A proof theoretic study of abstract
termination principles

Thomas Powell

Abstract

We carry out a proof theoretic analysis of the wellfoundedness of recur-
sive path orders in an abstract setting. We outline a general termination
principle and extract from its wellfoundedness proof subrecursive bounds
on the size of derivation trees that can be defined in Godel’s system T plus
bar recursion. We then carry out a complexity analysis of these terms, and
demonstrate how this can be applied to bound the derivational height of
term rewrite systems.

Keywords. Program extraction, term rewriting, recursive path orders,
termination analysis, complexity, bar recursion

1 Introduction

The ability to deduce whether or not a program terminates is crucial in computer
science. Informally, if we envisage a run of some a program to be a sequence of
transitions between states

S) ™81 ™ ... S,

where each transition represents some elementary operation, termination cor-
responds to the notion that there are no infinite runs, or alternatively, every
possible run ends in a normal form: a state that cannot be evaluated any further.

Though termination is not a decidable property, a number of powerful proof
rules, or termination principles, have been developed, which set out general
conditions under which programs can be shown to terminate. Examples of
these include path orders for rewrite systems [7], the size-change principle [17]
and more recently methods based on Ramsey’s theorem [20].

Any termination principle P gives rise to the following question: Given that
a program can be proven to terminate using P, can we infer an upper bound on
its runtime complexity, namely the maximum length of runs starting from some
given state syo? This is in turn an instance of a much more general problem in
proof theory, captured by Kreisel in his famous quote from [15]:

“What more do we know if we have proved a theorem by restricted means
than if we merely know the theorem is true?”

In this article we focus on the termination of rewrite systems via path orders.
This area already contains a number of well known complexity results of the
above kind. For example, termination via the multiset path ordering implies
primitive recursive runtime complexity (where here transitions correspond to
single rewrite steps), while the lexicographic path ordering guarantees at worst
multiple recursive complexity. These bounds were initially established via
direct calculations in [12] and [28] respectively.

Here, we take an approach to complexity closer to the spirit of Kreisel
by addressing the following question: Given a proof that some abstract or-
der is wellfounded, can we extract from this proof a subrecursive program
which computes rewrite sequences of terms and thus provides a bound on
their length?

Broadly speaking, there are two ways of accomplishing this. We could
choose to concentrate on the proof, showing that it can be formalised in some
weak theory and then appealing to an appropriate logical metatheorem which
would guarantee that a function for bounding rewrite sequences can be defined
in some corresponding calculus. Alternatively, we could directly extract such
a function by hand and then show that it can be defined in a suitable restricted
system. The latter approach is chosen here: Exhibiting an explicit bounding
function is not only more illuminating, but we can appeal to mathematical
properties of that function to obtain more refined complexity results.

The starting point of this work is the elegant paper of Buchholz [6], who
was one of the first to apply proof theoretic techniques to termination princi-
ples. More specifically, Buchholz rederived the aforementioned bounds on the
multiset and lexicographic orders by showing that wellfoundedness of these
orders could be formalised in weak fragments of Peano arithmetic, and then
applying a program extraction theorem to obtain the corresponding bounds
on the length of reduction sequences. Key to this method is to consider only
finitely branching variants of the usual path orders - an approach which will be
essential to us as well. We work in a more abstract framework than Buchholz,
but demonstrate in Section 4 how his bounded path orders can be viewed as
an instance of ours.

A second source of inspiration is the recent collection of papers (including
[3, 4, 10]), which study both size-change termination and techniques based on
Ramsey’s theorem from the perspective of proof theory. In particular, in [3] an
upper bound on the length of transition sequences is given as a term of System T
extended with bar recursion. It turns out that bar recursion - a form of recursion
over wellfounded trees - is naturally suited to computing normalization trees
for programs. Moreover, one can directly appeal to closure properties of bar
recursion ([19, 23]) to establish upper bounds on the size of these trees.

In this paper, we study an abstract termination principle which subsumes
the majority of path orders encountered in the literature, including both multi-
set and lexicographic orderings and e.g. the large class of standard orderings
encompassed by the unifying work of Fereirra and Zantema [9]. In fact, our
termination principle is closely related to the very general first termination
theorem considered by Goubault-Larrecq in [11], though here it is based on re-

lations which are assumed to be finitely branching. We give a classical proof of
our termination principle, which we then analyse using proof-theoretic meth-
ods: More specifically, we show that given moduli which form computational
analogues of the theorem’s main conditions, a function bounding the size of
rewrite sequences can be defined using bar recursion of lowest type. A num-
ber of initial complexity results can already be given by appealing to [19] and
related works.

We then consider a variant of the theorem in which a computationally
stronger realizer to the premise is given. In this case, more refined complexity
results are possible, which are set out in Corollary 3.18. We conclude by showing
how the well known upper bounds for the complexity of simplification orders
follow from this result, giving a concrete sketch in the case of the multiset path
order.

Our hope is that the results of this paper form a framework for complexity
which can be developed further in the future, with potential for both more gen-
eral and more refined results. In addition, in the process of our proof theoretic
analysis we explore a number of deep mathematical concepts which underlie
path orders, including minimal-bad-sequence style constructions, realizability
and bar recursion, connections between the latter having been explored from
a more general perspective in e.g. [22, 24]. We aim to demonstrate how these
concepts all come together to form a particularly elegant illustration of the
correspondence between proofs and programs.

1.1 Prerequisites and notation

In this article, we work over an informal type theory, where types are defined
by the following grammar:

pte=N|p—-t|lpxt]|p

We wrrite either a € p or a : p to denote that an object a is of type p (typically we
usea € p when referring to basic objects such as numbers or sequences, and a : p
when talking of functions or functionals, but this convention is not necessarily
rigorously adhered to). Most of the proofs that follow can be formalized in
some standard higher type extension of Peano arithmetic (such as the E-PA“
of [26] enriched with product and sequence types), although occasionally we
make use of stronger principles such as wellfounded induction or countable
dependent choice.

We assume that the reader is familiar with Godel’s System T of primitive
recursive functionals in all finite types, which we will use as our base program-
ming language, though we recall some key facts here (a detailed summary of
System T can be found in e.g. [2, 26] or [14, Chapter 3]).

Terms of System T include variables of each type, together with the usual
zero and successor constants, and allow for the construction of new terms via
function application ts : 7 for t : p — 7 and s : p and lambda application
Ax.t:p— tforx:pandt: . Inaddition, System T possesses recursors Rec of

each type p, which satisfy the following axiom schema

Rec] A0)=a Rec] An+1) = fn(Rec) (1),

where Recf; f(n) : p. Inaddition to all this, our version of System T also contains

projection and pairing constants for dealing with cartesian products, together
with some basic operations for working with sequences. We collect below some
important notational conventions which will be used throughout:

e We denote by 0, a canonical zero element of type p, defined in the obvious
way (On = 0, 0pr = AxP.0, Opxe = (0, 07) and 0, = []),

e |a| is the length of the sequence a € p*,

o if a = [ag,...,ar-1] € p* and x € p then a * x := [ay,...,a-1,x] denotes
the concatenation of a with the element x, while similarly x :: a :=
[x,a9,...,ar_1]. Fortwolistsaand bwewritea™b := [ag,...,ax_1,bo, ..., bi—1],
and more generally we write a; ™ ...” g, to denote the successive concate-
nation of a finite sequence of lists,

e 1 := a;_; denotes the last element of 2 (we just seta = 0, if a = []),
e we write x € a if x = 4; for some i < |g],
o fora € p*wedefined : N — pbya, :=a, if n < |a| and 4, := Ox otherwise.

