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Abstract

We give a computational interpretation to an abstract formulation of Krull’s theorem,
by analysing its classical proof based on Zorn’s lemma. Our approach is inspired by proof
theory, and uses a form of update recursion to replace the existence of maximal ideals. Our
main result allows us to derive, in a uniform way, algorithms which compute witnesses
for existential theorems in countable abstract algebra. We give a number of concrete
examples of this phenomenon, including the prime ideal theorem and Krull’s theorem on
valuation rings.
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1 Introduction

Krull’s theorem for prime ideals is a fundamental result from abstract algebra. It can be
formulated as follows: Let F ⊆ R be an arbitrary subset of some commutative ring R. Then
whenever r ∈ R lies in the intersection of all prime ideals containing F , the element r also
lies in the radical ideal

√
(F ) generated by F , or in other words:⋂
{P : F ⊆ P and P a prime ideal} ⊆

√
(F ).

The standard proof of this fact appeals to Zorn’s lemma. More specifically, we assume for
contradiction that r /∈

√
(F ) and consider an ideal which is maximal among all ideals I such

that F ⊆ I but r /∈ I. We conclude by demonstrating that this maximal ideal must be prime.
The second author, together with Rinaldi, has shown that the basic idea behind Krull’s

theorem can be presented in a generalised way, as a universal Krull–Lindenbaum theorem [39],
so that it subsumes a large collection of important results in abstract algebra and beyond,
including Krull’s theorem for valuation rings, the Artin–Schreier theorem, and Lindenbaum’s
lemma for complete theories. This is achieved by abstracting prime ideals from commutative
rings to the context of finitary coverings and binary operations, a move in the vein of formal
topology [44] which cannot be thought of without the time-honoured point-free presentation
of the Zariski spectrum as a distributive lattice [14]; for details we refer to [46].

In this article, we give a computational interpretation to this universal form of Krull’s
theorem by analysing its proof. This is challenging, because the proof is non-constructive,
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and in particular invokes maximal ideals via Zorn’s lemma. We tackle this problem by using
ideas from applied proof theory, where in particular we employ a form of update recursion in
the sense of [3, 32] - which in turn dates back to Spector’s pioneering work on bar recursion
[56] - to eliminate the use of Zorn’s lemma and compute an ‘approximate’ maximal ideal in
its place.

By instantiating the parameters of our abstract computational interpretation of Krull’s
theorem in a suitable way, algorithms for computing witnesses for existential statements in a
range of concrete settings can be derived in a uniform manner. We present several examples in
the second part of the paper. Our paper extends some initial ideas in this direction presented
in [36]: there, we focus on a very simple instance of Krull’s theorem, whereas our more
abstract framework here not only allows us to consider a range of different applications, but
could be readily applied to other case studies in future work.

Our results can be viewed as a new application of proof theory in the spirit of Kreisel
[17, 18], in which we use proof-theoretic techniques to give finitary formulations to infinitary
reasoning. Most existing work in this direction, particularly the so-called ‘proof mining’
program, focuses on areas of analysis (see the standard text [15] and also the recent survey
[16]), but in the last few years some exciting case studies have been produced in algebra
(notably [54]). We too seek to bring ideas such as the Dialectica interpretation to bear on
proofs in abstract algebra, but while [54] focuses on achieving new effective bounds from
proofs, we emphasise on the other hand general algorithmic patterns which correspond to the
use of Zorn’s lemma in a countable setting. Similar work in this direction but in the context
of infinitary combinatorics can be found in [30, 35].

In making explicit how proof theoretic techniques can be used to obtain concrete algo-
rithms in commutative algebra, we hope that our work opens the way to a more detailed
investigation of the connections between constructive algebra and more traditional proof-
theoretic techniques such as proof interpretations. While this is a question that we leave
open for now, it is nevertheless important that we not only highlight related work in con-
structive mathematics but also emphasise how elements of our work owe a debt to this area.

