜏 and 𝑥 ≈𝜌 𝑦 then 𝑓 𝑥 ≈𝜏

𝑓 𝑦, and therefore the extensional collapse 𝐶𝜎 := 𝑇𝜎/≈𝜎 of
the total objects constitutes a hierarchy C𝜔 := {𝐶𝜎 }𝜎 ∈T of
functionals in its own right. We call this hierarchy the total
continuous functionals, and as shown by Ershov, C𝜔 is in
fact isomorphic to the constructions of Kleene and Kreisel.
It is well known that C𝜔 is a model of PA𝜔 , and so in

particular, any closed term 𝑒 : 𝜎 of System T has a canonical
interpretation 𝑒𝐶 ∈ 𝐶𝜎 , which can in turn be represented
by some element 𝑒𝑃 ∈ 𝑇𝜎 of the corresponding equivalence
class in P𝜔 . Suppose now that we extend System T with
some new constant symbol Φ : 𝜎 which satisfies a recursive
defining axiom

(∗) Φ(𝑥1, . . . , 𝑥𝑛) = 𝑟 (Φ, 𝑥1, . . . , 𝑥𝑛)
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where 𝑟 is a closed term of System T. We can equivalently
express (∗) as Φ = 𝑒 (Φ) for 𝑒 : 𝜎 → 𝜎 defined by

𝑒 (𝑓 ) := _𝑥1, . . . , 𝑥𝑛 .𝑟 (𝑓 , 𝑥1, . . . , 𝑥𝑛).

Now, since 𝑒 is primitive recursive, it has a total representa-
tion 𝑒𝑃 ∈ 𝑇𝜎→𝜎 ⊂ [𝑃𝜎 → 𝑃𝜎 ], and it is a basic fact of domain
theory that Φ can be given an interpretation Φ𝑃 in P𝜔 as a
least fixed point of 𝑒𝑃 i.e.

Φ𝑃 :=
⊔
𝑛∈N

𝑒𝑛𝑃 (⊥𝜎 )

satisfies Φ𝑃 = 𝑒𝑃 (Φ𝑃 ). If we can now show that Φ𝑃 is in fact
total, in other words that Φ𝑃 (𝑥1, . . . , 𝑥𝑛) is total for all total
inputs 𝑥1, . . . , 𝑥𝑛 , then defining Φ𝐶 := [Φ𝑃 ]≈𝜎

∈ 𝐶𝜎 we have

Φ𝐶 = [Φ𝑃 ]≈𝜎
= [𝑒𝑃 (Φ𝑃 )]≈𝜎

= [𝑒𝑃 ]≈𝜎→𝜎
[Φ𝑃 ]≈𝜎

= 𝑒𝐶 (Φ𝐶 )

and therefore the object Φ𝐶 satisfies the defining axiom (∗)
in C𝜔 . In other words, C𝜔 is a model of the theory PA𝜔 + Φ,
where by the latter we mean the extension of PA𝜔 with the
new constant Φ and axiom (∗).

In short, in order to show that the extension of System T
with some new form of recursion Φ is satisfied in C𝜔 , it suf-
fices to show that the natural interpretation of Φ as a fixpoint
in P𝜔 is total. This approach has been widely used in the
past to show that various forms of strong recursion arising
from the axiom of choice have C𝜔 as a model (see e.g. [4,
Proposition 5.1] or [5, Theorem 1]), and will be fundamental
for us as well in Section 4.
In addition to showing that extensions of System T have

a model, we must also confirm that they represent programs,
in the sense that any object of type N can be effectively
reduced to a numeral. This follows by appealing to Plotkin’s
adequacy theorem [20]: We observe that terms of System
T plus our new recursor Φ can be viewed as terms in PCF
(recursion being dealt with by using the fixpoint combinator),
which in addition inherit the usual call-by-value reduction
semantics, with the defining axiom (∗) being interpreted as
a rewrite rule. By showing that Φ represents a total object in
the semantics of PCF within P𝜔 , it follows that any closed
term 𝑒 : N in our extended calculus is denoted by some
natural number i.e. [𝑒] ∈ N, and by the adequacy theorem 𝑒

must then reduce to the numeral 𝑛.

Remark. In order to avoid burdening ourselves with too
many subscripts, in the remainder of this paper we use the
same notation for 𝑒 : 𝜎 in PA𝜔 , its canonical interpretation
𝑒 ∈ 𝐶𝜎 and some suitable representation 𝑒 ∈ 𝑃𝜎 , rather than
laboriously writing 𝑒𝐶 resp. 𝑒𝑃 whenever we are working in
continuous models. Where there is any ambiguity, we make
absolutely clear which system we are working in, and in the
case of 𝑒𝑃 for primitive recursive 𝑒 we write explicitly how 𝑒

can be represented as a partial object unless this is obvious.

3 A syntactic formulation of Zorn’s lemma
In this short section, we present a general axiomatic formula-
tion of Zorn’s lemma. This will be based on Theorem 2.8, and
is close in spirit to the axiom of open induction as studied in
[4]. Like open induction, our axiom is of course weaker than
the full statement of Zorn’s lemma. Nevertheless, as we will
see in Section 6, it in fact generalises open induction, and
so in particular can be used to formalize highly non-trivial
proofs such as Nash-Williams’ minimal bad-sequence con-
struction (cf. [4, 22]). To be more specific, our axiom schema
will take the shape of a maximum principle of the form

∃𝑥𝑃 (𝑥) → ∃𝑦 (𝑃 (𝑦) ∧ ∀𝑧 > 𝑦¬𝑃 (𝑧))
where 𝑃 (𝑥) will range over formulas which are piecewise
in the sense of Definition 2.7 and < denotes some chain
bounded partial order. However, our precise formulation of
the axiom will be within the language of PA𝜔 , and therefore
both the notion of a piecewise formula and the relation <

need to be represented in a suitable way.
Remark. From now all we annotate important definitions
and results with the theory or model in which they take
place, which will usually be some extension of PA𝜔 resp.
HA𝜔 or one of C𝜔 or P𝜔 .

Definition 3.1 (PA𝜔 /HA𝜔 ). Suppose that [·]( ·) : 𝜎 × 𝛿 → a

is a closed term of System T, and 𝑄 (𝑢a ) is a formula in
the language of PA𝜔 /HA𝜔 . Then we say that the formula
𝑃 (𝑥𝜎 ) :≡ ∀𝑑𝛿 𝑄 ( [𝑥]𝑑 ) is piecewise w.r.t. [·].

Now, while it is too restrictive to demand that < be repre-
sented by some primitive recursive functional 𝜎 × 𝜎 → B,
for all applications we are interested in it suffices that < can
be expressed as a Σ1 formula as follows:

𝑥 < 𝑦 :≡ ∃𝑎𝜌 (𝑦 =𝜎 𝑥 ⊕ 𝑎 ∧ 𝑥 ≺ 𝑎)
where now ⊕ : 𝜎 × 𝜌 → 𝜎 and ≺: 𝜎 × 𝜌 → B are closed
terms of System T for some type 𝜌 (we use 𝑥 ⊕ 𝑎 to denote
⊕(𝑥, 𝑎) and 𝑥 ≺ 𝑎 to denote ≺ (𝑥, 𝑎) = 1, and similarly 𝑎 ≻ 𝑥

to denote 𝑥 ≺ 𝑎).

Definition 3.2 (PA𝜔 /HA𝜔 ). Let [·]( ·) : 𝜎 × 𝛿 → a , ⊕ :
𝜎 × 𝜌 → 𝜎 and ≺: 𝜎 × 𝜌 → B be closed terms of System T.
The axiom schema ZL[],⊕,≺ is given by

∃𝑥𝜎∀𝑑𝛿𝑄 ( [𝑥]𝑑 ) →∃𝑦𝜎 (∀𝑑 𝑄 ( [𝑦]𝑑 )
∧ ∀𝑎 ≻ 𝑦 ∃𝑑 ¬𝑄 ( [𝑦 ⊕ 𝑎]𝑑 ))

where 𝑄 (𝑢a ) ranges over arbitrary formulas of PA𝜔 (and
does not contain 𝑥,𝑦, 𝑎, 𝑑 free).

Note that our axiomatic formulation no longer mentions a
main ordering <, which is instead induced by ⊕ and ≺. Note
also that chain boundedness of < is not formulated as a part
of the axiom itself, and as such, validity of ZL[],⊕,≺ in some
given type structure will depend on the interpretation of <
being chain bounded in that model. We could of course seek
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to incorporate chain boundedness into the syntactic defini-
tion of Zorn’s lemma and give a computational interpretation
to the axiom as a whole. This would lead to a fascinating
but extremely complex computational problem which would
steer us in a quite different direction to the current article,
and so we leave this to future work (cf. Section 7). We now
illustrate our new principle by continuing our example from
Section 2.1, whose computational content has already been
studied in in [23].

Example 3.3. Let 𝜎 := N → B, 𝛿 := N, a := B∗ and 𝜌 :=
N × (N → B) and define

[𝑥]𝑑 := [𝑥 (0), . . . , 𝑥 (𝑑 − 1)]
𝑥 ⊕ (𝑛,𝑦) := 𝑥 ∪ 𝑦

𝑥 ≺ (𝑛,𝑦) := 𝑥 (𝑛) · 𝑦 (𝑛)

where 𝑏 represents the negation of the boolean 𝑏 and

(𝑥 ∪ 𝑦) (𝑛) := 1 if 𝑥 (𝑛) = 1 or 𝑦 (𝑛) = 1 else 0.

These are all clearly definable as closed terms of System T,
and in this case ZL[],⊕,≺ is equivalent to

∃𝑥𝑃 (𝑥) →∃𝑦 (𝑃 (𝑦)

∧ ∀(𝑛, 𝑧) (𝑦 (𝑛) = 𝑧 (𝑛) = 1 → ¬𝑃 (𝑦 ∪ 𝑧)))

for 𝑃 (𝑥) :≡ ∀𝑑 𝑄 ( [𝑥 (0), . . . , 𝑥 (𝑑 − 1)]). Here we can imag-
ine objects 𝑥 : N → B as characteristic functions for subsets
of the natural numbers. Moreover, given some countable
ring 𝑅 whose elements can be coded up as natural numbers
and whose operations +𝑅 and ·𝑅 represented as primitive
recursive functions N × N → N, the existence of a maximal
ideal in 𝑅 would be provable in PA𝜔 + ZL[],⊕,≺. We do not
give full details of this (an outline of the formalisation can be
found in [23]). Instead we simply sketch why both S𝜔 and
C𝜔 satisfy ZL[],⊕,≺ and are thus models of PA𝜔 + ZL[],⊕,≺.
Working in C𝜔 (the same argument is also valid for S𝜔 )

we apply Theorem 2.8 for 𝑋 := 𝐶N→B � B
N which via the

identification of sets with their characteristic function is
isomorphic to the powerset of N, together with the proper
subset relation, observing that

𝑥 ⊂ 𝑦 ⇔ ∃(𝑛, 𝑧) ∈ N × BN (𝑦 = 𝑥 ∪ 𝑧 ∧ 𝑛 ∉ 𝑥 ∧ 𝑛 ∈ 𝑧)

where the right hand side is just the interpretation of the
formula ∃(𝑛, 𝑧) (𝑦 = 𝑥 ⊕ (𝑛, 𝑧) ∧ 𝑦 ≺ (𝑛, 𝑧)) in C𝜔 . Clearly
(𝑋, ⊂) is chain bounded w.r.t. [𝑥]𝑑 := [𝑥 (0), . . . , 𝑥 (𝑑 − 1)]
using a simplified version of the argument in Example 2.6.
Therefore for any formula 𝑄 ( [𝑢 (0), . . . , 𝑢 (𝑘 − 1)]) in C𝜔 on
finite sequences of natural numbers the resulting formula
𝑃 (𝑥) :≡ ∀𝑑 𝑄 ( [𝑥 (0), . . . , 𝑥 (𝑑 − 1)]) on 𝑋 in C𝜔 is piecewise
w.r.t. [·], and thus by Theorem 2.8 whenever ∃𝑥𝑃 (𝑥) is satis-
fied there exists some 𝑦 ∈ 𝑋 such that 𝑃 (𝑦), and also ¬𝑃 (𝑧)
whenever 𝑦 < 𝑧 (or alternatively ∀(𝑛, 𝑧) (𝑛 ∉ 𝑥 ∧ 𝑛 ∈ 𝑧 ⇒
¬𝑃 (𝑦 ∪ 𝑧)). Thus ZL[],⊕,≺ is valid in C𝜔 .