Remark 1.1. We often denote infinite sequences of objects of type p using the
type notion pN. Though technically there is absolutely no difference between
p™N and the function type N — p, throughout the article we make an informal
distinction between infinite sequences and functions, which tend to play quite
different roles, and this is also reflected in our notation «,, for the former and
a(n) for the latter.

Our main complexity results involve fragments of System T in which the type
complexity of the recursor is restricted. To be more precise, each type is de-
fined a level is the following standard way: level(IN) = 0, level(p — 1) =
max{level(p) + 1, level(7)}, level(p x 1) = max{level(p), level(t)} and level(p*) =
level(p). We then denote by T; the subsystem of System T which only permits
recursors Recf for types p with level(p) < i. In particular, it is well known
(cf. [30]) that the closed terms of type IN — IN definable in Ty are the usual
Kleene primitive recursive functions, while those definable in T; correspond
the multiple recursive functions (alternatively the fast growing hierarchy below
).

Finally, at several points we will need to extend T with constants Rec
for wellfounded recursion of output type p over some decidable wellfounded
binary relation > on IN, which will satisfy the defining axiom

>,0

Rec;’p(x) =p fx(Ay<x. Rec;'p(y))

where Ay < x . ¢(y) is shorthand for ‘if y < x then g(y) else 0,".

Remark 1.2. When defining recursive functionals we typically use the con-
vention, as above, of writing parameters which don’t change in the defining
equation as a subscript.

2 Finitely branching binary relations

We start off in this section by covering some basic facts and definitions concern-
ing finitely branching binary relations in general, and introduce the concept of
bar recursion.

2.1 Basic notions

Our basic object of study will be a binary relation > on some set X. In the
context of termination analysis, X is typically a set of terms in some language.
A program p is then considered to be reducing with respect to > if whenever

g~ t~> ...~ f

isarunonp, thent; > ti,; for all i < k. Thus wellfoundedness of > implies that
the program terminates.

However, up until Section 4, everything will be carried out in an abstract
setting. For now, the only assumption we make about X is that it can be
arithmetizedi.e. comes equipped with some encoding™ " : X — IN, and similarly
> is a primitive recursive relation, i.e. there is some term v : N X N — IN
definable in Tg such that x > y iff 7("x","y™) = 0. For the sake of clarity, we
continue to refer to the set as X rather than IN, but it should be remembered that
for practical purposes > is a relation on natural numbers, and this will indeed
be crucial when we come to our complexity results later.

In this paper we will primarily be concerned with relations which are finitely
branching.

Definition 2.1. We say that > is finitely branching if
Vx € X)(Ja € X*)(Vy)(x > y & y € a).
where we recall that y € a if y = a; for some i < |a|. In particular, the number of

distinct elements y with x > y is bounded above by |a|.

We now need to give a precise definition of what we mean by wellfoundedness.
We will primarily be interested in the following formulation, which in [3] is
referred to as classical wellfoundedness:

Definition 2.2. We call a sequence a € XN (classically) wellfounded (w.r.t. >)
and write W, (a) if
An(a, # ane1)

where x # y denotes —(x > y). Similarly, we say that an element x € X is
wellfounded, and also write W. (x), if

Ya(x = ag = W.(a)).
The relation > is wellfounded if (Yx)W.. (x).

In Section 3 we will consider an equivalent formulation of wellfoundedness
which is classically equivalent to the above but computationally stronger. We
now make precise how we measure the ‘runtime complexity” of some object in
X.

Definition 2.3 (Finite derivation). We call a finite sequence a € X* a >-derivation,
and write C. (a), if a; > a;,1 for all i < |a| — 1.

Definition 2.4 (Derivational height). Let x € X and suppose that there exists
some k such that
Co(x=a) > |a| < k.

We call the minimal such k the derivational height of x and denote it by dh(x). We
say that the derivational height of some wellfounded > is bounded by some
function f : X — N if dh(x) < f(x) for all x € X.

Remark 2.5. In this paper, the derivational height will form our main notion of
runtime complexity. It is closely related to the concept of derivational complexity,
which involves in addition a size measure s : X — IN on terms, and is defined
to be a function g : N — IN such that s(x) < n implies dh(x) < g(n) for all x € X
and n € IN. For most sensible size measures (which when X is a term structure
is invariably the syntactic size of a term), the derivational complexity can be
defined in terms of a function bounding the derivation height, assuming our
underlying language is finite.

We now give a syntactic formulation of wellfoundedness which will be
crucial to us later, and which is adapted from Buchholz’s notion of a derivation
[6]. Here we work with a structure which encodes in a slightly more precise
way the derivation tree generated by some wellfounded x, where informally, the
derivation tree for x is that whose root is x and whose branches are derivations
starting at x.

Definition 2.6 (Derivation tree). The predicate T.(x,d) on X X X* is defined by
induction on the length of d as follows: If [y, ..., yx-1] is the unique sequence
consisting exactly of those elements y with x > y, ordered so that y; < y;
(as number encodings) iff i < j, then T(x,d) holds precisely when d = x :
do~ ... 7 di-q and T»(yi, d;) holds for all i < k.

Intuitively, T (x,d) holds iff d represents the flattening of the tree of finite
derivations starting from x which would be obtained by a depth first search
and ordering each child node by its encoding. Take for example the relation on
{1,2,...,7} defined by

2>4,7 4>1,3,6 3>5 (1)

Then we would have T.(2,d) iffd = [2,4,1,3,5,6,7]. Note that T, (x,d) makes
sense even when x is not wellfounded: in that case T-(x,d) would simply be
false for all d. However, when it holds for some d then this must be unique.

Lemma 2.7. If T (x,d) and T-(x,e) then d = e.
Lemma 2.8. If T (x,d) then dh(x) < |d|.

Proof. Induction on the length of d. Suppose that x > x; > ... > x;. Then
we have T, (x1,e) for some e contained in d, and assuming inductively that
k—1 < dh(x;) < le| < |d| we obtain k < |d| and thus dh(x) < |d|. m]

Theorem 2.9. If > is finitely branching then W, (x) holds iff (3d)T. (x, d).

Proof. One direction follows immediately from Lemma 2.8. For the other,
(Vd)-T.(x,d) would imply that the derivation tree of x is infinite, and so by
Konig’s lemma this tree must have an infinite branch. But that would contra-
dict W, (x). O

2.2 Computing derivation trees

The focus of this article will be on the construction of explicit derivation func-
tions for wellfounded binary relations:

Definition 2.10. A function® : X — X" is aderivation function for the wellfounded
relation > if (Vx) T (x, @(x)) holds.

Whenever @ is a derivation function for >, by Lemma 2.8 in particular it
follows that the map Ax.|®(x)| bounds the derivational height of >. Therefore,
whenever we can guarantee that @ can be defined in some restricted class of
functions, we can produce a subrecursive bound for the derivational height of
>

Note that for any finitely branching >, provided we know in advance that x is
wellfounded, its derivation tree can be computed by a simple brute force search.
However, a much stronger result would be to show that the computation of a
derivation tree can be defined in some subrecursive calculus, which takes into
account the strength of the system in which W, (x) can be proved.