As compared to intuitionistic algebra [59] or algebra in the style of Bishop’s constructive
mathematics [22], the idea of tackling transfinite methods in algebra, which nowadays typically
come in the guise of Zorn’s Lemma, is more recent. This has only become possible by using
dynamical methods [11, 12], which now are well established - see e.g. the survey articles
[8, 20] and the comprehensive monographs [21, 63].

Incidentally, dynamical methods have been applied to Krull’s theorem for prime ideals,
the main focus of our work, only very recently [52], which however has immediately prompted
a systematic presentation of these methods: a dynamical counterpart [50] of the syntactical
conservation criterion [40, 41] the semantics of which include the universal Krull–Lindenbaum
theorem [39], the latter being crucial for the present paper as indicated above. With the
axioms-as-rules paradigm [24, 25, 43], this conservation criterion further subsumes [42, 45, 60]
and a wealth of cases from the literature, e.g. [4, 10, 19, 23, 26]. The latter development, which
carries over from prime to maximal ideals [49, 51], rests upon the idea of viewing entailment
as a relation between arbitrary objects [53], and using this as a tool to syntactically simulate
the ‘ideal’ objects one encounters in abstract mathematics [4].

A paper directly relevant to our work is [62], which appeals to dynamical reasoning to
eliminate a specific use of maximal ideals and instead replace them with a backtracking
algorithm; for a related approach to prime ideals we refer to [47, 48]. Our main result in
Section 4.2 is based on a similar idea, and replaces maximality principles in the countable
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setting with a kind of ‘update recursion’. This form of recursion essentially goes back to
Spector’s classic paper [56] on interpreting the axiom of countable choice via bar recursion,
and has been already studied in the context of open induction [3, 5, 33, 37] which is nothing
but a contrapositive formulation of Zorn’s lemma.

All of the concrete applications of our general framework have already been analysed from
the point of view of constructive or dynamical algebra, and given explicit proofs. For instance,
that invertible polynomials have nilpotent non-constant coefficients (Section 5.1) is studied
in [2, 7, 21, 29, 38, 47, 48, 63]. Similarly, Krull’s theorem for valuation rings and Kronecker’s
theorem (Section 6) are treated in [10] and [19], have given rise to the celebrated paper [6],
and more recently have been studied in the light of Lorenzen’s ground-breaking but hitherto
neglected work [9, 27].

We do not claim that the algorithms given in this paper are in any way superior to those
which result from the aforementioned works. In particular, our algorithms rely in a crucial way
on an enumeration of the underlying structure, which is typically not the case in constructive
algebra. (The countable case, however, often suffices for applications by way of the method
of indeterminate coefficients [21]: to deduce new equations about elements c1, . . . , cN of an
arbitrary ring, work instead in the polynomial ring Z[c1, . . . , cN ] modulo the given relations
between those elements.) Our aim is simply to investigate nonconstructive reasoning in
commutative algebra from a different perspective, using a different set of techniques which
are not often applied in this area.

2 A universal Krull theorem

We begin by introducing a variant of the abstract Krull-Lindenbaum lemma presented in [39],
and give a formal treatment of this result in the countable setting, where in particular we
show that its usual proof based on Zorn’s lemma (which in [39] is formulated in the guise of
open induction) can be reduced to an instance of dependent choice for ∀-formulas. This for-
malisation inspires our use of an algorithm based on update recursion to give a computational
interpretation to the proof of the lemma in Section 4.