4 Recursion over chain bounded partial
orders

We now come to our first main contribution, in which we
study modes of recursion over chain bounded partial orders
that form an analogue to the axiom ZL[],⊕,≺. A precise con-
nection between a restricted form of ZL[],⊕,≺ and our second
mode of recursion will be presented in Section 5, but the re-
sults of this section are more general, and we consider them
to be of interest in their own right. As such, this section could
be read as a short, self-contained study in which we explore
different recursion schemes over orderings induced by the
parameters (⊕, ≺). Totality of our recursors will be justified
using a variant of Theorem 2.8, and the two main modes of
recursion considered here will primarily differ in how we
achieve ‘piecewise-ness’ of the totality predicate. The first,
which we characterise as ‘simple’ recursion, uses a sequen-
tial continuity principle but is valid only for discrete output
types, whereas the second, which we call ‘controlled’ recur-
sion, is total for arbitrary output type but uses an auxiliary
parameter in the recursor itself to ensure wellfoundedness.

For the remainder of this section, we fix types 𝜎, 𝜌, 𝛿 and
a , together with closed terms [·] : 𝜎 × 𝛿 → a , ⊕ : 𝜎 × 𝜌 → 𝜎

and ≺: 𝜎 × 𝜌 → B of System T, which are analogous to
those in Section 3. For definitions and results below which
take place in the model P𝜔 , note that [·] ∈ 𝑇𝜎×𝛿→a denotes
some canonical representation of the corresponding term of
System T as a total continuous functional, and similarly for
⊕ ∈ 𝑇𝜎×𝜌→𝜎 and ≺∈ 𝑇𝜎×𝜌→B (cf. Section 2.3).

4.1 Simple recursion over (⊕, ≺)
The first recursion scheme we consider is represented by the
constant Φ\

⊕,≺ equipped with defining equation

Φ𝑓 𝑥 =\ 𝑓 𝑥 (_𝑎 . Φ𝑓 (𝑥 ⊕ 𝑎) if 𝑎 ≻ 𝑥 else 0\ ) (1)

where 𝑓 : 𝜎 → (𝜌 → \ ) → \ and 𝑥 : 𝜎 , and we recall that 0\
is a canonical zero term of type \ . Note that in the defining
equation we suppressed the parameters on Φ - and we will
continue to do this whenever there is no risk of ambiguity.
In what follows, it will be helpful to use the abbreviation

Φ𝑓 ,𝑥 := _𝑎 . Φ𝑓 (𝑥 ⊕ 𝑎) if 𝑎 ≻ 𝑥 else 0\

so that the defining equation can then be expressed as

Φ𝑓 𝑥 = 𝑓 𝑥Φ𝑓 ,𝑥 .

Definition 4.1 (P𝜔 ). Let 𝐿 ⊆ 𝑇𝜎 . We say that a functional
𝜓 ∈ 𝑃𝜎→\ is piecewise continuous with respect to [·] and 𝐿,
if for any 𝑥 ∈ 𝐿 such that𝜓𝑥 ∈ 𝑇\ there exists some 𝑑 ∈ 𝑇𝛿
such that

∀𝑦 ∈ 𝑇𝜎 ( [𝑥]𝑑 = [𝑦]𝑑 ⇒ 𝜓𝑦 ∈ 𝑇\ ).

Definition 4.2 (P𝜔 ). A partial order < on 𝑇𝜎 is compatible
with (⊕, ≺) if 𝑥 < 𝑥 ⊕ 𝑎 for any (𝑥, 𝑎) ∈ 𝑇𝜎×𝜌 with 𝑥 ≺ 𝑎 (i.e.
≺ (𝑥, 𝑎) =B 1).
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The next definition is a slight adaptation of Definition 2.5,
where now we require 𝛾 to be an element of some subset 𝐿
of the main partial order.

Definition 4.3 (P𝜔 ). Apartial order< on𝑇𝜎 is chain bounded
with respect to [·] and 𝐿 ⊆ 𝑇𝜎 if every nonempty chain
𝛾 ⊆ 𝑇𝜎 has an upper bound𝛾 ∈ 𝐿 satisfying the property that
for any 𝑑 ∈ 𝑇𝛿 there exists some 𝑥 ∈ 𝛾 such that [𝛾]𝑑 = [𝑥]𝑑 .

We now come to our first totality result. This establishes
a condition on inputs 𝑓 which ensures totality of Φ𝑓 . As
we will see, in certain natural situations we can use this to
show that Φ𝑓 is total for any total 𝑓 , and thus Φ itself is total.
However, our result is more general as it also allows us to
establish totality of Φ𝑓 in cases where Φ may not be.

Theorem 4.4 (P𝜔 ). Let Φ denote the least fixed point of
the primitive recursive defining equation (1), and suppose
that there exist < on 𝑇𝜎 and 𝐿 ⊆ 𝑇𝜎 such that < is com-
patible with (⊕, ≺) and chain bounded w.r.t. [·] and 𝐿. Let
𝑓 ∈ 𝑇𝜎→(𝜌→\ )→\ . Then whenever Φ𝑓 ∈ 𝑃𝜎→\ is piecewise
continuous w.r.t. [·] and 𝐿, it follows that Φ𝑓 ∈ 𝑇𝜎→\ .

Proof. By Zorn’s lemma. Suppose that Φ𝑓 is piecewise con-
tinuous, and consider the set 𝑆 ⊆ 𝑇𝜎 given by

𝑆 := {𝑥 ∈ 𝑇𝜎 | Φ𝑓 𝑥 ∉ 𝑇\ }.
We first show that (𝑆, <) is chain bounded in the usual sense.
Taking some nonempty chain 𝛾 ⊆ 𝑆 , by chain boundedness
in the sense of Definition 4.3 this has some upper bound
𝛾 ∈ 𝐿. Suppose for contradiction that Φ𝑓 𝛾 ∈ 𝑇\ . By piece-
wise continuity of Φ𝑓 there exists some 𝑑 ∈ 𝑇𝛿 such that
[𝛾]𝑑 = [𝑦]𝑑 implies Φ𝑓 𝑦 ∈ 𝑇\ for any 𝑦 ∈ 𝑇𝜎 . But then there
exists some 𝑥 ∈ 𝛾 with [𝛾]𝑑 = [𝑥]𝑑 and thus Φ𝑓 𝑥 ∈ 𝑇\ ,
contradicting 𝑥 ∈ 𝑆 . Therefore Φ𝑓 𝛾 ∉ 𝑇\ and thus 𝛾 ∈ 𝑆 .
To prove the main result, suppose for contradiction that

Φ𝑓 ∉ 𝑇𝜎→\ , which implies that 𝑆 ≠ ∅. Then by Zorn’s lemma,
𝑆 has somemaximal element 𝑥 . But for any 𝑎 ∈ 𝑇𝜌 with 𝑥 ≺ 𝑎

we have 𝑥 < 𝑥 ⊕ 𝑎 by compatibility, and thus Φ𝑓 ,𝑥 (𝑎) =

Φ𝑓 (𝑥 ⊕ 𝑎) ∈ 𝑇\ . It follows that Φ𝑓 ,𝑥 ∈ 𝑇𝜌→\ , since in the
other case ¬(𝑥 ≺ 𝑎) we have Φ𝑓 ,𝑥 (𝑎) = 0\ ∈ 𝑇\ . But then
by totality of 𝑓 we have Φ𝑓 𝑥 = 𝑓 𝑥Φ𝑓 ,𝑥 ∈ 𝑇\ , contradicting
𝑥 ∈ 𝑆 . Therefore 𝑆 = ∅ and so Φ𝑓 ∈ 𝑇𝜎→\ . □

The technique we have used in this proof is a generalisa-
tion of the proof of Theorem 0.3 from [3], which uses Zorn’s
lemma to show that the so-called Berardi-Bezem-Coquand
functional defined in [2] is total. We now give a concrete
example of how the result can be applied, but first we state
and prove a sequential continuity lemma (cf. also [3, Lemma
0.1]), which will also be useful in later sections.

Lemma 4.5 (P𝜔 ). Let \ be a discrete type i.e. one which does
not contain function types. Suppose that𝜓 ∈ 𝑃 (N→𝜎)→\ where
𝜎 is some arbitrary type, that 𝑥 ∈ 𝑇N→𝜎 satisfies 𝑥 (⊥) = ⊥𝜎

and that𝜓𝑥 ∈ 𝑇\ . Then there is some 𝑑 ∈ N such that for any
𝑦 ∈ 𝑃N→𝜎 , whenever 𝑥 (𝑖) = 𝑦 (𝑖) for all 𝑖 < 𝑑 then𝜓𝑥 = 𝜓𝑦.