In this section we give a short preliminary result of this kind, where we
analyse the statement

if > is finitely branching and wellfounded then (Vx)(34)T. (x,). (2)

The statement follows as in Theorem 2.9 from an application of Kénig’s lemma.
We are interested in giving (2) a computational interpretation, namely the con-
struction of a derivation function for > which takes as parameters some func-
tionals which give a computational interpretation to the premise of (2). This
leads us to the following key definitions:

Definition 2.11. (a) A branching modulus for > is a function ¢ : X — X* satisfying
x>y e yec(x)

for all x, y € X. We assume w.l.o.g. that c(x) is ordered with respect to our
encoding and contains no repetitions.

(b) A modulus of wellfoundedness for > is a function w : X™ — NN satisfying
(i < w(@))(ei # aiv1)

forall « € XN,

Moduli of wellfoundedness have also been studied in [3] in the context of
the Podelski-Rybalchenko termination theorem, and we take our terminology
from them. Given a branching modulus and x € X, one can easily compute the
derivation tree d for x by implementing a depth first search. We now show that
given, in addition, a modulus of wellfoundedness, we can give a subrecursive
definition of the derivation function in System T plus bar recursion, where
the latter is a recursion scheme over wellfounded trees. There are numerous
different variants of bar recursion (see [21]), but here we will be primarily
concerned with the original version due to Spector [25].

Definition 2.12 (Bar recursion). The constant BR”* of bar recursion of type p,
is characterised by the following defining equation (cf. Section 1.1 for notation,
and note again our convention of writing parameters which don’t vary in
defining equations in the subscript):

BR?*
©,g8,

@ {g(a) if w(@) < |al
h T

ha(/\x.BRf;’; ,(@=x)) otherwise

Here a € p* and the other parameters have types w : pN — N, ¢ : p* = 7 and
h:p*—=(p—1)—>1.

Definition 2.13. We denote by T + BR?" the theory of System T extended with
constants for bar recursion of type p, 7, and similarly for e.g. T + Rec™” and
T +Rec™” + BRP".

Before we give our construction, we need some notation for some simple
recursive operations on sequences. We use the symbol () to denote iterated
list concatenation. So for a = [ay, ..., ar-1] € (p*)* we have

Ox =ay ... a1 €Ep.
xea
We abuse this symbol just like a summation symbol, so for example if a € p*
andp: p — p*then
Op(x) =plag)” ... pax-1) € p°
X€a

and so on. Note that this operation is definable in Ty using recursion over the
length of |a|.

Lemma 2.14. Let x € X and suppose that p : X — X is a function satisfying
T-(y,p(y)) for all y < x. Then
d=x: O p(y)

yee)
satisfies Ts.(x, d) whenever c is a branching modulus for >.

Proof. Directly from the Definitions 2.6 and 2.11 (a). O

Theorem 2.15. In Ty + BRXX we can define a function V., : X* — X* which takes
parameters ¢ : X — X* and w : XN — N and satisfies

1 iflal = 0 or w(4) < |al
Youl@) = {ﬁ : Oyec(ﬁ) W, ,(a+y) otherwise.

Moreover, if c resp. w is a branching modulus resp. modulus of wellfoundedness for >,
then the function Ax. V. ,([x]) is a derivation function for >.

For the proof of Theorem 2.15 we appeal to the principle of countable depen-
dent choice in addition to standard reasoning within arithmetic in finite types.
This refers to a weak variant of the axiom of choice given by the following
scheme:

VneN,xepIyepAmn,x,y) = Af : N - pVn e N A(n, f(n), f(n + 1)).

Proof of Theorem 2.15. That W is definable in To + BR*X" is a simple exercise, and
we omit it here (though definability results in later sections are included in full).
For the verification proof, we first show that for any sequence satisfying |a| > 0
and C. (a) we have:

T, Yew(@) = Ty < a)=Tx(y, Weola* y)) ©)

To see this, note that C.(a) implies that w(4) > |a|, else there would be some
i,i+1 < |a| with a; # a;11. Therefore by the contrapositive of Lemma 2.14 we
obtain (3).

Now, suppose that there exists some x such that =T, (x, ¥ ,([x])). Then
by dependent choice together with (3) there exists some infinite descending
sequence ay > a1 > ..., contradicting the fact that a; ¥ a;,1 for some i < w(a).
Thus T, (x, V. ,([x])) holds for all x, and we’re done. O

The above theorem is not deep in itself, but is included as a simple illustra-
tion of the results which will follow. Note that though the proof uses classical
logic together with dependent choice, we could convert this into an intuition-
istic proof which instead uses some variant of bar induction, as is typically
the case for program extraction theorems. However, in this paper we have
no broader foundational goals which would require the verification of our ex-
tracted terms to be formalisable in a weak intuitionistic theory, so we stick to
classical logic as it is usually more intuitive.

3 Abstract path orders

Path orders form one of the earliest proof rules for termination, and are a central
concept in the theory of term rewriting. Today, a huge variety of different path
orders have been developed, ranging from the general - such as the unified
ordering of [31] - which focus on the common structure shared by termination
orders, to the highly specialised - such as the polynomial path ordering of [1]

- which aim to capture a very precise class of terminating programs. We talk
about path orders in more detail in Section 4, but for now we give a simple
explanation which helps motivate the abstract principle studied here.

3.1 Path orders and termination

Very roughly, path orders capture ‘termination via minimal sequences’. Con-
sider the Ackermann-Péter function, which is recursively defined by the rules

A0, n)>n+1
A(m,0) > A(m-1,1)
Am+1,n+1) > A(m, A(m + 1,n))

Suppose for contradiction that A(m, n) is not wellfounded for some m, n € INi.e.
it triggers an infinite computation. Then either A(m, n — 1) is not wellfounded,
or there is some well defined k := A(m,n — 1) such that A(m — 1,k) is not
wellfounded. In other words, there is some (1, n’) lexicographically less than
(m,n) such that A(m’,n’) is not wellfounded. By repeating this reasoning, non-
wellfoundedness of A(m, n) gives rise to an infinite sequence

A(mg, ng) > A(my, np) > A(my, 1) > ... 4)

where A(m,n) > A(m’,n’) denotes that (m’,n’) is lexicographically smaller
than (m,n). Thus A(m,n) must be wellfounded by wellfoundedness of the
lexicographic ordering. Informally speaking, (4) plays the role of a minimal
sequence, in the sense that it represents instances of A whose arguments i.e.
subterms are wellfounded.

3.2 The abstract termination principle

On an abstract level, path orders are a proof rule which implement the idea that
termination of a program can be inferred from wellfoundedness of minimal
sequences. To make this idea formal, we first need to introduce an auxiliary
binary relation on X. Recall that a binary relation on X is primitive recursive if
on the level of encodings it can be represented as a primitive recursive function
of type N X IN — IN.

Definition 3.1. Let > be a primitive recursive binary relation on X which is induc-
tively wellfounded, by which we mean that > has the usual induction property
and as a result we have access to the recursor Rec”” as defined in Section 1.1.

Inductive wellfoundedness is equivalent to classical wellfoundedness as de-
fined in Section 2. However, from a computational point of view the two differ:
Classical wellfoundedness is realized by some modulus of wellfoundedness of
type XN — IN, while the computational analogue of inductive wellfoundedness
will be the recursor Rec”. Note that a modulus of wellfoundedness for I> is eas-
ily computable in Rec”, but defining Rec” in some modulus of wellfoundedness
for > would seem to require bar recursion in addition.