2.1 Basic notions

Before we begin, we recall some basic concepts from ring theory. Let R be a commutative
ring. Then an ideal I is a subset of R which contains zero, is closed under addition, and
satisfies the property that

a ∈ I ⇒ ab ∈ I
for any a, b ∈ R. Given an arbitrary subset U ⊆ R, we write (U) for the ideal generated by
U , that is

(U) = {a1u1 + . . .+ akuk : k ∈ N, a1, . . . , ak ∈ R, u1, . . . , uk ∈ U}

where we use the convention that the empty sum i.e. k = 0 is equal to the zero element of R.
An ideal is proper if 1R /∈ I, and is prime if it satisfies

ab ∈ I ⇒ a ∈ I ∨ b ∈ I

for any a, b ∈ R. In the remainder of this section, we will abstract these basic notions in
terms of arbitrary finitary coverings �, and will talk about �-ideals and so on. Ring ideals
in the usual sense are then just instances of this more general phenomenon.
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2.2 Finitary coverings and ideals

The notion of a finitary covering goes back to Tarski’s concept of consequence operator [57]
and also the axiom systems of Hertz [13], and is fundamental to the abstract approach of
[39] (see Section 3), which is in turn based on ideas from universal algebra and point-free or
formal topology. For the remainder of this section, we take S to be an arbitrary set, although
from Section 2.4 onwards this will be countable.

Notation. Throughout the article, for sets U, V ⊆ S and an element x ∈ S we write U, V and
U, x as shorthands for U ∪ V and U ∪ {x}, and the like.

Definition 2.1. A finitary covering � is a binary relation A� a on finite subsets A ⊆ S and
elements a ∈ S, which satisfies the following two conditions:

– Reflexivity : {a}� a;

– Transitivity : If B � b and A, b� a then A ∪B � a.

Remark 2.2. By iterating transitivity we obtain, more generally, that whenever {a1, . . . , ak}�a
and Bi � ai then

⋃k
i=1Bi � a.

Remark 2.3. We could extend the relation � to P(S)× S by defining

U � a :⇔ A� a for some finite A ⊆ U.

This would then coincide with the usual notion of a finitary covering in formal topology, also
used in [39].

Definition 2.4. For any U ⊆ S we define the closure 〈U〉 of U with respect to some finitary
covering � by

〈U〉 := {a ∈ S : A� a for some A ⊆ U}.

One can view 〈−〉 as an algebraic closure operator (in the sense of universal algebra) on
the subsets of S. In particular, 〈−〉 has the following properties:

Lemma 2.5. Let � be a finitary covering. Then the following hold:

(i) U ⊆ 〈U〉.

(ii) If U ⊆ 〈V 〉 then 〈U〉 ⊆ 〈V 〉.

Proof. The first part U ⊆ 〈U〉 follows from reflexivity of �, since a ∈ U implies U ⊇ {a}� a
and thus a ∈ 〈U〉. For the second part, suppose that U ⊆ 〈V 〉 and a ∈ 〈U〉. Then A =
{a1, . . . , ak}� a for ai ∈ U ⊆ 〈V 〉, which in turn implies that Bi � ai for some finite Bi ⊆ V
for each i = 1, . . . , k. By transitivity (cf. Remark 2.2) we have V ⊇

⋃k
i=1Bi � a and thus

a ∈ 〈V 〉. This establishes 〈U〉 ⊆ 〈V 〉.

Remark 2.6. As a direct result of Lemma 2.5 we obtain 〈U〉 = 〈〈U〉〉 for any U ⊆ S.

Definition 2.7. Let � be a finitary covering.

– A �-ideal is a set I ⊆ S satisfying I = 〈I〉. An ideal I is proper if I ( S.

– For U ⊆ S we say that 〈U〉 is the ideal generated by U .

– An ideal I is finitely generated if I = 〈{a1, . . . , ak}〉 for some a1, . . . , ak ∈ S.
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Definition 2.8. Let � be a finitary covering. A multiplication operation (w.r.t. �) is a binary
operation ◦ : S × S → S which satisfies the following condition:

– Encoding : A, a� c and B, b� c implies A ∪B, a ◦ b� c

The importance of Encoding has been noted in [39, 40, 41]. We can extend ◦ to a binary
relation on subsets of S by defining

U ◦ V := {a ◦ b : a ∈ U, b ∈ V }.

Definition 2.9. Let � be a finitary covering and ◦ a multiplication operation. We say that an
ideal I is prime if it satisfies

a ◦ b ∈ I ⇒ a ∈ I ∨ b ∈ I.