Proof. We use a simple adaptation of the proof of Lemma 0.1
of [3]. Since 𝑇\ is open in the Scott topology whenever \ is
discrete, there is some compact 𝑥0 ⊑ 𝑥 such that 𝜓𝑥0 ∈ 𝑇\ ,
and since 𝜓𝑥0 ⊑ 𝜓𝑥 we must in fact have 𝜓𝑥0 = 𝜓𝑥 (that
𝑦 ⊑ 𝑧 implies 𝑦 = 𝑧 for 𝑦 ∈ 𝑇\ is evidently true for \ = N⊥ or
\ = B⊥, and holds for arbitrary discrete \ by induction over
its structure). Now, since 𝑥0 is compact (i.e. contains only a
finite amount of information) there is some 𝑑 ∈ N such that
𝑥0 (𝑖) = ⊥𝜎 for all 𝑖 ≥ 𝑑 . Suppose now that𝑦 ∈ 𝑃N→𝜎 satisfies
𝑥 (𝑖) = 𝑦 (𝑖) for all 𝑖 < 𝑑 . We claim that 𝑥0 ⊑ 𝑦. To see this,
note that for 𝑖 < 𝑑 we have 𝑥0 (𝑖) ⊑ 𝑥 (𝑖) = 𝑦 (𝑖), for 𝑖 ≥ 𝑑

we have 𝑥0 (𝑖) = ⊥𝜎 ⊑ 𝑦 (𝑖), and for 𝑖 = ⊥ since 𝑥 (⊥) = ⊥𝜎

we must also have 𝑥0 (⊥) = ⊥𝜎 ⊑ 𝑦 (⊥). Therefore𝜓𝑥0 ⊑ 𝜓𝑦

and since𝜓𝑥0 ∈ 𝑇\ we must have𝜓𝑦 = 𝜓𝑥0 = 𝜓𝑥 . □

Example 4.6. Let [·], ⊕ and ≺ be the obvious total repre-
sentatives of the primitive recursive functions defined in
Example 3.3 i.e. extensions that are defined also on non-total
input, for example

[𝑥]𝑑 := [𝑥 (0), . . . , 𝑥 (𝑑 − 1)] for 𝑑 ∈ N else ⊥

and so on. We observe that 𝑇𝜎 = 𝑇N→B is the set of all func-
tions 𝑥 : N⊥ → B⊥ which are monotone (in the domain
theoretic sense) and satisfy 𝑥 (𝑛) ∈ B whenever 𝑛 ∈ N. We
define 𝐿 ⊂ 𝑇N→B to consist of those functions which are
strict, in that they satisfy in addition 𝑥 (⊥) = ⊥.
Now suppose that \ is discrete. Then any function 𝜓 ∈

𝑃 (N→B)→\ is piecewise continuous w.r.t. [·] and 𝐿. To see
this, take any strict 𝑥 such that𝜓𝑥 ∈ 𝑇\ . Then by Lemma 4.5
there exists some 𝑑 ∈ N such that for any 𝑦 ∈ 𝑃N→B (and
so in particular 𝑦 ∈ 𝑇N→B) we have𝜓𝑦 = 𝜓𝑥 ∈ 𝑇\ whenever
[𝑥]𝑑 = [𝑥 (0), . . . , 𝑥 (𝑑 − 1)] = [𝑦 (0), . . . , 𝑦 (𝑑 − 1)] = [𝑦]𝑑 .
Next define < on𝑇N→B by𝑥 < 𝑦 iff𝑥 (𝑖) = 1 ⇒ 𝑦 (𝑖) = 1 for

all 𝑖 ∈ N and there exists at least one 𝑗 ∈ Nwith 𝑥 ( 𝑗) = 0 and
𝑦 ( 𝑗) = 1. Then < is compatible with (⊕, ≺), and moreover,
for any nonempty chain 𝛾 ⊆ 𝑇N→B define 𝛾 ∈ 𝐿 by

𝛾 (𝑛) :=
{
1 if 𝑥 (𝑛) = 1 for some 𝑥 ∈ 𝛾

0 otherwise

and𝛾 (⊥) = ⊥. Then clearly 𝑥 ≤ 𝛾 for all 𝑥 ∈ 𝛾 , and moreover
for any 𝑑 ∈ N = 𝑇N, by a variant of the argument in Example
2.6 we have [𝛾]𝑑 = [𝑥]𝑑 for some 𝑥 ∈ 𝛾 . Thus < is chain
bounded w.r.t. [·] and 𝐿.
Now, let Φ denote the least fixed point in P𝜔 of

Φ𝑓 𝑥 =\ 𝑓 𝑥 (_(𝑛,𝑦) . Φ𝑓 (𝑥 ∪ 𝑦) if 𝑥 (𝑛) · 𝑦 (𝑛) = 1 else 0\ ).
(2)

By Theorem 4.4, taking any total 𝑓 , since Φ𝑓 ∈ 𝑃 (N→B)→\

is automatically piecewise continuous, we have that Φ𝑓 is
total, and therefore Φ is a total object in P𝜔 . This implies
that C𝜔 |= PA𝜔 +Φ for the extension of PA𝜔 with some new
constant satisfying the defining axiom (2).
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4.2 On non-discrete output types
In Example 4.6 we have essentially shown that a simple vari-
ant of ‘update induction’ in the sense of [4] is total. In fact,
with a slight modification of the above proof we would be
able to reprove totality of update induction in its general
form. However, in this paper we are primarily interested in
forms of recursion on chain bounded partial orders which
do not correspond to the simple recursive scheme (1). The
reason for this is that in order to establish totality of Φ𝑓 for
any total 𝑓 , we are typically required to restrict the complex-
ity of the output type \ to being discrete, so that something
along the lines of Lemma 4.5 applies. As we will see, this is
a problem for the functional interpretation.
Before we go on, we illustrate why extending PA𝜔/HA𝜔

with (2) for non-discrete types does not even result in a
consistent theory! Let us set \ := N → N and define 𝑓 by

𝑓 𝑥𝑝 := _𝑛 . 1 + 𝑝 (𝑛, {𝑛})(𝑛 + 1)

where we identify the set {𝑛} with its characteristic function
of type N → B. Then defining 𝑘 := Φ𝑓 (∅)0 : N we have

𝑘 = 1 + Φ𝑓 ({0})(1) = 2 + Φ𝑓 ({0, 1})(2)
= . . . = 𝑘 + 1 + Φ𝑓 ({0, . . . , 𝑘})(𝑘 + 1) > 𝑘

which is inconsistent with PA𝜔/HA𝜔 . The key point at which
the argument from Example 4.6 fails is that Lemma 4.5 is
no longer valid for \ := N → N: if 𝜓𝑥 is a function then it
can in general query an infinite part of 𝑥 . To overcome this
we could restrict our attention to those 𝑓 such that Φ𝑓 is
piecewise continuous and thus total for non-discrete output
type: For example, let

𝑓 𝑥𝑝 := _𝑛 < 𝑁 . 1 + 𝑝 (𝑛, {𝑛})(𝑛 + 1)

for some numeral 𝑁 : N, so that 𝑝 is only queried finitely
many times. Then working in P𝜔 , for total 𝑥 we would have

Φ𝑓 𝑥 = _𝑛 . 1 +
{
Φ𝑓 (𝑥 ∪ {𝑛})(𝑛 + 1) if 𝑥 (𝑛) = 1 ∧ 𝑛 < 𝑁

0 otherwise

and so a point of continuity for Φ𝑓 𝑥 could be taken to be
the maximum of all points of continuity of the functions
_𝑦.Φ𝑓 (𝑦 ∪ {𝑛})(𝑛 + 1) for 𝑛 < 𝑁 and at point 𝑦 := 𝑥 .
We now propose cleaner way of extending (2) to non

discrete output types. Instead of restricting 𝑓 , we add a new
parameter 𝜔 which controls the recursion directly.

4.3 Controlled recursion over (⊕, ≺)
We modify the scheme (1), resulting in a slightly more elab-
orate mode of recursion in which the continuity behaviour
is controlled by some auxiliary functional 𝜔 . Define the con-
stant Ψ\

⊕,≺ (from now on omitting the parameters) by

Ψ𝜔𝑓 𝑥 =\

𝑓 {𝑥}Ψ
𝜔,𝑓

(_𝑎 . Ψ𝜔𝑓 ({𝑥}Ψ
𝜔,𝑓

⊕ 𝑎) if 𝑎 ≻ {𝑥}Ψ
𝜔,𝑓

else 0\ )
(3)

where 𝑓 : 𝜎 → (𝜌 → \ ) → \ and 𝜔 : 𝜎 → (𝜌 → \ ) → 𝜎

and {𝑥}Ψ
𝜔,𝑓

is defined by

{𝑥}Ψ
𝜔,𝑓

:=𝜎 𝜔𝑥 (_𝑎 . Ψ𝜔𝑓 (𝑥 ⊕ 𝑎) if 𝑎 ≻ 𝑥 else 0\ ).

Observe that Ψ is still defined as the fixed point of a simple
closed term of PA𝜔 , and as it will turn out, this modified
scheme will allow us to admit output of arbitrary type level.
Moreover, we will show later that by instantiating 𝜔 by
a suitable closed term of PA𝜔 , we can use this recursive
scheme to define a realizer for the functional interpretation
of our axiomatic form of Zorn’s lemma. As before, we use
the abbreviation

Ψ𝜔,𝑓 ,𝑥 := _𝑎 . Ψ𝜔𝑓 (𝑥 ⊕ 𝑎) if 𝑎 ≻ 𝑥 else 0\
so that the defining equation (3) now becomes

Ψ𝜔𝑓 𝑥 = 𝑓 {𝑥}Ψ
𝜔,𝑓

Ψ𝜔,𝑓 ,{𝑥 }Ψ
𝜔,𝑓

for {𝑥}Ψ
𝜔,𝑓

:= 𝜔𝑥Ψ𝜔,𝑓 ,𝑥 . We now give a totality theorem
analogous to Theorem 4.4, but with the notion of piecewise
continuity replaced by a slightly more subtle property.

Definition 4.7 (P𝜔 ). We say that a pair of functionals𝜓 ∈
𝑃𝜎→𝜎 and 𝜙 ∈ 𝑃𝜎→\ form a truncation with respect to [·],
𝐿 ⊆ 𝑇𝜎 and some partial order < on 𝑇𝜎 if the following two
conditions are satisfied:
(a) For any 𝑥,𝑦 ∈ 𝑇𝜎 , if𝜓𝑥 ∈ 𝑇𝜎 and𝜓𝑥 < 𝑦 then 𝑥 < 𝑦.
(b) For any 𝑥 ∈ 𝐿 such that 𝜓𝑥 ∈ 𝑇𝜎 and 𝜙 (𝜓𝑥) ∈ 𝑇\ there

exists some 𝑑 ∈ 𝑇𝛿 such that

∀𝑦 ∈ 𝑇𝜎 ( [𝑥]𝑑 = [𝑦]𝑑 ⇒ 𝜓𝑥 = 𝜓𝑦).

Example 4.8. Continuing from Example 4.6 with 𝜎 := N →
B but \ now arbitrary, for any 𝑁 ∈ N the continuous func-
tional𝜓𝑁 ∈ 𝑇𝜎→𝜎 defined by

𝜓𝑁𝑥 (𝑛) :=
{
𝑥 (𝑛) if 𝑛 < 𝑁

1 otherwise

and 𝜓𝑁𝑥 (⊥) = ⊥ forms a truncation with any other func-
tional 𝜙 ∈ 𝑃𝜎→\ w.r.t [·], 𝐿 and <. To see this, observe that
for any strict 𝑥 , if 𝑦 ∈ 𝑇𝜎 satisfies [𝑥 (0), . . . , 𝑥 (𝑁 − 1)] =

[𝑦 (0), . . . , 𝑦 (𝑁 − 1)] then 𝜓𝑁𝑥 = 𝜓𝑁𝑦 and so 𝜓𝑁 satisfies
condition (b) of being a truncation for 𝑑 := 𝑁 . For condition
(a), if 𝜓𝑁𝑥 < 𝑦 this means that 𝑥 (𝑖) = 1 ⇒ 𝑦 (𝑖) = 1 for all
𝑖 < 𝑁 , 𝑦 (𝑖) = 1 for all 𝑖 ≥ 𝑁 , and 𝑥 ( 𝑗) = 0 and 𝑦 ( 𝑗) = 1 for
some 𝑗 < 𝑁 , from which it follows easily that 𝑥 < 𝑦.