10

The reason that we choose > to be inductively wellfounded is that when X
is some set of terms, > usually represents the subterm relation, recursion over
which is trivially definable in Ty. A key concept in our abstract termination
principle is the formal notion of a minimal sequence. The precise definition is as
follows:

Definition 3.2 (Minimal sequence). An infinite sequence a € XN is minimal
(with respect to > and) if W..(y) forall y <a, and n € N.

In addition to > and > we consider a third binary relation >, which interacts
with the other relations in a specific way as outlined in Definition 3.3 below.
This is an abstract formulation of the notion of > being decomposable as presented
be Ferreira and Zantema [9] (cf. their Definition 3), and essentially coincides
with ‘Property 1’ of Goubault-Larrecq’s relations >, > and > in [11].

Definition 3.3 (Decomposition). A primitive recursive binary relation > on X is
called a decomposition of > with respect to &> if it satisfies

(i) whenever x > y then either x > y or there exists some z<x such thatz > y
(where > denotes the reflexive closure of >),

(ii) whenever x > yand y >z then x > z.

We are now ready to state and prove our main abstract termination principle,
which is in turn closely related to Theorem 1 of [11], though our proof uses
dependent choice instead of the more intuitionistically flavoured argument via
bar induction in [11].

For the reader familiar with path orders from term rewriting, it might be
helpful in what follows to keep in mind the following informal associations:

abstract object | possible interpretation

X | set of terms over some signature
main relation > | path order itself
wellfounded relation > | immediate subterm relation
auxiliary relation > | term lifting (cf. [9, Section 3] or [11, Section 3])

Theorem 3.4 (Abstract termination principle). Let >, > and > be binary relations
on X, such that

1. > is inductively wellfounded,
2. > is a decomposition of > with respect to >,

3. > is classically wellfounded on minimal sequences, by which we mean that for
any sequence a € XN which is minimal with respect to > and >, we cannot have
Qy > 1 forallm € N,

Then > is wellfounded on X.

11

Proof. Defining
A={xeX : Vy<x)W.(y)},

we claim that for any nonempty sequence a € A* satisfying Cs.(a) we have:
~W. @) — @y < D)W (y) Ay € A). (5)
To see this, observe that =W, (@) implies that the set
Sii={xeX|x<an-W.(x)}

is nonempty. Thus by classical logic together with induction on > (which is
possible since > is inductively wellfounded), S; has some minimal element y
i.e. such that z < y implies z ¢ S;. Now, it follows that @ > y, otherwise, by
decomposition property (i) we would have a >z > y for some z, and since
a € A which means that W, (z) holds, this would contradict =W (y). But using
property (ii) we can therefore also show that y € A: since @ > y then for any
z <y we have @ > z, and therefore W, (z) since =W..(z) would imply thatz € S;,
contradicting minimality of y. This proves the claim.

For the main result, suppose that =W (x) holds for some x, and define ay
to be the minimal such x with respect to &>, so that =W, (@) and ag € A. Then
Cs([ao]) trivially holds, and by applying dependent choice together with (5)
we obtain an infinite sequence ap > a; > a; > ... with @; € A for all i. But
the latter means that « is minimal, which contradicts the assumption that > is
wellfounded on minimal sequences. m]

Remark 3.5. One of the anonymous referees made an observation regarding
Definition 3.3 and Theorem 3.4, which we include here as a remark. Suppose
we define the relation >, by

> = " U "o)| neN)

or alternatively x >, yiffx>zo> ... >z, > yoOrx>20>...> 2,1 > y for
some Zz,...,Z,-1. Then assuming that > is wellfounded, we have that > is a
decomposition of > with respect to &> if

(»>o0p>)C>C>, . (6)

In this sense, Theorem 3.4 could be replaced by the slightly more compact state-
ment that any > satisfying (6) is wellfounded, provided that > is wellfounded
on minimal sequences w.r.t. > and . However, our formulation is much closer
to related results in the term rewriting literature, including [9] and [11], and as
such we prefer it here.

3.3 A computational interpretation of the termination principle

We now give a computational interpretation of Theorem 3.4, in the case where
both > and > are finitely branching. Similarly to before this assumption will
be represented by a pair of branching moduli ¢, and c.. The computational

12

analogue of inductive wellfoundedness of > will be access to wellfounded
recursion over >, so it remains to formulate our main assumption that > is
classically wellfounded on the set of all minimal sequences.

Definition 3.6. The predicate M, .. (x, u) on X x X** is defined to be true whenever
for [yo, ..., Yk-1] = cx(x) where c; is a branching modulus for the relation > (cf.
Definition 2.11 (a)) we have

lul = k A (Vi < k)T (yi, us).

Continuing with our earlier example (1), suppose that x>y only when yis a
proper divisor of x. Then M. (6, [[1], [3,5]]), since 1 and 3 are the only proper
subdivisors of 6 and both T.(1,[1]) and T.(3,[3, 5]).

Lemma 3.7. Assuming that both > and 1> are finitely branching, a sequence a € XN
is minimal iff there exists a sequence B € (X*)N such that M. ..(an, B,) holds for all
n € IN.

Proof. Directly from Theorem 2.9.]

This syntactic characterisation of minimal sequences for finitely branching
relations informs the following adaptation of the modulus of wellfoundedness,
now restricted to minimal sequences:

Definition 3.8. A modulus of minimal wellfoundedness for > (with respect to >
and 1) is a function w : (X x X*)N — N satisfying

(VM - (@n, Bn) — (i < w(a, f)) (@i # aiv1)
where by for clarity we represent the two components of (X x X*)N separately
as a € XN and g € (X*)N, and write e.g. w(a, p) instead of w(Ai.(a;, ;).

In the construction that follows we denote by () the usual map function i.e.
givena € X*and p : X — p we have

(Dp@) = p(@o), ..., pla-)l € p

xea

where a = [ay, ..., ar-1]. The following lemma follows directly from the defini-
tions:

Lemma3.9. Let x € Xand suppose that q : X — X*isa function satisfying T-(y, q(v))

forall y <x. Then
wi= (+) 4
yece (x)

satisfies M .. (x, u) whenever c.. is a branching modulus for 1>.

The following two results form an analogue of Theorem 2.15 in the more
complex setting of abstract path orders. They comprise a technical lemma
below, which establishes that the analogue of our function W in this case can
be defined in the theory Ty + Rec™*" + BR¥X" (the analogue to this part was
omitted from the proof of Theorem 2.15, but here it is given in full), which is
then followed by the main result as Theorem 3.12.

13

Lemma 3.10. Define Y := X x X*, and suppose that ¢, c, : X — X* are some fixed
terms of To which form branching moduli for > and . Then there is a functional
W: (YN - IN) - Y* — X" definable in Ty + Rec™*" + BRYX' which satisfies

[l if lal = 0 or w(a, b) < lal

W,(a,b) = .
@0) {d : Oy%(ﬁ) R,p(y) otherwise

where the term R,), : X — X* satisfies

Roy(y) = bily] if y < cx(a); for some i < |cx ()]
ably) = W, (axy,b* @Zecb(y) R,p(z)) otherwise

where in the first line, for d € X* and y € X, d[y] C d denotes some sequence contained
in d and satisfying T.(y, d[y]) whenever it exists (and just [] otherwise).