2.3 Krull’s theorem

We now state and prove our abstract Krull theorem. For the remainder of this section, we fix
some S equipped with a finitary covering � and multiplication operation ◦. We first need a
suitable formulation of Zorn’s lemma.

Definition 2.10. Let θ be an arbitrary predicate on finite subsets A ⊆ S. We define the
predicate θ� on arbitrary subsets U ⊆ S as follows:

θ�(U) :⇔ θ(A) holds for all finite A ⊆ 〈U〉.

We call a predicate Θ on subsets U ⊆ S open if

Θ(U)⇔ θ�(U)

for a suitable predicate θ on finite subsets of S.

Remark 2.11. Note that whenever Θ is open, by Lemma 2.5 and Remark 2.6 we have

Θ(U)⇔ Θ(〈U〉) and U ⊆ V ⇒ Θ(U) ⊆ Θ(V ) .

The following is a tailor-made variant of what is known as the Teichmüller–Tukey Lemma:

Theorem 2.12 (Existence of maximal ideals). Let Θ be an open predicate and F ⊆ S an
arbitrary set satisfying Θ(F ). Then there exists an ideal M ⊇ F satisfying Θ(M), which is
maximal in the sense that ¬Θ(M,a) for any a /∈M .

Proof. The proof uses Zorn’s lemma in the usual way. Define

Z := {U ⊆ S : F ⊆ U and Θ(U)}.

Then Z is nonempty since F ∈ Z. We show that every chain in Z has an upper bound in
Z. To this end, take an arbitrary nonempty chain γ in Z and define W :=

⋃
U∈γ U . Then

F ⊆W by nonemptyness of γ, and it remains to show that Θ(W ) holds. Since Θ is open, we
have Θ(U)⇔ θ�(U) for some predicate θ. Let A = {a1, . . . , ak} and suppose that A ⊆ 〈W 〉,
which means that for each i = 1, . . . , k we have Ai � ai for some finite Ai ⊆W . Now there is
some U ∈ γ such that Ai ⊆ U and thus ai ∈ 〈U〉 for each i = 1, . . . , k (note that for A = ∅
and thus k = 0 this follows by nonemptyness of γ). In other words, we have A ⊆ 〈U〉, and
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since Θ(U) holds we must have θ(A). But we have therefore shown that θ(A) holds for any
finite A ⊆ 〈W 〉, which establishes Θ(W ). Therefore γ has an upper bound W ∈ Z.

We can now apply Zorn’s lemma to Z, which asserts the existence of some maximal element
M ∈ Z. By Remark 2.11 we have Θ(〈M〉) and thus 〈M〉 ∈ Z, since also F ⊆ M ⊆ 〈M〉.
Hence M = 〈M〉 by maximality of M . Finally, suppose that a /∈M . Then by maximality we
have M,a /∈ Z, and since F ⊆M,a this must imply that ¬Θ(M,a).

We are now ready to present the abstract Krull theorem which will be analysed in the
remainder of the paper. The result is essentially a reformulation of Theorem 14 from [39].

Theorem 2.13 (Krull’s theorem). Let F ⊆ S be an arbitrary set. Then we have⋂
{P : F ⊆ P and P a prime ideal} ⊆ 〈F 〉.

Proof. It suffices to show that for any r /∈ 〈F 〉 there exists at least one prime ideal P with
F ⊆ P but r /∈ P . To this end we apply Theorem 2.12 with

Θ(U) :≡ r /∈ 〈U〉 ,

which is clearly open since

r /∈ 〈U〉 ⇔ ¬(A� r) for any finite A ⊆ 〈U〉

From the assumption that r /∈ 〈F 〉, there exists by Theorem 2.12 some ideal M ⊇ F with
r /∈ 〈M〉 = M but r ∈ 〈M,a〉 for any a /∈M . We now show that M is prime, which completes
the proof.