On the other hand, the continuous functional 𝜙𝑁 ∈ 𝑇𝜎→𝜎

defined by

𝜙𝑁𝑥 (𝑛) :=
{
𝑥 (𝑛) if 𝑛 < 𝑁

0 otherwise

and 𝜙𝑁𝑥 (⊥) = ⊥ satisfies condition (b) of being a truncation,
but not condition (a), since for 𝑥 representing the charac-
teristic function of the singleton set {𝑁 } we have 𝜙𝑁𝑥 < 𝑥

but not 𝑥 < 𝑥 . Finally, the identity functional ] ∈ 𝑇𝜎→𝜎
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clearly satisfies condition (a) of being a truncation, but con-
dition (b) fails for e.g. 𝜙 also the identity function, since for
some arbitrary 𝑥 ∈ 𝐿 there is no 𝑑 ∈ N such that for any
total 𝑦, [𝑥 (0), . . . , 𝑥 (𝑑 − 1)] = [𝑦 (0), . . . , 𝑦 (𝑑 − 1)] implies
𝑥 (𝑛) = 𝑦 (𝑛) for all 𝑛 ∈ N.

Theorem 4.9 (P𝜔 ). Let Ψ denote the least fixed point of
the primitive recursive defining equation (3), and suppose
that there exist < on 𝑇𝜎 and 𝐿 ⊆ 𝑇𝜎 such that < is com-
patible with (⊕, ≺) and chain bounded w.r.t. [·] and 𝐿. Let
𝑓 ∈ 𝑇𝜎→(𝜌→\ )→\ and 𝜔 ∈ 𝑇𝜎→(𝜌→\ )→𝜎 . Then whenever
{·}Ψ

𝜔,𝑓
∈ 𝑃𝜎→𝜎 and _𝑥 . 𝑓 𝑥Ψ𝜔,𝑓 ,𝑥 ∈ 𝑃𝜎→\ form a trunca-

tion w.r.t. [·], 𝐿 and <, it follows that Ψ𝜔𝑓 ∈ 𝑇𝜎→\ .

Proof. We again appeal to Zorn’s lemma, but this time on
the set 𝑆 ⊆ 𝑇𝜎 given by

𝑆 := {𝑥 ∈ 𝑇𝜎 | either {𝑥}Ψ
𝜔,𝑓

∉ 𝑇𝜎 or Ψ𝜔𝑓 𝑥 ∉ 𝑇\ }.

To show that (𝑆, <) is chain bounded in the usual sense,
take some nonempty chain 𝛾 ⊆ 𝑆 and consider its upper
bound 𝛾 ∈ 𝐿 in the sense of Definition 4.3. As before, we
want to show that 𝛾 ∈ 𝑆 , so we assume for contradiction
that this is not the case, which means that both {𝛾}Ψ𝜔,𝑔 ∈ 𝑇𝜎
and Ψ𝜔𝑓 𝛾 ∈ 𝑇\ . But then by Definition 4.7 (b) - observing
that {𝛾}Ψ𝜔,𝑔 and 𝑓 {𝛾}Ψ𝜔,𝑔Ψ𝜔,𝑓 ,{𝛾 }Ψ𝜔,𝑔

= Ψ𝜔𝑓 𝛾 are both total -
there exists some 𝑑 ∈ 𝑇𝛿 such that {𝛾}Ψ

𝜔,𝑓
= {𝑦}Ψ

𝜔,𝑓
for any

𝑦 ∈ 𝑇𝜎 satisfying [𝛾]𝑑 = [𝑦]𝑑 . But since by Definition 4.3
there exists some 𝑥 ∈ 𝛾 such that [𝛾]𝑑 = [𝑥]𝑑 it therefore
follows that {𝛾}Ψ

𝜔,𝑓
= {𝑥}Ψ

𝜔,𝑓
and thus

Ψ𝜔𝑓 𝛾 = 𝑓 {𝛾}Ψ
𝜔,𝑓

Ψ𝜔,𝑓 ,{𝛾 }Ψ
𝜔,𝑓

= 𝑓 {𝑥}Ψ
𝜔,𝑓

Ψ𝜔,𝑓 ,{𝑥 }Ψ
𝜔,𝑓

= Ψ𝜔𝑓 𝑥

which imply that {𝑥}Ψ
𝜔,𝑓

∈ 𝑇𝜎 and Ψ𝜔𝑓 𝑥 ∈ 𝑇\ and thus 𝑥 ∉ 𝑆 ,
a contradiction. Thus 𝛾 ∈ 𝑆 and 𝑆 is chain bounded.

We now suppose that the conclusion of the main result is
false, which means that there exists some 𝑥 ∈ 𝑇𝜎 such that
Ψ𝜔𝑓 𝑥 ∉ 𝑇\ , and so in particular𝑥 ∈ 𝑆 and thus 𝑆 is nonempty.
By Zorn’s lemma, 𝑆 contains a maximal element 𝑥 . We now
show that 𝑥 ∉ 𝑆 , a contradiction. Since 𝑥 is maximal, for any
𝑥 < 𝑦 we must have {𝑦}Ψ

𝜔,𝑓
∈ 𝑇𝜎 and Ψ𝜔𝑓 𝑦 ∈ 𝑇\ .

We first show that Ψ𝜔,𝑓 ,𝑥 is total: For any 𝑎 ∈ 𝑇𝜌 , either
𝑥 ≻ 𝑎 and so Ψ𝜔,𝑓 ,𝑥𝑎 = 0\ ∈ 𝑇\ , or 𝑥 ≻ 𝑎 and thus by
compatibility we have 𝑥 < 𝑥 ⊕ 𝑎 and therefore Ψ𝜔,𝑓 ,𝑥𝑎 =

Ψ𝜔𝑓 (𝑥 ⊕ 𝑎) ∈ 𝑇\ . But then since 𝜔 , 𝑥 and Ψ𝜔,𝑓 ,𝑥 are all total,
it follows that {𝑥}Ψ

𝜔,𝑓
= 𝜔𝑥Ψ𝜔,𝑓 ,𝑥 ∈ 𝑇𝜎 .

We now show that Ψ𝜔,𝑓 ,{𝑥 }Ψ
𝜔,𝑓

is total: For 𝑎 ∈ 𝑇𝜌 , either
{𝑥}Ψ

𝜔,𝑓
≻ 𝑎 and so Ψ𝜔,𝑔,{𝑥 }Ψ

𝜔,𝑓
𝑎 = 0\ ∈ 𝑇\ , or {𝑥}Ψ𝜔,𝑓 ≻ 𝑎

and thus by compatibility we have {𝑥}Ψ
𝜔,𝑓

< {𝑥}Ψ
𝜔,𝑓

⊕ 𝑎. But
now using condition (a) of {·}Ψ

𝜔,𝑓
forming a truncation, we

have 𝑥 < {𝑥}Ψ
𝜔,𝑓

⊕ 𝑎 and thus Ψ𝜔𝑓 ({𝑥}Ψ
𝜔,𝑓

⊕ 𝑎) ∈ 𝑇\ . Now,
since 𝑓 , {𝑥}Ψ

𝜔,𝑓
and Ψ𝜔,𝑓 ,{𝑥 }Ψ

𝜔,𝑓
are all total, it follows that

Ψ𝜔𝑓 𝑥 = 𝑓 {𝑥}Ψ
𝜔,𝑓

Ψ𝜔,𝑓 ,{𝑥 }Ψ
𝜔,𝑓

∈ 𝑇\ .

We have therefore proven that if 𝑥 is maximal, then both
{𝑥}Ψ

𝜔,𝑓
and Ψ𝜔𝑓 𝑥 are total and so 𝑥 ∉ 𝑆 , contradicting that 𝑆

has a maximal element. Therefore 𝑆 = ∅ and so Ψ𝜔𝑓 𝑥 ∈ 𝑇\
for any 𝑥 ∈ 𝑇𝜎 and we have shown totality of Ψ𝜔𝑓 . □

Example 4.10. We now consider Example 4.6 from the per-
spective of controlled recursion, using a truncation similar to
that given in Example 4.8 above. Let us extend the language
of PA𝜔 with a new constant Ω with defining equation

Ω𝑛𝑓 𝑥 = 𝑓 ⟨𝑥⟩𝑛 (_𝑎 . Ω𝑛𝑓 (⟨𝑥⟩𝑛 ⊕ 𝑎) if 𝑎 ≻ ⟨𝑥⟩𝑛 else 0) (4)

where 𝑛 : N, 𝑓 : 𝜎 → (𝜌 → \ ) → \ and ⟨𝑥⟩𝑛 is defined by

⟨𝑥⟩𝑛 :=N→B _𝑖 . 𝑥 (𝑖) if 𝑖 < 𝑛 else 1.

Then Ω is definable as Ω𝑛𝑓 𝑥 := Ψ(𝑐𝑛) 𝑓 𝑥 where Ψ satisfies
(3) and 𝑐 : N → 𝜎 → (𝜌 → \ ) → 𝜎 is the primitive recursive
functional defined by

𝑐𝑛𝑥𝑝 := _𝑖 . 𝑥 (𝑖) if 𝑖 < 𝑛 else 1.

Working from now on in P𝜔 , for each 𝑛 ∈ N we can in-
terpret Ω𝑛 as being a least fixed point of the equation (3)
for 𝜔 instantiated as the total representation in P𝜔 of 𝑐𝑛 as
above. We apply Theorem 4.9 to show that Ω𝑛 is total. The
compatibility and chain boundedness requirements are the
same as in Theorem 4.4, and so in our setting have already
been dealt with in Example 4.6. Take 𝑓 ∈ 𝑇𝜎→(𝜌→\ )→\ with
𝜔 := 𝑐𝑛 ∈ 𝑇𝜎→(𝜌→\ )→𝜎 . To see that {·}Ψ

𝜔,𝑓
and _𝑥 . 𝑓 𝑥Ψ𝜔,𝑓 ,𝑥

form a truncation, we use a similar argument to Example 4.8.
We can assume that 𝜔 = 𝑐𝑛 is interpreted in P𝜔 as

𝜔𝑥𝑝 (𝑖) =
{
𝑥 (𝑖) if 𝑖 < 𝑛

1 otherwise

and 𝜔𝑥𝑝 (⊥) = ⊥, and so for any strict 𝑥 , if 𝑦 ∈ 𝑇𝜎 satis-
fies [𝑥 (0), . . . , 𝑥 (𝑛 − 1)] = [𝑦 (0), . . . , 𝑦 (𝑛 − 1)] then 𝜔𝑥𝑝 =

𝜔𝑦𝑝 = 𝜔𝑦𝑞 for any functionals 𝑝, 𝑞 ∈ 𝑃𝜌→\ , and so in particu-
lar {𝑥}Ψ

𝜔,𝑓
= 𝜔𝑥Ψ𝜔,𝑓 ,𝑥 = 𝜔𝑦Ψ𝜔,𝑓 ,𝑦 = {𝑦}Ψ

𝜔,𝑓
. This establishes

property (b), and property (a) follows analogously to Exam-
ple 4.8. Therefore Ψ𝜔𝑓 = Ψ(𝑐𝑛) 𝑓 ∈ 𝑇𝜎→\ for arbitrary𝑛 ∈ N
and 𝑓 ∈ 𝑇𝜎→(𝜌→\ )→\ , which implies that the object Ω de-
fined by Ω𝑛𝑓 𝑥 := Ψ(𝑐𝑛) 𝑓 𝑥 is total and satisfies the equation
(4) in P𝜔 . Therefore Ω also has an interpretation in C𝜔 , i.e.
C𝜔 |= PA𝜔 + Ω. Note that no conditions were imposed on \ ,
and so totality of Ω also holds for non-discrete \ .