Remark 3.11. The intuition behind W, is that it is designed to play the following
role in the proof of Theorem 3.12 below: Given a sequence a € X" together with
some b € (X*)* which witnesses that 4 is minimal in the sense that M, . (a;, b;)
for all i < |a|, then W, (a,b) is a derivation tree for @ (the last element of a).
The reader who is happy to believe that such a functional can be defined via
bar recursion is encouraged to skip ahead to Theorem 3.12, as the routine but
somewhat technical proof of Lemma 3.10 is somewhat orthogonal to the proof
of the main theorem.

Proof of Lemma 3.10. We define functions g: Y* = X*and h: Y* — (Y —» X*) —
X* by
8@, b) =1l

h(a, b)(p) = {H tlal =0

a: Oyec> @ Reczrap(y) otherwise

where f: X - X* = (Y —» X) = X = (X = X*) — X" is defined by

uily] if y < cx(x); for some i < |cx (¥)]

fx,u,P(y)(q) = {p(y, @,zecb » q(z)) otherwise

and d[y] is defined as in the statement of the lemma. Now, it is not difficult to
see that since > is primitive recursive and ¢, a branching modulus then T, (y, d)
is a primitive recursive predicate, and thus so is d[y] since this can be computed
via a bounded search. Moreover, the case distinction in the definition of f
is primitive recursively decidable, and so the functional as a whole is clearly
definable in Ty. It is obvious then that / is definable in Ty + Rec>X" and so
.— RRYX
W, = BRw,g,h

is definable in Ty + Rec™X" + BRVX". To see that it satisfies the relevant equations
is just a matter of unwinding definitions: We have W (a,b) = h(a, b)(...) = [] if

14

la] = 0 and W, (a,b) = g(a,b) =[] if w(a,b) < |a|, and otherwise
W,(a,b)=a: O Rw,a,b(]/)

yec- (@)

for Ryap :=Rec? and p:= Ax,u.W,(a*x,b+u). But then
P

it
Rm,ﬂ,b(y) = fﬁ,E,p(y)(AZ <y. R(U,ﬂ,b (Z))
B bily] if y < ¢.(a); for some i < ¢, (x)|

= {p(]// @Zecp(y) Reap(z)) otherwise

and in the second line

P(y/ @ Rm,a,b(z)) = "pw(a * yrb * @ Rm,u,b(z))

z€cs () z€cs (y)

which completes the proof.]

For the purposes of our main proof, we now make a small assumption: That
0 encodes some object of X which is minimal w.r.t. <, in other words —(x <0) for
all x € X. In particular, this would imply that M, ;. (0, 0x-) since Ox- is assumed
to be the empty sequence. While not strictly necessary, this assumption allows
us to use the usual variant of bar recursion as above, which would otherwise
need to be modified slightly.

Theorem 3.12. Let >, > and > be primitive recursive binary relations, such that
branching moduli for > and 1> are definable in Ty, and suppose in addition that

1. > is inductively wellfounded,
2. > is a decomposition of > with respect to 1>,

3. w is a modulus of minimal wellfoundedness for >>.

Let W be defined as in Lemma 3.10, and writing Y := X x X** define @ : (YN - N) —
X — X*in Ty + Rec™X + BR¥X gs

0, (x) = W, (2], [(=) Cu()]).

yecs (x)
Then @, is a derivation function for >.

Remark 3.13. It is instructive to compare the statement of Theorem 3.12 with
that of the original abstract result Theorem 3.4. Each of the main assumption
1-3 of 3.4 are present in Theorem 3.12, with inductive wellfoundedness of
> also implicit in our use of the wellfounded recursor Rec™X’, and classical
wellfoundedness of > replaced by the existence of a modulus @ of minimal
wellfoundedness here. Moreover, wellfoundedness of > is represented here by
providing a concrete derivation function. The reader is encouraged to consult
the proof of Theorem 3.4 when reading the proof of Theorem 3.12 below, as the
two are closely related.

15

Proof. We first claim that for any nonempty (4, b) € Y* such that M, . (a;, b;) for
all i < Ja| and Cs.(a), then

-T.(3, Wo(a, b)) » Ay < a,Fu e X™) (T (y, Vola*y, bru)) A M, o (y,u)). (7)

To prove the claim, we begin by observing that w(a/,\b) > |a|. To see this, observe
that 4 is a minimal sequence relative to b, by our assumption that M. (0, [])

holds. Thus a)(a/,\b) < |a] would imply that there exist i,i + 1 < |a| such that
a; > a;;1, contradicting Cs (a).

Therefore W, (a,b) = a Oyec> @ R,p(y) and by Lemma 2.14 together with
T, (@, Wy(a, b)) there exists some y < d such that =T..(y, R, ;(y)). Therefore the
set

Sep={xeX : x<an-T.(x,R.p(x))}

is nonempty, and thus contains some y which is minimal with respect to .

Let [zo, ..., zk-1] := ¢ (d). If y < z; <d for some i < k, then since M., . (q, b) and
thus T (z;, b;) we would have T.(y, bi[y]) (for b;[y] defined as in the statement
of Lemma 3.10) and thus T (y, R, ;(y)), since in this case R,;(y) = bi[y]. This is
a contradiction.

Therefore as before y < @ by decomposition property (i). Now for z €
c-(y), by property (ii) we have z < 4 and thus T.(z,R,;(z)) by minimality
of y. Therefore by Lemma 3.9, u := ®z€c.>(y) R, p(z) satisfies M., (v, u) and
from —T>(y, R, p(y)) we obtain —Ts(y, W, (a * y, b * u)) since in this case R, ;(y) =
W, (a*y,b=u). This proves the claim.

Now suppose the theorem is false and take some minimal x such that
ATs (x, Dy (x)). Then M. . (x, v) and =T, (x, W, ([x], [v])) hold forv := @y o) Dy, (y),
and by dependent choice in conjunction with (7) we obtain a pair of sequences
a, B such that (Yn)M, . (ay, pn) but a, > a1 for all n, contradicting the assump-
tion that a; >3 a4 for some i < w(a,). m]

3.4 Primitive recursive bounds via closure results for bar recursion

Having extracted a bar recursive term which computes derivation trees for >,
we can already apply a variety of closure results from the literature to obtain
coarse upper bounds on the derivational height of >.

The term W, in Lemma 3.10 is formally definable not just from bar recursion

but from a single instance of BR()EZ);H'X* where ¢ and h are definable in Tp +

wRec™X". As a consequence, we can show that the derivational height of > is
bounded by some Godel primitive recursive function whenever the modulus of
minimal wellfoundedness is definable in System T. This follows directly from
Schwichtenberg’s classic result [23] that System T is closed under the rule of
bar recursion, whenever bar recursion has sequence type level 0 or 1. A more
fine-grained analysis is the following:

Corollary 3.14. Suppose that >, > and > satisfy the assumptions of Theorem 3.12,
and that Rec™X is definable in Ty. Then

16

(a) whenever > has a modulus of minimal wellfoundedness w which is definable in T;,
the derivational height of > is bounded by some function in Ti,3,

(b) in the special case where w is definable in Ty, the derivational height is bounded by
some function in Ty.