Suppose for contradiction that there are some a, b with a ◦ b ∈ M but a, b /∈ M . From
a /∈ M and maximality of M it follows that r ∈ 〈M,a〉 i.e. A′ � r for a finite A′ ⊆ M,a.
Moreover, it must be the case that a ∈ A′, i.e. A′ = A, a for some finite A ⊆ M , since
otherwise we would have M � a and thus r ∈ 〈M,a〉 = 〈M〉. Similarly, from b /∈M it follows
that B, b�r for some finite B ⊆M . Therefore by encoding it follows that A∪B, a◦b�r from
which we have r ∈ 〈M,a ◦ b〉. But then we must have a ◦ b /∈ M , a contradiction. Therefore
M is prime.

A simple and well-known consequence of this theorem is the following, which was already
analysed in [36] and will be examined in more generality in Section 5.

Corollary 2.14. Let S be a commutative ring (with ideals now defined in the usual sense).
Then ⋂

{P : P a prime ideal} ⊆
√

0

where for an ideal I ⊆ S,
√
I denotes its radical, that is, the ideal

√
I := {a ∈ R : ∃e > 0 (ae ∈ I)}.

Proof. We instantiate ◦ as ring multiplication, and define

A� a :⇔ (∃~x ∈ S|A|, e > 0)(A · ~x = ae),

where for A := {a1, . . . , ak} with |A| = k and ~x = (x1, . . . , xk) we define A · ~x as shorthand
for a1x1 + . . . + akxk. To see that � constitutes a finitary covering, first observe that we
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trivially have {a}� a since a1S = a1. For transitivity, supposing that B � b and A, b� a i.e.
B · ~x = be1 and A · ~y + bz = ae2 for some ~x, ~y, z, e1, e2, then it follows that

ae1e2 = (A · ~y + bz)e1 = A · ~u+ be1ze1 = A · ~u+ (B · ~x) ze1 = (A ∪B) · ~v

for suitable ~u and ~v, which establishes A ∪ B � a. Finally, to see that ring multiplication
is a multiplication operation w.r.t. �, suppose that A, a � c and B, b � c, in other words,
A · ~x+ au = ce1 and B · ~y + bv = ce2 for some ~x, ~y, u, v, e1, e2. Then we have

ce1+e2 = (A · ~x+ au)(B · ~y + bv) = (A ∪B)~z + (ab)uv

for suitable ~z, and therefore A ∪B, ab� c.
Now, letting (U) denote the ideal generated by U in the usual sense, we observe that for

any U ⊆ S we have

〈U〉 = {a ∈ S : ∃k ∈ N,~a ∈ Uk, ~x ∈ Sk, e > 0 (~a · ~x = ae)}
= {a ∈ S : ∃e > 0 (ae ∈ (U))}

=
√

(U).

In particular, I is an �-ideal precisely when I =
√

(I), and since this makes I an ideal in
the usual sense we have I =

√
I i.e. �-ideals are precisely the radical ideals of S. Applying

Theorem 2.13 for F := {0} we obtain⋂
{P : P is a prime �-ideal} ⊆

√
0,

and since all prime ideals are radical, the result follows.

Similar arguments for reflexivity, transitivity and encoding in the case of a commutative
ring have been used elsewhere, e.g. in [46, 47, 48].

2.4 Formalising Krull’s theorem in the countable setting

We now focus on the special case that our underlying set S is countable, and fix some enu-
meration

S := {sn : n ∈ N} .

We will show that in this case, Theorem 2.13 can be formalised using countable dependent
choice, an observation which inspires our computational interpretation of the theorem in the
next section. This subsection is not essential for what follows. In particular, Sections 3
and 4 are self-contained and do not rely on results of this subsection. We include them simply
to give the proof-theoretically inclined reader some insight into where the algorithmic version
of Krull’s theorem comes from.