The functional defined in (4) is rather strongly controlled
by 𝑐𝑛 (we claim in fact that Ω is definable as a term of System
T). This deliberately simplistic example was chosen simply
to illustrate Theorem 4.9. Nevertheless, later we will require
a much more subtle truncation for realizing the functional
interpretation of lexicographic induction, which certainly
does lead us beyond the realm of primitive recursion.
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5 The functional interpretation of Zorn’s
lemma

In the last section we introduced two general variants of
recursion over chain bounded partial orders. We will now
show that our controlled variant is well suited for solving
the functional interpretation of our axiomatic formulation of
Zorn’s lemma from Section 3. We begin by recalling some es-
sential facts about the functional interpretation. Full details
can be found in [1] or [14, Chapters 8 & 10]. For those readers
not familiar with the functional interpretation, we aim to at
least present, in a self contained manner, the concrete compu-
tational problem we need to solve. This alone should suffice
in order to understand later sections. Such a reader is ad-
vised to skip directly ahead to Section 5.3 (perhaps skimming
through Section 5.2 on the way).

5.1 An overview of the functional interpretation
So that we can formally state a higher-type variant of Gödel’s
soundness theorem for the functional interpretation, we need
to recall the so-called weakly extensional variant WE-PA𝜔

of PA𝜔 , which is obtained from the latter by simply replac-
ing the axiom of extensionality with a quantifier-free rule
form (see [14, Definition 3.12] for details, though this is not
necessary to understand what follows). This is because the
interpretation is unable to deal with the axiom of extension-
ality and thus cannot be applied directly to PA𝜔 (see [1, pp.
15] or [14, pp. 126–127]).

The functional interpretation assigns to each formula𝐴 of
WE-PA𝜔 a new formula |𝐴|𝑥𝑦 where now 𝑥 and𝑦 are (possibly
empty) tuples of variables of some finite type. The precise
definition is by induction over the logical structure of 𝐴, and
is given in Figure 1, where in the interpretation of disjunction,
𝑖 is an object of natural number type and 𝑃 ∨𝑖 𝑄 denotes (𝑖 =
0 → 𝑃) ∧ (𝑖 ≠ 0 → 𝑄). The basic functional interpretation
applies only to intuitionistic theories. In order to deal with
classical logic, we need to combine the interpretation with
some variant of the negative translation 𝐴 ↦→ 𝐴𝑁 as an
initial step. We do not give any further details, but simply
state the main soundness theorem for classical arithmetic. In
the following, QF-AC denotes the axiom of quantifier-free
choice i.e. the schema

∀𝑥𝜌∃𝑦𝜎 𝐴0 (𝑥,𝑦) → ∃𝑓 𝜌→𝜎∀𝑥 𝐴0 (𝑥, 𝑓 𝑥)
where 𝜌 and 𝜎 are arbitrary types and 𝐴0 (𝑥,𝑦) ranges over
quantifier-free formulas.

Theorem 5.1 (cf. Theorem 10.7 of [14], but essentially due to
Gödel [11]). Let 𝐴 be a formula in the language of WE-PA𝜔 .
Then whenever

WE-PA𝜔 + QF-AC ⊢ 𝐴
we can extract a term 𝑡 ofWE-HA𝜔 whose free variables are
the same as those of 𝐴, and such that

HA𝜔 ⊢ ∀𝑦 |𝐴𝑁 |𝑡𝑦 .

|𝐴| :≡ 𝐴 for 𝐴 atomic |𝐴 ∧ 𝐵 |𝑥,𝑢𝑦,𝑣 :≡ |𝐴|𝑥𝑦 ∧ |𝐵 |𝑢𝑣
|𝐴 ∨ 𝐵 |𝑖,𝑥,𝑢𝑦,𝑣 :≡ |𝐴|𝑥𝑦 ∨𝑖 |𝐵 |𝑢𝑣

|𝐴 → 𝐵 |𝑈 ,𝑌
𝑥,𝑣 :≡ |𝐴|𝑥𝑌𝑥𝑣 → |𝐵 |𝑈𝑥

𝑣

|∃𝑧𝐴(𝑧) |𝑥,𝑢𝑣 :≡ |𝐴(𝑥) |𝑢𝑣 |∀𝑧𝐴(𝑧) |𝑈𝑥,𝑣 :≡ |𝐴(𝑥) |𝑈𝑥
𝑣

Figure 1. The functional interpretation

Remark. Note that ∀𝑦 |𝐴𝑁 |𝑡𝑦 is provable even in a quantifier-
free fragment ofWE-HA𝜔 , the intuitionistic variant ofWE-PA𝜔 .
The main result in the remainder of this section is to ex-

tend Theorem 5.1 above to include our formulation of Zorn’s
lemma. Generally speaking, in order to expand the sound-
ness theorem to incorporate extensions ofWE-PA𝜔 +QF-AC
with new axioms 𝑋 , it suffices to provide a new recursive
scheme Ω such that the functional interpretation of 𝑋𝑁 has
a solution in HA𝜔 + Ω. A classical example of this is with 𝑋

as the axiom of countable choice, and Ω the scheme of bar
recursion in all finite types (cf. [1, Chapter 6] or [14, Chapter
11]). Here on the other hand, we set 𝑋 to be our syntactic
formulation of Zorn’s lemma, and Ω a functional definable
from our scheme of controlled recursion from Section 4.3.

5.2 The functional interpretation of ZL[],⊕,≺

We now outline how the combination of the functional inter-
pretation with the negative interpretation acts on the axiom
ZL[],⊕,≺ as given in Definition 3.2, subject to the additional
restriction that 𝑄 (𝑢) ranges over quantifier-free formulas of
WE-PA𝜔 (similar restrictions can be found in [4] and [7] in
the context of open induction). This restriction still allows
us to deal with most concrete examples we are interested
in (including the existence of maximal ideals in countable
commutative rings in Example 3.3 and also Higman’s lemma,
which we will discuss later), but simplifies the interpretation
considerably (though we conjecture that in many cases, and
in particular for concrete example considered in Section 6, a
solution for general𝑄 (𝑢) can be reduced to that of quantifier-
free𝑄 (𝑢), subject to modification of the parameters [], ⊕, ≺).

In what follows, wemake use of the fact that the quantifier-
free formulas of WE-PA𝜔 are decidable, in the sense that
whenever 𝐴0 (𝑥1, . . . , 𝑥𝑛) is quantifier-free with free vari-
ables 𝑥1, . . . , 𝑥𝑛 there is a closed term 𝑡𝐴 of System T so
that HA𝜔 ⊢ ∀𝑥1, . . . , 𝑥𝑛 (𝑡𝐴𝑥1 . . . 𝑥𝑛 = 1 ↔ 𝐴0 (𝑥1, . . . , 𝑥𝑛)).
This also means that the functional interpretation essentially
interprets quantifier-free formulas as themselves.

Let us now fix closed terms [], ⊕, ≺ and consider ZL[],⊕,≺
as given in Definition 3.2, but where now 𝑄 (𝑢) is assumed
to be quantifier-free. There are several variants of the neg-
ative translation which can be applied. Applying standard
variant due to Kuroda, as used in [14, Chapter 10], and using
a few standard intuitionistic laws together with Markov’s
principle (all of which can be interpreted by the intuitionistic
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functional interpretation), it suffices to solve the functional
interpretation of

∃𝑥𝜎∀𝑑𝛿𝑄 ( [𝑥]𝑑 ) →¬¬∃𝑦𝜎 (∀𝑑 𝑄 ( [𝑦]𝑑 )
∧ ∀𝑎 ≻ 𝑦 ∃𝑑 ¬𝑄 ( [𝑦 ⊕ 𝑎]𝑑 )) .

(5)

We must now apply the rules of Figure 1 to (5), which we
do step by step. We first observe that the inner part of the
conclusion of (5) within the double negations is translated to

∃𝑦𝜎 , ℎ𝜌→𝛿∀𝑑, 𝑎(𝑄 ( [𝑦]𝑑 ) ∧ (𝑎 ≻ 𝑦 → ¬𝑄 ( [𝑦 ⊕ 𝑎]ℎ𝑎)).
Therefore the double negated conclusion is partially inter-
preted (i.e. before the final instance of the ∀-rule) as
∀𝐹,𝐺 ∃𝑦,ℎ(𝑄 ( [𝑦]𝐹𝑦ℎ)∧(𝐺𝑦ℎ ≻ 𝑦 → ¬𝑄 ( [𝑦 ⊕ 𝐺𝑦ℎ]ℎ (𝐺𝑦ℎ) ))
where here 𝐹 : 𝜎 → (𝜌 → 𝛿) → 𝛿 and𝐺 : 𝜎 → (𝜌 → 𝛿) →
𝜌 . Therefore, interpreting the main implication, in order to
solve the functional interpretation of (5) we must produce
three terms 𝑟, 𝑠, 𝑡 which take as input 𝑥, 𝐹,𝐺 and have output
types 𝛿, 𝜎 and 𝜌 → 𝜎 respectively, and satisfy
𝑄 ( [𝑥]𝑟 ) → 𝑄 ( [𝑠]𝐹𝑠𝑡 ) ∧ (𝐺𝑠𝑡 ≻ 𝑠 → ¬𝑄 ( [𝑠 ⊕ 𝐺𝑠𝑡]𝑡 (𝐺𝑠𝑡 ) ))

(6)
where for readability we suppress the input parameters, so
that 𝑟 should actually read 𝑟𝑥𝐹𝐺 throughout, and similarly
for 𝑠 and 𝑡 . Though (6) looks complicated, it can be given a
fairly intuitive characterisation as follows.
The original axiomatic formulation of Zorn’s lemma is

equivalent (using QF-AC) to the statement that given some
𝑥𝜎 satisfying ∀𝑑𝑄 ( [𝑥]𝑑 ) we can find some 𝑦 also satisfying
∀𝑑𝑄 ( [𝑦]𝑑 ) together with an ℎ : 𝜌 → 𝛿 witnessing maximal-
ity of 𝑦 in the sense that ¬𝑄 ( [𝑦 ⊕ 𝑎]ℎ𝑎) for any 𝑎 ≻ 𝑥 . On
the other hand, the computational interpretation of Zorn’s
lemma given as (6) says that for any 𝑥𝜎 together with ‘coun-
terexample functionals’ 𝐹,𝐺 we can produce elements 𝑠 and
𝑡 (in terms of 𝑥, 𝐹,𝐺), where 𝑠 approximates our maximal el-
ement 𝑦 in the sense that it satisfies𝑄 ( [𝑠]𝑑 ) not for all 𝑑 but
just for 𝑑 := 𝐹𝑠𝑡 , while 𝑡 approximates ℎ in the sense that it
satisfies ¬𝑄 ( [𝑠 ⊕ 𝑎]𝑡 (𝑎) not for all 𝑎 ≻ 𝑠 but just for 𝑎 := 𝐺𝑠𝑡

whenever 𝐺𝑠𝑡 ≻ 𝑠 . Indeed, this can be seen as a slightly
more intricate version of Kreisel’s no-counterexample inter-
pretation, and the relationship between ZL[],⊕,≺ and (6) is
similar to the relationship between Cauchy convergence and
‘metastability’ (see [14, Section 2.3]).