Proof. Since X is coded in the natural numbers, both the sequence type X x X**
and the output type X* can also be encoded in IN, and so the functional ¥,
is definable from a single instance B, of bar recursion of lowest type. By
the recent analysis of Oliva and Steila [19], whenever the parameters g, h are
in Tp and w is in T;, the bar recursor B, can be defined in T3 (see [19,
Corollary 3.5]). But then ¥, and hence also ®,, are definable in T;,3, and since
a derivational height function for > is given by Ax.|®,(x)], this gives us (a). Part
(b) follows analogously using Howard’s more refined result for lower types
[13]. O

Corollary 3.14 is by no means exhaustive. For example, Howard’s closure
theorem [13] is extended to fragments of the Grzegorzyk hierarchy by Kreuzer
[16], though it is unclear whether this would be applicable here, since these
fragments do not have access to the full recursor of lowest type. Note that
it could also be that a more carefully analysis of the particular form of bar
recursion would likely lead to a significantly improved version of Corollary
3.14, although we leave this open for now.

All of this demonstrates how our approach of extracting concrete programs
and then appealing to computability theory of those programs leads to ex-
tremely general complexity results. In the next section, we show that the
situation improves further if we strengthen our hypothesis by replacing the
modulus of minimal wellfoundedness by some explicit recursor.

3.5 Derivation functions for inductively wellfounded binary relations

We now demonstrate how Theorem 3.12 and the associated complexity bounds
can be further improved if we take as a stronger premise that minimal sequences
are inductively wellfounded with respect to some concrete binary relation » on
X x X™. From a computational point of view, the idea here is that under certain
assumptions, we are able to replace a modulus w of minimal wellfoundedness
(corresponding to classical wellfoundedness of) with a wellfounded binary
relation », thereby replacing the instance of bar recursion in Theorem 3.12 with
the wellfounded recursor Rec”.

Lemma 3.15. Suppose that >, > and > satisfy the assumptions of Theorem 3.12, and
that » is an inductively wellfounded binary relation on X X X** satisfying

M, o (x,u) A M, o (y,0) Ax >y — (x,u) » (y,0) 8)

for all (x,u),(y,v). Then there is a functional I : X X X — X" definable in Ty +
Rec™X + Rec™X which satisfies

T'(x,u)=x: O Reu(y)

yees(x)

17

where Ry, : X — X* is given by

uilyl ify < co(x); for some i < ¢ (x)]
Reu(y) = {T(y,0) if (x,u) » (y,0)
[otherwise

forv:=_), &) Ry (). Moreover, if w is a modulus of minimal wellfoundedness for
>, then for any x, u satisfying M. ..(x, u) we have

(Va, b)(Vi < |a| M, 5 (a;, b)) ACs(a+x) = Wy(ax*x,b+u) =T(x,u)) 9)
where VY, is defined as in Lemma 3.10.

Remark3.16. ThatT is definable in To+Rec™* +Rec™ X isjust a simple adaptation
of the proof of Lemma 3.10. To see informally that I' is well-defined here
using recursion over > and », we argue that I'(x, u) is well-defined whenever
I'(y,v) is well-defined for all (x,u) » (y,v). To this end, it suffices to show
that R, ,(y) is well-defined for all y € c.(x), which follows using an auxiliary
induction over >: If R, ,(x) is well-defined for all y > z then in particular we
havev := ()) R, .(z) is well-defined, and thus so is R, ,(y), which only calls
I'(y,v) for (x, u) » (y,v).

Proof. We prove (9) by induction on », to which end we fix a, b and assume that
M. - (a;, b)) for alli < |a| together with C (a+x) and M. .. (x, u). Note that Cs (a*x)
implies that w(a X, b* u) > |a]+1and thus W, (a*x, b*u) = x = Oy%m R prae ().
So we're done if we can show that Ry pe(y) = Ry u(y) for all y < x, assuming
that (9) holds for with (x, u) replaced by (x’, u’) for (x, u) » (x',u’).

We do this by a side induction on 1>, so fix some y and assume that R .y e, (2) =
Ry .(z) for all z < y with z < x. We only need to check the case x > y, where
we aim to show that (x,u) » (y,0) forv:= (. " Ryu(z) = ®z€c.>(y) Repox b (2)-
By the side induction hypothesis, if y > z then also x > z (since x > vy), and
thus Rpuy pu(2) = Rx,u(z) and hence M. . (y,v). Therefore by (8) together with
M. . (x,u) and x > y it follows that (x, u) » (v, v), and since Cs.(a * x * y) we can
apply the main induction hypothesis on (y, v) with (a *x, b+ y) for (a, b) to obtain

Ruu(y) =T(y,0) = We(axx*y,b*u+0) = Ryy peu ()

by the main induction hypothesis. Thus eliminating the side induction hypoth-
esis yields Ry peu (V) = Ry u(y) for all y < x and thus W, (a *x, b*u) = I'(x, u), and
so eliminating the main induction hypothesis we’re done. o

Corollary 3.17. Under the conditions of Lemma 3.15, the functional @, in Theorem
3.12 is definable from T and thus in Ty +Rec™X +Rec™X for any modulus of minimal
wellfoundedness w.

18

Proof. More specifically, we define ¢ : X — X* using I' and recursion over >
(and hence in Ty + Rec™ X" + Rec™X") by

o) =T, () o)

yecs(x)

Then we can prove that @, (x) = ¢(x) using induction over &>: For the induction
step, if @, (y) = ¢(y) for all y < x then in particular by Theorem 3.12 we have
T+ (y, p(y)) for all y < x and thus M., .(y, u) for

u= () o= () @

yecs (x) yecs (x)

and therefore by Lemma 3.15, applying (9) for |a| = 0 we have

o) = T(x,u) = Vo, [() Pu(y)]) = Lu(®)

yece (x)
and we're done.]
We can now give a corresponding formulation of Corollary 3.14:

Corollary 3.18. Suppose that >, > and > satisfy the assumptions of Lemma 3.15,
and that Rec™X' is definable in To. Then whenever Rec™* is definable in T;, the
derivational height of > is bounded by some function also definable in T;. In particular:

(a) Fori =0, the derivational height is bounded by a primitive recursive function;
(b) Fori =1, the derivational height is bounded by a multiple recursive function.

Proof. First of all, from (8) and wellfoundedness of », one can infer that >
is wellfounded on minimal sequences. If not then there would be some «a, 8
such that M. . (ay, fs) and a, > a4 for all n € IN, which would imply that
(an, Bn) » (@n+1, Pn+1) for all n € IN, a contradiction. Therefore there exists some
modulus of wellfoundedness w, but by Corollary 3.17 the resulting derivation
function @,, for > is definable from I' and hence in Ty + Rec>* 4+ Rec™X’, which
under the assumptions on the definability of Rec™* and Rec™*' is ultimately
definable in T;. m]

4 Application: Path orders and term rewriting

We conclude by sketching how our abstract results, particularly Corollary 3.18,
can be applied in the special case where X denotes a set of terms in some
programming language, which we take here to be a simple term rewrite sys-
tem. More specifically we show how the formalization of Buchholtz [6] can
be incorporated into our framework. The difference here is that we work in
a more abstract setting, and that we directly construct derivation functions
in fragments of System T, rather than formalizing wellfoundedness proofs in
fragments of Peano arithmetic.

19

41 (X,r) as a term structure

Let X now be instantiated as the set of terms ranging over some countable set of
variables and some finite signature {fi, ..., fr}, where we assume for simplicity
that each f; has a fixed arity (note that this latter restriction is not essential: see
[6, Section 3]). Clearly X can be arithmetized, and following [6] we can assign
each term a size as follows:

(@) |xil =1
(i) Ifj(ts, ..., ta)l = max{n,|til, ..., [tal} + 1.