Our first result demonstrates that in the countable setting, maximality in the sense of
Theorem 2.12 can be phrased in a sequential manner. The proof adapts a standard trick from
reverse mathematics, see e.g. [55, Chapter III.5]. For the rest of this section, we take for
granted that everything can be formalised over the base theory PAω of Peano arithmetic in
all finite types (for details of this theory see e.g. [15], though precise details are not important
for the sketch which follows).
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Definition 2.15. Given some U ⊆ S we define Un to be the initial segment of U of length
n ∈ N, by which we mean

Un := U ∩ {si : i < n},

Note that U0 = ∅ and U =
⋃
n∈N Un.

Lemma 2.16. Let Θ be an open predicate and F ⊆ S an arbitrary set satisfying Θ(F ). Define
the predicate ΘF by

ΘF (U) :⇔ Θ(F ∪ U).

Suppose that M ⊆ S satisfies
sn ∈M ⇔ ΘF (Mn, sn) (1)

for all n ∈ N. Then M is a maximal ideal in the sense of Theorem 2.12, in other words, it
satisfies F ⊆M , Θ(M) and ¬Θ(M,a) for any a /∈M .

Proof. We first show by induction that for any n ∈ N we have

(∗) Fn ⊆Mn and ΘF (Mn).

For n = 0 this means Θ(F ). For the induction step there are two possibilities. If sn ∈ M ,
then Mn+1 = Mn, sn and thus ΘF (Mn+1) is equivalent to ΘF (Mn, sn), which is true by (1).
Moreover, we have Fn+1 ⊆ Fn, sn ⊆ Mn, sn = Mn+1 by induction. On the other hand, if
sn /∈ M then Mn+1 = Mn and thus ΘF (Mn+1) is equivalent to ΘF (Mn), which holds by the
induction hypothesis. To see that Fn+1 ⊆ Mn+1 = Mn whenever sn /∈ M , by induction it
suffices to show that sn /∈ F , i.e. Fn = Fn+1. But if sn ∈ F then ΘF (Mn, sn) ⇔ ΘF (Mn),
and since the latter is true, by (1) this would contradict sn /∈ M . We now show that M has
each of the desired conditions.

First of all, it is clear from (∗) that

F =
⋃
n∈N

Fn ⊆
⋃
n∈N

Mn = M.

To see that M is an ideal, suppose for contradiction that sn ∈ 〈M〉 but sn /∈ M for some
n ∈ N. Then we have A� sn for some finite A ⊆ M but ¬ΘF (Mn, sn) by (1). Observe that
since A is finite there is some k ∈ N sufficiently large such that A ⊆ Mk. We now consider
two cases: If k ≤ n then A ⊆Mn and thus

〈F ∪Mn, sn〉 = 〈F ∪Mn〉

by transitivity of �. By Remark 2.11, in particular, ¬ΘF (Mn, sn) would imply ¬ΘF (Mn),
contradicting (∗). Similarly, on the other hand, if n < k then Mn, sn ⊆ Mk, sn and thus
¬ΘF (Mn, sn) implies ¬ΘF (Mk, sn), which in turn means ¬ΘF (Mk) since 〈F ∪Mk, sn〉 =
〈F ∪Mk〉, and thus contradicts (∗). Here we repeatedly use Remark 2.11.

To see that Θ(M), i.e. that ΘF (M) follows from (∗) it is enough to observe, for every finite
A, that if A ⊆ 〈F ∪M〉 then A ⊆ 〈F ∪Mn〉 for sufficiently large n. Finally, for maximality,
suppose that a = sn /∈ M . Then ¬ΘF (Mn, sn) by (∗), and since 〈F ∪Mn, sn〉 ⊆ 〈F ∪M, sn〉
it follows that ¬ΘF (M, sn), again by Remark 2.11.
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Definition 2.17. A formula Q on ~X, where here ~X is some tuple of types in PAω, is primitive
recursive if there exists some primitive recursive functional tQ : ~X → {0, 1} such that

Q(~x)⇔ tQ(~x) = 1

A formula P (~x) on some tuple of typed variables is a ∃- resp. ∀-formula when it can be
expressed in the form ∃~y Q(~x, ~y) resp. ∀~y Q(~x, ~y) for primitive recursive Q.