5.3 Solving the functional interpretation of ZL[],⊕,≺

From this point onwards, we no longer need to deal directly
with the functional interpretation. Rather, our focus is on
solving the functional interpretation of ZL[],⊕,≺ as given in
(6). To be more precise, we will construct realizing terms 𝑟 , 𝑠
and 𝑡 which each take as input 𝑥 : 𝜎 , 𝐹 : 𝜎 → (𝜌 → 𝛿) → 𝛿

and 𝐺 : 𝜎 → (𝜌 → 𝛿) → 𝜌 and satisfy,
𝑄 ( [𝑥]𝑟 ) → 𝑄 ( [𝑠]𝐹𝑠𝑡 ) ∧𝐶 (𝐺, 𝑠, 𝑡)

for any input, where 𝐶 (𝐺,𝑦, ℎ) abbreviates the formula
𝐶 (𝐺,𝑦, ℎ) :≡ 𝐺𝑦ℎ ≻ 𝑦 → ¬𝑄 ( [𝑦 ⊕ 𝐺𝑦ℎ]ℎ (𝐺𝑦ℎ) ).

Interestingly, we do not require ZL[],⊕,≺ in order to verify
our realizing terms. Instead, we work in HA𝜔 extended with
two recursively defined constants together with a simple
universal axiom which we label ‘relevant part’. That this
formal theory has a model is a separate question, which we
discuss after presenting our main result (Theorem 5.6).

Definition 5.2 (HA𝜔 ). Let 𝑡𝐶 denote the term of System T
satisfying 𝑡𝐶𝐺𝑦ℎ = 1 ↔ 𝐶 (𝐺,𝑦, ℎ), which exists since ≺ is
decidable and 𝑄 (𝑢) is quantifier-free.

For the remainder of this section, we fix some closed term
𝑒 : (𝜎 → (𝜌 → 𝛿) → 𝛿) → (𝜎 → (𝜌 → 𝛿) → 𝜎) of
System T, so that all definitions and results that follows are
parametrised by 𝑒 .

Definition 5.3 (HA𝜔 ). Define the new constant Ω𝑒 : (𝜎 →
(𝜌 → 𝛿) → 𝛿) → 𝜎 → 𝛿 by

Ω𝑒𝐹𝑥 = 𝐹 ⟨𝑥⟩Ω𝑒

𝐹
(_𝑎 . Ω𝑒𝐹 (⟨𝑥⟩Ω𝑒

𝐹
⊕ 𝑎) if 𝑎 ≻ ⟨𝑥⟩Ω𝑒

𝐹
else 0𝛿 )

(7)
where ⟨𝑥⟩Ω𝑒

𝐹
is shorthand for

⟨𝑥⟩Ω𝑒

𝐹
:= 𝑒𝐹𝑥 (_𝑎 . Ω𝑒𝐹 (𝑥 ⊕ 𝑎) if 𝑎 ≻ 𝑥 else 0𝛿 )

Furthermore, we use the abbreviation

Ω𝑒,𝐹,𝑥 := _𝑎 . Ω𝑒𝐹 (𝑥 ⊕ 𝑎) if 𝑎 ≻ 𝑥 else 0𝛿

so that (7) can be expressed as Ω𝑒𝐹𝑥 = 𝐹 ⟨𝑥⟩Ω𝑒

𝐹
Ω
𝑒,𝐹 , ⟨𝑥 ⟩Ω𝑒

𝐹

for

⟨𝑥⟩Ω𝑒

𝐹
= 𝑒𝐹𝑥Ω𝑒,𝐹 ,𝑥 .

Definition 5.4 (HA𝜔 + Ω𝑒 ). We define in the language of
HA𝜔 + Ω𝑒 the ‘relevant part’ axiom for Ω𝑒 as

RP𝑒 : ∀𝑥, 𝐹 ( [𝑥]Ω𝑒𝐹𝑥 = [⟨𝑥⟩Ω𝑒

𝐹
]Ω𝑒𝐹𝑥 ) .

Intuitively, the relevant part axiom says that if we take the
approximation of 𝑥 of size Ω𝑒𝐹𝑥 , then actually this approxi-
mation has no more information than that of the truncated
version ⟨𝑥⟩Ω𝑒

𝐹
of 𝑥 , and so the latter already contains the

‘relevant part’ of this approximation. We will see a natural
example of an 𝑒 which satisfies this axiom in Section 6.

Definition 5.5 (HA𝜔 + Ω𝑒 ). Define the constant Γ𝑒 : (𝜎 →
(𝜌 → 𝛿) → 𝛿) → (𝜎 → (𝜌 → 𝛿) → 𝜌) → 𝜎 → 𝜎∗ in the
language of HA𝜔 + Ω𝑒 by

Γ𝑒𝐹𝐺𝑥 := 𝑦 ::

{
[] if 𝑡𝐶𝐺𝑦Ω𝑒,𝐹,𝑦 = 1
Γ𝑒𝐹𝐺 (𝑦 ⊕ 𝐺𝑦Ω𝑒,𝐹,𝑦) otherwise

(8)
for𝑦 := ⟨𝑥⟩Ω𝑒

𝐹
, where here𝑦 :: 𝑙 denotes the appending of𝑦 to

the front of the list 𝑙 . i.e. 𝑦 :: [𝑙1, . . . , 𝑙 𝑗−1] := [𝑦, 𝑙1, . . . , 𝑙 𝑗−1].

Theorem 5.6 (HA𝜔 + Ω𝑒 + Γ𝑒 + RP𝑒 ). Define terms 𝑟 , 𝑠 and
𝑡 as follows:

𝑟𝑥𝐹𝐺 :=𝛿 Ω𝑒𝐹𝑥

𝑠𝑥𝐹𝐺 :=𝜎 tail(Γ𝑒𝐹𝐺𝑥)
𝑡𝑥𝐹𝐺 :=𝜌→𝛿 Ω𝑒,𝐹 ,tail(Γ𝑒𝐹𝐺𝑥)
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where tail(𝑙) denotes the last element of the list 𝑙 (and tail( []) =
0𝜎 ). Then provably in HA𝜔 + Ω𝑒 + Γ𝑒 + RP𝑒 we have

∀𝑥, 𝐹,𝐺 (𝑄 ( [𝑥]𝑟 ) → 𝑄 ( [𝑠]𝐹𝑠𝑡 ) ∧𝐶 (𝐺, 𝑠, 𝑡)) (9)
where in the above formula we write just 𝑟 instead of 𝑟𝑥𝐹𝐺 ,
and similarly for 𝑠 and 𝑡 .

Proof. Fixing 𝐹 and 𝐺 , we prove by induction on 𝑛 that
∀𝑥 ( |Γ𝑒𝐹𝐺𝑥 | = 𝑛 ∧𝑄 ( [𝑥]𝑟𝑥 )

→ 𝑄 ( [𝑠𝑥]𝐹 (𝑠𝑥) (𝑡𝑥) ) ∧𝐶 (𝐺, 𝑠𝑥, 𝑡𝑥)) (10)

where here 𝑟𝑥 is shorthand for 𝑟𝑥𝐹𝐺 (i.e. the parameter 𝑥
is now explicitly written since it varies in the induction).
Since |Γ𝑒𝐹𝐺𝑥 | ≥ 1, our base case is 𝑛 = 1 which means that
𝑡𝐶𝐺𝑦Ω𝑒,𝐹 ,𝑦 = 1 and Γ𝑒𝐹𝐺𝑥 = [𝑦] for 𝑦 := ⟨𝑥⟩Ω𝑒

𝐹
. But this

implies that 𝑠𝑥 = 𝑦 and 𝑡𝑥 = Ω𝑒,𝐹,𝑦 , and thus in particular
𝐶 (𝐺, 𝑠𝑥, 𝑡𝑥) holds. Next, we observe that

[𝑥]𝑟𝑥 = [𝑥]Ω𝑒𝐹𝑥
(𝑎)
= [𝑠𝑥]Ω𝑒𝐹𝑥

(𝑏)
= [𝑠𝑥]𝐹 (𝑠𝑥) (𝑡𝑥)

where (a) follows from RP𝑒 and the definitions of 𝑟𝑥 and 𝑠𝑥 ,
while for (b) we use that

Ω𝑒𝐹𝑥 = 𝐹𝑦Ω𝑒,𝐹 ,𝑦 = 𝐹 (𝑠𝑥) (𝑡𝑥).
Thus from 𝑄 ( [𝑥]𝑟𝑥 ) we can infer 𝑄 ( [𝑠𝑥]𝐹 (𝑠𝑥) (𝑡𝑥) ), which
establishes (10) for 𝑛 = 1.

For the induction step, suppose that |Γ𝑒𝐹𝐺𝑥 | = 𝑛+1, which
implies that 𝑡𝐶𝐺𝑦Ω𝑒,𝐹 ,𝑦 = 0. Setting𝑦 := ⟨𝑥⟩Ω𝑒

𝐹
as before, and

in addition𝑎 := 𝐺𝑦Ω𝑒,𝐹,𝑦 , by unwinding definitions it follows
from ¬𝐶 (𝐺,𝑦,Ω𝑒,𝐹 ,𝑦) that
(i) 𝑎 ≻ 𝑦 and thus Ω𝑒,𝐹,𝑦 (𝑎) = Ω𝑒𝐹 (𝑦 ⊕ 𝑎),
(ii) 𝑄 ( [𝑦 ⊕ 𝑎]Ω𝑒,𝐹 ,𝑦 (𝑎) ) and thus 𝑄 ( [𝑦 ⊕ 𝑎]Ω𝑒𝐹 (𝑦⊕𝑎) ) by (i).
Now since Γ𝑒𝐹𝐺𝑥 = 𝑦 :: Γ𝑒𝐹𝐺 (𝑦⊕𝑎) and thus |Γ𝑒𝐹𝐺 (𝑦⊕𝑎) | =
𝑛, we can apply the induction hypothesis for 𝑥 ′ := 𝑦⊕𝑎. Since
𝑟𝑥 ′ = Ω𝑒𝐹𝑥

′ = Ω𝑒𝐹 (𝑦 ⊕𝑎) it follows from (ii) that𝑄 ( [𝑥 ′]𝑟𝑥 ′)
and therefore we have 𝑄 ( [𝑠𝑥 ′]𝐹 (𝑠𝑥 ′) (𝑡𝑥 ′) ) and 𝐶 (𝐺, 𝑠𝑥 ′, 𝑡𝑥 ′).
But since

𝑠𝑥 = tail(𝑦 :: Γ𝑒𝐹𝐺 (𝑦 ⊕ 𝑎)) = tail(Γ𝑒𝐹𝐺 (𝑥 ′)) = 𝑠𝑥 ′

and similarly 𝑡𝑥 = 𝑡𝑥 ′, it follows that 𝑄 ( [𝑠𝑥]𝐹 (𝑠𝑥) (𝑡𝑥) ) ∧
𝐶 (𝐺, 𝑠𝑥, 𝑡𝑥), which establishes (10) for 𝑛′ = 𝑛 + 1. This com-
pletes the induction, and (9) follows by taking some arbitrary
𝐹,𝐺, 𝑥 and letting 𝑛 := |Γ𝑒𝐹𝐺𝑥 | in (10). □

The above result which solves the functional interpreta-
tion of ZL[],⊕,≺ is valid for arbitrary 𝑒 . However, it is only
useful if the theory HA𝜔 + Ω𝑒 + Γ𝑒 + RP𝑒 has a reasonable
model. The final results of this section establish some condi-
tions by which both Ω𝑒 and Γ𝑒 give rise to total objects and
hence exist in C𝜔 . An example of a setting where RP𝑒 is also
valid in C𝜔 is given in Section 6.