Note that this definition of size ensures that there exists some monotone prim-
itive recursive function & such that |{| < t < h(]t|) for all t. Let > denote the
immediate subterm relation: in other words, f(t1,...,t,) > t;foralli=1,...,n.
Then by (ii) above we have s < t implies |s| < |t|, and so recursion over &> is de-
finable from the usual Godel recursor over >. In particular, Rec>X" is definable
in To.

4.2 Approximations to recursive path orders

In general, recursive path orders on terms, such as the multiset or lexico-
graphic path orders, can be characterized in the abstract as follows: We set
t=f(t,...,ty) > sif either

(@) t; >sforsomei=1,...,n;
(b) t > sand t > s; for all subterms s; of s,

where typically >¢ is recursively defined in terms of > itself (we will see a
concrete example of all this in Section 4.3). Note that by (a), > contains the
subterm relation, which means that it is a simplification order. Condition (b) is
closely related to the notion of a lifting as studied in e.g. [9]. In any case, such
an order is a decomposition in the sense of our Definition 3.3 relative to >,
where t > s denotes the second case (b) above. This is because if t > s then in
particular ¢ > s; for all s; < s.

Recursive path orders of this kind are fundamental tools in the theory of
term rewriting, as they provide us with a criterion for checking if finitely defined
term rewrite system R is terminating. Here we would work with orders > which
are closed under contexts and substitutions, and then whenever the rules! — r
of R satisfy I > r, then R is guaranteed to be terminating. The main challenge
is always to show that > itself is wellfounded.

When it comes to computing complexity bounds, the first issue is that
in general, recursive path orders are not finitely branching, and as a result
proofs of wellfoundedness tend to use rather heavy proof theoretic machinery
such as Kruskal’s theorem. However, this is overcome by Buchholz in [6] by
considering finitary variants of the usual path orders, whose wellfoundedness
can be proven in low fragments of arithmetic.

20

One can describe Buchholz’ idea in a slightly more general form as fol-
lows: for some primitive recursive function b : N — IN define the bounded
b-approximation >, of > by t = f(t1,...,t,) >p s if b(|t]) > |s| and either of the
following hold:

(@) t; =psforsomei=1,...,n;
(b) t>p sandt > s; for all subterms s; of s,

where now >»; is recursively defined in terms of >,. Not only is >, now
by definition finitely branching, but assuming that >, is a primitive recursive
relation, as it invariably is, then >; is computably finitely branching: Because
t >, s only if b(|t]) = |s| and hence h(b(|t])) > h(]s|]) > s, and we can therefore
take the branching function c. (f) € X* to be the primitive recursively definable
sequence consisting of exactly those terms s < h(b(|t])) satisfying s <; t.

The crux of the idea is the following: For any finite rewrite system R reduc-
ing under some >, we can typically compute some b such that R is reducing
under >;,. In other words, for any fixed R we can find a finitely branching
approximation > of > sufficient for proving wellfoundedness of R. Then the
derivational height of R is bounded by the derivational height of >.

In this case, our complexity results in Corollaries 3.14 and 3.18 provide us
with a means of bounding the derivational height of rewrite systems, and the
generality of our results suggest that they are indeed applicable to a wide range
of different path orders. We finish by sketching a simple example.

4.3 Example: the multiset path order

We now show how the well known primitive recursive bound on the complexity
of rewrite systems terminating under the multiset path order can be reobtained
in our setting. Actually, for simplicity we take a restricted form of the product
path order: Though we can deal with the full multiset path order, it is slightly
more technical and here our priority is to simply provide an illustration of our
abstract result.

Our simple variant of the multiset path order is obtained by instantiating
>ast=f(t,...,ty) > sif

® s=9(s1,...,54) with f >r gand t > s; for all i, or

e s = f(sq,...,54)and t > s; for all i and t; > s; for some i = 1,...,n and
sj=tjforall j #1i,

where > is some wellfounded binary relation on function symbols. It turns out
that any rewrite system reducing under the multiset path order is also reducing
under the approximate order > in which the bounding function b is simply
b(n) = n + k, and k is some sufficiently large number which can be effectively
computed from the rules of the rewrite system R (more specifically, following
[6] we can take k = max{ |[r| | [— r € R}).

Given in full, then, the approximate multiset path order > is defined as
follows: t = f(t1,...,t,) >k siff k + [t| > |s| and either

21

(@) t; >y sforsomei=1,...,n;

(b) f(t1, ..., tn) > s

where f(t1, ..., tn) > s iff!
(i) s =g(s1,.-.,5m) with f >p gand t > s; for all i;

(ii) s = f(s1,...,54) and t > s; for all i and t; > s; for some i and s; = ¢; for all
j#E L

Now, define the relation »; on X x X as follows: (f(ti,...,t.),u) »x
(§(s1,---,5m), v) iff

f>g or f=gA@)uDdv;A(Nj#i)(uj20))).

where (D) 2 denotes the (strict) inclusion order on lists. It is easy to see that
if My o(t,u) A My o(5,0) At > s then (¢t u) »x (s,0): In the case that (i) holds
then f >r ¢ so this is clearly true, while if (ii) holds there is some i such that
ti >k sibutt; = s; otherwise. But M. . (t, u) implies that T(t;, u;), and analogously
M. (s, v) implies T(s;, v;), and so t; >, s; implies that v; is a subsequence of u;.
Similarly, we must have u; = v; otherwise.

Not only is » primitive recursive, but it is not difficult to show that Rec
is definable in Tp: This is just a bounded recursion in the first component,
while in the second component we can find an encoding of T* into IN such that
(F)(u; > v; A (V] # 1)(uj 2 v5)) implies that u > v.

Therefore by Corollary 3.18, the derivational height of >; is bounded by
a primitive recursive function, and therefore the same is true for any rewrite
system R reducing under >. Note that this primitive recursive bound on the
derivation height can be easily converted to one in terms of a bound on |¢[: if
[t| < n then t < h(|t[) < h(n) by monotonicity of /i, and since the latter is also
primitive recursive, we can primitive recursively compute the maximum of the
derivation height for all ¢ < h(n).

Both the multiset and lexicographic path orders are studied in more detail
by the author together with Georg Moser in [18], where a more detailed con-
struction of the derivational height functions is given than our brief sketch here.
However, the main results of this paper constitute a considerable generalisation
of [18].

>, X

5 Conclusion

The main result of this paper was a computational analysis of the wellfounded-
ness of abstract path orders, which in particular subsumes the usual recursive
path orders encountered in the term rewriting literature. A such, the paper is
a contribution to the proof theoretic analysis of termination, which has seen a

INote that in (ii) the condition t > s; is actually redundant since f; > s; and thus we can infer
t > s; from clause (a).

22

number of recent developments [3, 4, 10, 18]. As a consequence of our theo-
retical work, we provide a series of metatheorems which allow us to relate the
complexity of a wellfounded order to some subrecurive system of functionals.
As far as applications are concerned, while we only sketched an illustration of
this in Section 4, we believe that the formal extraction of programs from termi-
nation proofs has a great deal of potential in providing upper bounds on the
complexity of programs, and in this article hope to have provided a promising
first step in this direction.