Proposition 2.18. Suppose that � is an ∃-formula i.e. is of the form

A� a⇔ ∃x ∈ X (A�x a)

where the ternary relation A �x a is primitive recursive and X is some type in PAω. Then
Theorem 2.12 applied to an open predicate of the form Θ(U)⇔ θ�(U) for primitive recursive
θ(A) can be formalised in PAω + ∀-DC, where the latter stands for the axiom of countable
dependent choice for ∀-formulas.

Proof. We first observe that

a ∈ 〈U〉 ⇔ (∃A ⊆ U, x ∈ X)(A�x a)

and so a ∈ 〈U〉 is an ∃-formula. By coding variables into tuples, it follows more generally
that the formula A ⊆ 〈U〉 for finite A is also an ∃-formula. But then since

Θ(U)⇔ (∀A)(A ⊆ 〈U〉 ⇒ θ(A)),

it follows that Θ(U) is a ∀-formula, since the premise of the implication above is an ∃-formula
and the conclusion is primitive recursive.

Now, let F ⊆ S be an arbitrary set satisfying Θ(F ). For a binary sequence b0, . . . , bn−1
let [b0, . . . , bn−1] ⊆ S denote the finite subset {si : i < n ∧ bi = 1}. Construct the function
f : N→ {0, 1} as follows: If f(0), . . . , f(n− 1) have already been defined then

f(n) :=

{
1 if ΘF ([f(0), . . . , f(n− 1)], sn)

0 otherwise.

Then the set M := {sn : f(n) = 1} satisfies the premise (1) of Lemma 2.16, and is therefore
a maximal ideal. But the proof of Lemma 2.16 uses only induction and thus can be formalised
in PAω. The above instance of dependent choice involves a decision on a ∀-formula and thus
an instance of ∃∀-DC, which by introducing dummy variables can be reduced to an instance
of ∀-DC (see e.g. [15, p. 208]).

Corollary 2.19. Suppose that � is an ∃-formula. Then Theorem 2.13 can be formalised in
PAω + ∀-DC.

Proof. The proof of Theorem 2.13 uses Theorem 2.12 for Θ(U)⇔ θ�(U) for θ(A) :⇔ r /∈ A,
which is primitive recursive since this involves checking the code of r against the finite number
of elements in A. Thus by Proposition 2.18, the existence of a maximal ideal in this case is
provable in PAω + ∀-DC. Since the remainder of the proof of Theorem 2.13 uses simple
classical logic and so can clearly be formalised in PAω, we are done.
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3 A computational formulation of Krull’s theorem

In this and the following section we present the central result of the paper, namely a com-
putational interpretation of the universal Krull theorem (Theorem 2.13). Our first step is
to formulate precisely a computational problem corresponding to Krull’s theorem, which we
do below. In the next section, we present an algorithm which solves this problem. Though
we use ideas from proof theory, particularly proof interpretations such as realizability and
algorithmic ideas based on variants of bar recursion, everything that follows is presented in
a self-contained manner, and requires no prior knowledge of the aforementioned concepts.
From now on, we make the following key assumptions, which correspond to those in Section
2.4. These are that:

1. the underlying set S := {sn : n ∈ N} is countable,

2. the covering relation � is an ∃-formula, i.e. A � a ⇔ (∃x)(A �x a) for some primitive
recursive ternary relation A�x a.

Krull’s theorem as stated in Theorem 2.13 can be reformulated in a more explicit manner as
follows: Fixing some arbitrary F ⊆ S and r ∈ S, from the assumptions

(A) � is a finitary covering and ◦ a multiplication operator,

(B) r ∈
⋂
{P : F ⊆ P and P a prime ideal},

we can conclude that

(C) r ∈ 〈F 〉.

Thus, in the spirit of realizability, our aim is to find a procedure which transforms realizers
for the assumptions (A) and (B) into a realizer for the conclusion (C). The remainder of this
section is dedicated to carefully outlining exactly what constitutes a realizer in each case.