Theorem 5.7 (P𝜔 ). Let Ω𝑒 denote a fixed point of the primi-
tive recursive defining equation (7) - where the closed primitive
recursive term 𝑒 is interpreted as some total object in P𝜔 - and
suppose that there exist < and 𝐿 such that < is compatible
with (⊕, ≺) and chain bounded w.r.t. [·] and 𝐿. Suppose in

addition that ⟨·⟩Ω𝑒

𝐹
∈ 𝑃𝜎→𝜎 and _𝑥 . 𝐹𝑥Ω𝑒,𝐹,𝑥 ∈ 𝑃𝜎→𝛿 form a

truncation w.r.t. [·], 𝐿 and < for any total 𝐹 . Then Ω𝑒 is total.

Proof. This is a simple adaptation of Theorem 4.9, taking
Ω𝑒 := _𝐹 . Ψ(𝑒𝐹 )𝐹 . If 𝐹 ∈ 𝑇𝜎→(𝜌→𝛿)→𝛿 then also 𝑒𝐹 ∈
𝑇𝜎→(𝜌→𝛿)→𝜎 by totality of 𝑒 , and thus whenever {·}Ψ

𝑒𝐹,𝐹
and

_𝑥 . 𝐹𝑥Ψ𝑒𝐹,𝐹,𝑥 form a truncation w.r.t. [·], 𝐿 and < then
Ω𝑒𝐹 = Ψ(𝑒𝐹 )𝐹 ∈ 𝑇𝜎→𝛿 . But the truncation condition is
exactly that given as the statement of this theorem, and if
this holds for arbitrary total 𝐹 then Ω𝑒 is also total. □

Theorem 5.8 (P𝜔 ). Let Γ𝑒 denote a fixed point of the defining
equation (8). Under the assumptions of Theorem 5.7, Γ𝑒 is total.

Proof. We can define Γ𝑒 := _𝐹,𝐺 . Ψ(𝜔𝐹 ) (𝑓 𝐹𝐺) where𝜔 and
𝑓 are total representations in P𝜔 of the following functionals
definable in HA𝜔 + Ω𝑒 :

𝜔𝐹𝑥𝑝 :=𝜎 ⟨𝑥⟩Ω𝑒

𝐹

𝑓 𝐹𝐺𝑥𝑝 :=𝜎∗ 𝑥 ::

{
[] if 𝑡𝐶𝐺𝑥Ω𝑒,𝐹,𝑥

𝑝 (𝐺𝑥Ω𝑒,𝐹,𝑥 ) otherwise

where here 𝑝 : 𝜌 → 𝜎∗ (note that totality of 𝜔 and 𝑓 follows
from totality of primitive recursive functionals plus totality
of Ω𝑒 as established in Theorem 5.7 above). To see that Γ𝑒
satisfies (8) is just a case of unwinding the definitions.
Now, if 𝐹 and 𝐺 are total it follows that 𝜔𝐹 and 𝑓 𝐹𝐺 are

also total, and so by Theorem 4.9, Γ𝑒𝐹𝐺 = Ψ(𝜔𝐹 ) (𝑓 𝐹𝐺) is
total if we can show that {·}Ψ

𝜔𝐹,𝑓 𝐹𝐺
and _𝑥.(𝑓 𝐹𝐺)𝑥Ψ𝜔𝐹,𝑓 𝐹𝐺,𝑥

form a truncation. But {𝑥}Ψ
𝜔𝐹,𝑓 𝐹𝐺

= ⟨𝑥⟩Ω𝑒

𝐹
, and so this fol-

lows from the assumption that ⟨·⟩Ω𝑒

𝐹
and _𝑥 .𝐹𝑥Ω𝑒,𝐹 ,𝑥 form

a truncation. Formally, if ⟨𝑥⟩Ω𝑒

𝐹
is total for 𝑥 ∈ 𝐿 (which it

always is by totality of Ω𝑒 ), then since in addition 𝐹𝑦Ω𝑒,𝐹,𝑦

is total for 𝑦 := ⟨𝑥⟩Ω𝑒

𝐹
then ⟨·⟩Ω𝑒

𝐹
has a point of continuity

𝑑 for 𝑥 . Condition (a) follows trivially. Therefore we have
shown that Γ𝑒 is total. □

Remark.Our use of controlled recursionmeans that there
are no type level restrictions on the output types Ω𝑒𝐹𝑥 : 𝛿
or Γ𝑒𝐹𝐺𝑥 : 𝜎∗. This not only permits a greater degree of
generality but is essential even for simple applications: In
Example 3.3, 𝜎 := N → B and thus 𝜎∗ is a higher type.

6 Application: The lexicographic ordering
We conclude the paper by showing how our parametrised
results can now be implemented in the special case of in-
duction over the lexicographic ordering on sequences. This
constitutes a direct counterpart to open induction as pre-
sented in [4], and is closely related to the recursive scheme
introduced in [22] for extracting a witness from the proof of
Higman’s lemma.

Definition 6.1 (HA𝜔 ). Let \ be some arbitrary type, and
suppose that ◁ : \ × \ → B is a decidable relation on \ such
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that induction over ◁ is provable in HA𝜔 . Setting 𝜎 := N →
\ , 𝛿 := N, 𝜌 := N × (N → \ ) and a := \ ∗, define

[𝑥]𝑛 := [𝑥 (0), . . . , 𝑥 (𝑛 − 1)]
𝑥 ⊕ (𝑛,𝑦) := [𝑥]𝑛 @ 𝑦

(𝑛,𝑦) ≻ 𝑥 := 𝑦 (𝑛) ◁ 𝑥 (𝑛)
where ( [𝑥 (0), . . . , 𝑥 (𝑛 − 1)] @ 𝑦) (𝑖) := 𝑥 (𝑖) if 𝑖 < 𝑛 and𝑦 (𝑖)
otherwise. We define LEX▷ to be the principle ZL[ ·],⊕,≺ for
the parameters given above i.e.
∃𝑥∀𝑑𝑄 ( [𝑥]𝑑 ) → ∃𝑦 (∀𝑑𝑄 ( [𝑦]𝑑 )

∧ ∀(𝑛, 𝑧) (𝑧 (𝑛) ◁ 𝑦 (𝑛) → ∃𝑑¬𝑄 ( [[𝑦]𝑛 @ 𝑧]𝑑 )) .

Our axiom LEX▷ is essentially the contrapositive of open
induction as presented in [4], and as such the theoryWE-PA𝜔+
QF-AC+LEX▷ (for various instantiations of ▷) is capable not
only of formalizing large parts of mathematical analysis but
also giving direct formalizations of minimal bad sequence
arguments common in the theory of well quasi orderings.
We now show how it can be given a direct computational
interpretation using the theory developed so far.

Lemma 6.2 (P𝜔 ). Define 𝐿 ⊂ 𝑇𝜎 to be the set of all strict total
objects i.e. those satisfying 𝑥 (⊥) = ⊥\ (recall that 𝜎 = N → \ ),
and let the partial order < on 𝑇𝜎 by defined by

𝑦 > 𝑥 :⇔ ∃𝑛 ∈ N( [𝑦]𝑛 =N∗ [𝑥]𝑛 ∧ 𝑦 (𝑛) ◁ 𝑥 (𝑛))
where here ◁ is now interpreted as a total functional 𝑇\×\→B.
In other words, 𝑦 > 𝑥 if it is lexicographically smaller than 𝑥
w.r.t. ◁. Then < is compatible with (⊕, ≺) and chain bounded
w.r.t. [·] and 𝐿.

Proof. Compatibility is clear, while chain boundedness fol-
lows easily using a standard construction for the lexico-
graphic ordering. Take some nonempty chain 𝛾 ⊂ 𝑇𝜎 and
inductively define the sequence of total objects 𝑢𝑘 ∈ 𝑇\ for
𝑘 ∈ N by taking 𝑢𝑘 to be the ◁-minimal element of the set

𝑆𝑘 := {𝑥 (𝑘) | 𝑥 ∈ 𝛾 and (∀𝑖 < 𝑘) (𝑥 (𝑖) = 𝑢𝑖 )} ⊆ 𝑇\ .

Note that 𝑆𝑘 are nonempty by induction on 𝑘 , and 𝑢𝑘 is
well-defined since the ◁-minimum principle is provable from
induction over◁, which is provable inHA𝜔 and thus satisfied
by the total elements 𝑇\ . Now define 𝛾 (𝑘) := 𝑢𝑘 for 𝑘 ∈ N
and 𝛾 (⊥) = ⊥, which is clearly an element of 𝐿 ⊂ 𝑇N→\ . It
follows by definition that for any 𝑑 ∈ N there exists some
𝑥 ∈ 𝛾 with [𝑥]𝑑 = [𝑢0, . . . , 𝑢𝑑−1] = [𝛾]𝑑 . To see that 𝛾 is an
upper bound, take some 𝑥 ∈ 𝛾 and assume that 𝑥 ≠ 𝛾 . Let
𝑘 ∈ N be the least with 𝑥 (𝑘) ≠ 𝛾 (𝑘) = 𝑢𝑘 . Then by definition
of 𝑢𝑘 there is some 𝑦 ∈ 𝛾 with [𝑦]𝑘 = [𝑢0, . . . , 𝑢𝑘−1] = [𝑥]𝑘
and 𝑦 (𝑘) = 𝑢𝑘 . Since < is a total order on 𝛾 we must have
either 𝑥 < 𝑦 or 𝑦 < 𝑥 , and since 𝑥 (𝑘) ≠ 𝑦 (𝑘) this means
that either 𝑥 (𝑘) ◁ 𝑦 (𝑘) or 𝑦 (𝑘) ◁ 𝑥 (𝑘). But by minimality of
𝑢𝑘 = 𝑦 (𝑘) we must have 𝛾 (𝑘) = 𝑦 (𝑘) ◁ 𝑥 (𝑘) and thus 𝛾 > 𝑥 .
This proves that 𝑥 ≤ 𝛾 for any 𝑥 ∈ 𝛾 . □

Our next step is to define a suitable closed term 𝑒 of HA𝜔

which not only induces a truncation in the sense of Theorem

5.7 but also satisfies RP𝑒 in the total continuous functionals.
For this, we introduce a powerful idea that is already implicit
in Spector’s fundamental bar recursive interpretation of the
axiom of countable choice [25], and has been studied in more
detail in [19].
From now on we make the fairly harmless assumption

that the canonical object 0\ is minimal w.r.t to ◁ (this could
in theory be circumvented but having it makes what follows
slightly simpler).

Definition 6.3 (HA𝜔 ). For 𝑥 : 𝜎 and 𝑛 : N let

𝑥, 𝑛 := [𝑥]𝑛 @ (_𝑖.0\ ) : 𝜎,
and define the primitive recursive functional [ : (𝜎 → N) →
𝜎 → 𝜎 by

[𝜙𝑥𝑘 :=\

{
0\ if (∃𝑖 ≤ 𝑘) (𝜙 (𝑥, 𝑖) < 𝑖)
𝑥 (𝑘) if (∀𝑖 ≤ 𝑘) (𝜙 (𝑥, 𝑖) ≥ 𝑖)

where we note that the bounded quantifiers can be repre-
sented as bounded search terms in System T.