An obvious direction for future research is to use the techniques presented
here to obtain new bounds and metatheorems for the complexity of concrete
termination orders. While we mentioned the well-known recursive path orders
as a simple example of where Corollary 3.18 could be applied, of particular
interest would be the analysis of termination orders for which an upper bound
on the induced derivational height is not known. These might include, for
example, general orderings arising from the recent unifying work of Yamada
et al. [31], or extensions of the multiset path order considered in [5]*.

Most termination orders in the literature work on sets of first order terms.
However, up to the very final section we do not assume anything about the
structure of X, and it would be interesting to find out whether our termina-
tion arguments can be applied to more interesting structures. In particular,
Goubault-Larrecq [11] considers wellfounded orders on graphs, automata and
higher-order functionals, and it would be intriguing to see whether any mean-
ingful complexity results could be obtained in this context.

In our approach, we establish complexity bounds by extracting higher-order
recursive programs in some subrecursive calculus of functionals, and looking
at the type 1 functions definable in these calculi. A number of similar proof
theoretic investigations of path orders and abstract notions of termination exist
in the literature, notably those due to Weiermann [27, 29] which are based on
an intricate ordinal analysis. It would be instructive to make more precise how
our framework based on variants of bar recursion compares to his.

Finally, as briefly mentioned in Section 3.4, it would be interesting to for-
mally establish a set of closure properties along the lines of [8, 19, 23] for finitely
branching bar recursion, which would give a direct correspondence between the
subrecursive strength of bar recursors and the derivational height of abstract
orders.

Acknowledgements. First of all, I am very grateful to the two anonymous
referees for their many detailed comments and corrections, which much im-
proved the paper. I am indebted to Georg Moser for suggesting to me a proof
theoretic study of termination principles in the first place, and in particular for
pointing out that the results of [6] can be viewed in a more abstract way. Sam
Sanders read an earlier draft of this paper, and I thank him for his suggestions.
This work was partially supported by the Austrian Science Fund (FWF) project

2the path orders in [5] were suggested to me by one of the referees as a potential application of
the complexity results here

23

P 25781-N15.

References

[1] M. Avanzini and G. Moser. Polynomial path orders. Logical Methods in
Computer Science, 9(4), 2013.

[2]]J. Avigad and S. Feferman. Godel’s functional (“Dialectica”) interpretation.
In S. R. Buss, editor, Handbook of Proof Theory, volume 137 of Studies in
Logic and the Foundations of Mathematics, pages 337-405. North Holland,
Amsterdam, 1998.

[3] S.Berardi, P. Oliva, and S. Steila. An analysis of the Podelski-Rybalchenko
termination theorem via bar recursion. Journal of Logic and Computation,
29(4):555-575, 2019.

[4] S. Berardi and S. Steila. An intuitionistic version of Ramsey’s Theorem
and its use in program termination. Annals of Pure and Applied Logic,
166(12):1382-1406, 2015.

[5] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations: A way
to control resources. Theoretical Computer Science, 412(25):2776-2796, 2011.

[6] W.Buchholz. Proof-theoretic analysis of termination proofs. Annals of Pure
and Applied Logic, 75:57-65, 1995.

[7] N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer
Science, 17(3):279-301, 1982.

[8] M. Escard¢, P. Oliva, and T. Powell. System T and the product of selection
functions. In Proceedings of Computer Science Logic (CSL '11), volume 12 of
LIPIcs, pages 233-247, 2011.

[9] M. C. F. Ferreira and H. Zantema. Well-foundedness of term orderings.
In N. Dershowitz, editor, Conditional Term Rewriting Systems (CTRS "94),
volume 968 of LNCS, pages 106-123, 1995.

[10] E. Frittaion, S. Steila, and K. Yokoyama. The strength fo the SCT crite-
rion. In Proceedings of TAMC ’17, volume 10185 of LNCS, pages 260-273.
Springer, 2017.

[11] J. Goubault-Larrecq. Well-founded recursive relations. In Computer Science
Logic (CSL’01), volume 2142 of LNCS, pages 484498, 2001.

[12] D. Hofbauer. Termination proofs by multiset path orderings imply primi-
tive recursive derivation lengths. Theoretical Computer Science, 105(1):129—
140, 1992.

[13] W. A. Howard. Ordinal analysis of bar recursion of type zero. Compositio
Mathematica, 42:105-119, 1981.

24

[14] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Monographs in Mathematics. Springer, 2008.

[15] G. Kreisel. A Survey of Proof Theory II. Studies in Logic and the Foundations
of Mathematics, 63:109-170, 1971.

[16] A. Kreuzer. Primitive recursion and the chain antichain principle. Notre
Dame Journal of Formal Logic, 53(2):245-265, 2012.

[17] C. S. Lee, N. D. Jones, and A. M. Ben-Amran. The size-change principle
for program termination. In Proceedings of POPL'01, volume 36 of ACM
SIGPLAN Notices, pages 81-92, 2001.

[18] G. Moser and T. Powell. On the computational content of termination
proofs. In Proceedings of Computability in Europe (CiE 2015), volume 9136 of
LNCS, pages 276-285, 2015.

[19] P. Oliva and S. Steila. A direct proof of Schwichtenberg’s bar recursion
closure theorem. Journal of Symbolic Logic, 83(1):70-83, 2018.

[20] A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings of
Logic in Computer Science (LICS 2004), pages 32—41. IEEE Press, 2004.

[21] T. Powell. The equivalence of bar recursion and open recursion. Annals of
Pure and Applied Logic, 165(11):1727-1754, 2014.

[22] T. Powell. Well quasi-orders and the functional interpretation. In P. Schus-
ter, M. Seisenberger, and A. Weiermann, editors, Well-Quasi Orders in Com-
putation, Logic, Language and Reasoning, volume 53 of Trends in Logic, pages
221-269. Springer, 2020.

[23] H. Schwichtenberg. On bar recursion of types 0 and 1. The Journal of
Symbolic Logic, 44:325-329, 1979.

[24] M. Seisenberger. On the Constructive Content of Proofs. PhD thesis, Ludwig
Maximilians Universitit Miinchen, 2003.

[25] C.Spector. Provably recursive functionals of analysis: a consistency proof
of analysis by an extension of principles in current intuitionistic mathemat-
ics. In E D. E. Dekker, editor, Recursive Function Theory: Proc. Symposia in
Pure Mathematics, volume 5, pages 1-27. American Mathematical Society,
Providence, Rhode Island, 1962.

[26] A.S.Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis, volume 344 of Lecture Notes in Mathematics. Springer, Berlin, 1973.

[27] A. Weiermann. Complexity bounds for some finite forms of Kruskal’s
theorem. Journal of Symbolic Computation, 18:463-488, 1994.

25

[28] A. Weiermann. Termination proofs with lexicographic path orderings
imply multiply recursive derivation. Theoretical Computer Science, 139:355—
362, 1995.

[29] A.Weiermann. Bounding derivation lengths with functions from the slow
growing hierarchy. Archive for Mathematical Logic, 37:427—-441, 1998.

[30] A.Weiermann. How is it that infinitary methods can be applied to finitary
mathematics? Godel’s T: A case study. Journal of Symbolic Logic, 63(4):1348—
1370, 1998.

[31] A. Yamada, K. Keiichirou, and T. Sakabe. A unified orderings for termi-
nation proving. Science of Computer Programming, 111:110-134, 2015.

26