Lemma 6.4 (P𝜔 ). Let us represent [ in P𝜔 by the total con-
tinuous functional

[𝜙𝑥𝑘 :=


0\ if (∃𝑖 ≤ 𝑘) (∀𝑗 ≤ 𝑖 (𝜙 (𝑥, 𝑗) ∈ N) ∧ 𝜙 (𝑥, 𝑖) < 𝑖)
𝑥 (𝑘) if (∀𝑖 ≤ 𝑘) (𝜙 (𝑥, 𝑖) ∈ N ∧ 𝜙 (𝑥, 𝑖) ≥ 𝑖)
⊥ otherwise

with [𝜙𝑥⊥ = ⊥.1 Then for any 𝜙 ∈ 𝑃𝜎→N, the functionals
[𝜙 ∈ 𝑃𝜎→𝜎 and 𝜙 form a truncation w.r.t. [·], 𝐿 and <.

Proof. Part (a) is simple: Suppose that 𝑥,𝑦, [𝜙𝑥 ∈ 𝑇𝜎 and
[𝜙𝑥 < 𝑦 so that there exists some 𝑛 ∈ N with [𝑦]𝑛 = [[𝜙𝑥]𝑛
and 𝑦 (𝑛) ◁ [𝜙𝑥 (𝑛). Since we cannot have 𝑦 (𝑛) ◁ 0\ by our
minimality assumption, we must have [𝜙𝑥 (𝑛) = 𝑥 (𝑛). But
then by definition of [ it follows that [𝜙𝑥 (𝑘) = 𝑥 (𝑘) for all
𝑘 < 𝑛, and thus [𝑦]𝑛 = [𝑥]𝑛 and so 𝑥 < 𝑦.

For part (b), let us now assume that 𝑥 ∈ 𝐿 with [𝜙𝑥 ∈ 𝑇𝜎
and 𝜙 ([𝜙𝑥) ∈ N. We first show that there exists some 𝑛 ∈ N
with 𝜙 (𝑥, 𝑛) < 𝑛. Suppose for contradiction that for all 𝑖 ∈ N
we have either 𝜙 (𝑥, 𝑖) = ⊥ or 𝜙 (𝑥, 𝑖) ≥ 𝑖 . The first possibility
is ruled out since if 𝜙 (𝑥, 𝑖) = ⊥ then [𝜙𝑥𝑖 = ⊥ contradicting
totality of [𝜙𝑥 . But this means that [𝜙𝑥 = 𝑥 (since also
[𝜙⊥ = ⊥ = 𝑥 (⊥)). But then 𝜙 ([𝜙𝑥) = 𝜙𝑥 ∈ N and so
by Lemma 4.5 there exists some 𝑑 ∈ N such that 𝜙𝑥 = 𝜙𝑦

whenever 𝑥 (𝑖) = 𝑦 (𝑖) for all 𝑖 < 𝑑 . Now set 𝑁 := max{𝜙𝑥 +
1, 𝑑} and consider 𝑦 := 𝑥, 𝑁 . Then 𝑥 (𝑖) = 𝑦 (𝑖) for all 𝑖 < 𝑁

and so also for all 𝑖 < 𝑑 , which implies that

𝜙 (𝑥, 𝑁 ) = 𝜙𝑥 < 𝜙𝑥 + 1 ≤ 𝑁

a contradiction. Therefore we have shown there exists some
𝑛 ∈ N with 𝜙 (𝑥, 𝑛) < 𝑛, from which it follows that [𝜙𝑥 =

𝑥,𝑚 for the least such 𝑚 ∈ N with this property (again,
1This is a standard domain theoretic interpretation of [, where the bounded
search terminates with 0 for the first 𝑖 ≤ 𝑘 it finds with 𝜙 (𝑥, 𝑖) < 𝑖 , and
returns ⊥ if 𝜙 (𝑥, 𝑖) is undefined for any 𝑖 that is queried.
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𝜙 (𝑥, 𝑗) ∈ N for all 𝑗 ≤ 𝑚 by totality of [𝜙𝑥). Let us now
suppose that 𝑦 ∈ 𝑃𝜎 satisfies [𝑥]𝑚 = [𝑦]𝑚 . Then for 𝑘 < 𝑚,
since 𝜙 (𝑦, 𝑖) = 𝜙 (𝑥, 𝑖) ≥ 𝑖 for all 𝑖 ≤ 𝑘 it follows that [𝜙𝑦𝑘 =

𝑦 (𝑘) = 𝑥 (𝑘), and if 𝑘 ≥ 𝑚, since 𝜙 (𝑦,𝑚) = 𝜙 (𝑥,𝑚) < 𝑚 it
follows that [𝜙𝑦𝑘 = 0, and thus [𝜙𝑦 = 𝑥,𝑚 = [𝜙𝑥 . □

Lemma 6.5 (P𝜔 ). Let Ω𝑒 be a fixed point of the equation (7)
as in Theorem 5.7, where now 𝑒 is defined by

𝑒𝐹𝑥𝑝 := [ (_𝑦.𝐹𝑦 (𝑝 |𝑦))𝑥

for [ as in Definition 6.3 (resp. Lemma 6.4) and

𝑝 |𝑦 (𝑛, 𝑧) := 𝑝 (𝑧) if 𝑧 (𝑛) ◁ 𝑦 (𝑛) else 0.

Then ⟨·⟩Ω𝑒

𝐹
∈ 𝑃𝜎→𝜎 and _𝑥.𝐹𝑥Ω𝑒,𝐹 ,𝑥 ∈ 𝑃𝜎→N form a trunca-

tion w.r.t. [·], 𝐿 and < for any 𝐹 .

Proof. We first observe that

⟨𝑥⟩Ω𝑒

𝐹
= 𝑒𝐹𝑥Ω𝑒,𝐹,𝑥 = [ (_𝑦.𝐹𝑦 (Ω𝑒,𝐹,𝑥 |𝑦))𝑥 .

We now argue that for any 𝑖 ∈ N we have

Ω𝑒,𝐹,𝑥 |𝑥,𝑖 = Ω𝑒,𝐹,𝑥,𝑖 .

For this we only need to check arguments (𝑛,𝑦) which satisfy
(𝑛,𝑦) ≻ 𝑥, 𝑖 i.e. 𝑦 (𝑛) ◁ (𝑥, 𝑖) (𝑛). But by minimality of 0\ this
is only possible if 𝑛 < 𝑖 and 𝑦 (𝑛) ◁ 𝑥 (𝑛), in which case

Ω𝑒,𝐹,𝑥 |𝑥,𝑖 (𝑛,𝑦) = Ω𝑒,𝐹 ,𝑥 (𝑛,𝑦) = Ω𝑒𝐹 ( [𝑥]𝑛 @ 𝑦)
= Ω𝑒𝐹 ( [𝑥, 𝑖]𝑛 @ 𝑦) = Ω𝑒,𝐹 ,𝑥,𝑖 (𝑛,𝑦) .

Since [𝜙𝑥 only depends on 𝜙 for arguments of the form 𝑥, 𝑖 ,
it follows that

⟨𝑥⟩Ω𝑒

𝐹
= [𝜙𝐹,Ω𝑥 for 𝜙𝐹,Ω := _𝑦.𝐹𝑦Ω𝑒,𝐹 ,𝑦 .

But for any 𝐹 , by Lemma 6.4 applied to 𝜙 := 𝜙𝐹,Ω as defined
above, we have that [𝜙𝐹,Ω and 𝜙𝐹,Ω form a truncation w.r.t.
[·], 𝐿 and <, and the result follows. □

Corollary 6.6 (P𝜔 ). Let Ω𝑒 and Γ𝑒 be fixed points of the
equations (7) and (8) respectively, for 𝑒 be as defined in Lemma
6.5. Then Ω𝑒 and Γ𝑒 are total, and thus C𝜔 |= HA𝜔 + Ω𝑒 + Γ𝑒 .

Proof. Directly from Lemmas 6.2 and 6.5 together with The-
orems 5.7 and Theorem 5.8. □

Lemma 6.7. RP𝑒 is valid in C𝜔 for 𝑒 as in Lemma 6.5.

Proof. The argument in the proof of Lemma 6.5 that ⟨·⟩Ω𝑒

𝐹
=

[𝜙𝐹,Ω for 𝜙𝐹,Ω := _𝑦.𝐹𝑦Ω𝑒,𝐹 ,𝑦 is also valid in C𝜔 , and a sim-
pler version of the argument in the proof of Lemma 6.4 ver-
ifies that there is some 𝑛 ∈ N such that 𝜙𝐹,Ω (𝑥, 𝑛) < 𝑛,
and moreover ⟨𝑥⟩Ω𝑒

𝐹
= [𝜙𝐹,Ω𝑥 = 𝑥,𝑚 where 𝑚 ∈ N is

the least satisfying this property. But since 𝜙𝐹,Ω (𝑥,𝑚) =

𝜙𝐹,Ω (⟨𝑥⟩Ω𝑒

𝐹
) = Ω𝑒𝐹𝑥 and thus Ω𝑒𝐹𝑥 < 𝑚, it follows that

[𝑥]Ω𝑒𝐹𝑥 = [𝑥,𝑚]Ω𝑒𝐹𝑥 = [⟨𝑥⟩Ω𝑒

𝐹
]Ω𝑒𝐹𝑥

and so RP𝑒 is satisfied. □

Theorem 6.8. For any type \ and relation on ◁ such that
induction over ◁ is provable in HA𝜔 , the functional interpre-
tation of (the negative translation of) LEX◁ can be solved by
a term in HA𝜔 + Ω𝑒 + Γ𝑒 , provably in HA𝜔 + Ω𝑒 + Γ𝑒 + RP𝑒 ,
for any closed term 𝑒 of System T. Moreover, defining 𝑒 as in
Lemma 6.5, we have C𝜔 |= HA𝜔 + Ω𝑒 + Γ𝑒 + RP𝑒 .

Proof. The first claim follows directly from Theorem 5.6, and
the second from Corollary 6.6 and Lemma 6.7. □

7 Conclusion and open questions
In this paper, we explored various notions of recursion over
chain bounded partial orders, and gave a general theorem
on solving the functional interpretation of an axiomatic,
parametrised form of Zorn’s lemma.
We intend this work to be taken as the starting point for

a number of much broader research questions in both proof
theory and computability theory, which we hope to pursue
in the future. These include the following:

1. Can particular instances of Φ and Ψ as in Section 4 be
connected to known forms of strong recursion, par-
ticularly variants of bar recursion? We conjecture, for
example, that Ω𝑒 and Γ𝑒 as given in Section 6 are de-
finable using Spector’s variant of bar recursion, using
ideas from [21]. Are more general results along the
lines of [6, 10, 19, 21] possible?

2. The relationship between our simple and controlled
recursors has many parallels to that between modified
bar recursion and Spector’s variant. It was shown in [6]
that the former in fact defines the latter over System T.
Under certain conditions, can we show that our simple
recursor actually defines the controlled variant? It was
also shown in [6] that Spector’s bar recursion is S1-S9
computable in C𝜔 , but modified bar recursion is not.
Does an analogous result hold in our setting?

3. Can we formulate Theorems 4.4 and 4.9 so that they ap-
ply to non-continuous models, such as the majorizable
functionals [12]?

4. What other applications of our abstract computational
interpretation of Zorn’s lemma are possible? Are there
cases where a sensible choice of the parameters could
lead to a more concise formalisation of a well-known
proof, and consequently a more natural and efficient
extracted program? In the other direction, can our
framework be applied to give a computational inter-
pretation to instances of Zorn’s lemma stronger than
even countable dependent choice?

5. If we were modify our formulation of Zorn’s lemma so
that chain boundedness is given as part of the syntactic
definition, rather than being implicitly dealt with in
some model, how would we then solve its functional
interpretation?
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