3.1 Realizing (A) via a cover structure

The assumption (A) consists of three components: that the relation � is reflexive and tran-
sitive (Definition 2.1), and that the multiplication operator ◦ satisfies the encoding property
(Definition 2.8). Let’s first consider reflexivity. Bearing in mind that � is an ∃-formula, this
corresponds to the following logical statement:

(∀a ∈ S)(∃x ∈ X)({a}�x a).

A computational interpretation of this statement would then be a function ι(a) which for any
a ∈ S returns some ι(a) ∈ X satisfying {a}�ι(a) a. Here we implicitly associate the element
a ∈ S with its code sn for some n ∈ N. Transitivity, on the other hand, takes the following
logical form:

(∀A,B, a, b)((∃x)(A�x a) ∧ (∃y)(B, a�y b)⇒ (∃z)(A ∪B �z b))

Its computational interpretation would be a function τ(A,B, a, b, x, y) such that whenever
A�x a and B, a�y b, we have A ∪B �z b for z := τ(A,B, a, b, x, y). Encoding is similar. We
now turn this idea into a formal definition, which we take to be a realizer for the assumption
(A).
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Definition 3.1 (Cover structure). A cover structure for � and ◦ is a triple of functions (ι, τ, η)
satisfying the following properties:

– ∀a ({a}�ι(a) a),

– ∀A,B, a, b, x, y (A�x a ∧B, a�y b⇒ A ∪B �τ(A,B,a,b,x,y) b),

– ∀A,B, a, b, c, x, y (A, a�x c ∧B, b�y c⇒ A ∪B, a ◦ b�η(A,B,a,b,c,x,y) c).

In concrete cases studied in later sections, these functions often only depend on some of their
arguments, and so we simply drop those arguments which do not play a role.

3.2 Realizing (B) via a ‘Krull functional’

The assumption (B) states that for any P ⊆ S, if both F ⊆ P and P is a prime ideal, then
we must have r ∈ P . An equivalent formulation is the following:

(∀P ⊆ S)(F * P ∨ P not a prime ideal ∨ r ∈ P )

A computational interpretation of this statement can be taken to be a functional ψ(P ), which
takes some arbitrary P ⊆ S as its input (which we assume is given as a characteristic function,
so that membership of P is a decidable property), and returns as output evidence that at
least one of the disjuncts holds. Let us now consider each of the disjuncts in turn. Since r ∈ P
is decidable, no further evidence is needed to justify this. On the other hand, the statement
F ⊆ P has the form

(∀a ∈ S)(a ∈ F ⇒ a ∈ P )

In other words, in order to justify F * P we must provide as evidence a concrete element
a ∈ S such that a ∈ F but a /∈ P . Next, P being a prime ideal is actually the conjunction
of two properties: namely being an ideal (Definition 2.7) and being prime (Definition 2.9).
Since P ⊆ 〈P 〉 trivially follows from reflexivity of � (Lemma 2.5), the property of being an
ideal can be reduced to the inclusion 〈P 〉 ⊆ P , which from a logical point of view corresponds
to

(∀A, x, a)(P ⊇ A�x a⇒ a ∈ P ).

Therefore to justify the claim that P is not an ideal, we must exhibit some A, x, a such that
P ⊇ A�x a but a /∈ P . Finally, since being prime corresponds to

(∀a, b, c)(c = a ◦ b ∈ P ⇒ a ∈ P ∨ b ∈ P )

as evidence for non-primality of P we require a, b, c such that c = a ◦ b and c ∈ P , but both
a /∈ P and b /∈ P . Bringing everything together, our functional ψ(P ) will return two things: A
marker which informs us which of the disjuncts we are seeking to verify, and the corresponding
evidence for this. We call such a functional a ‘Krull functional’. From now on we implicitly
associate subsets of S with their representation as objects of type S → {0, 1}, which taking
into account the enumeration of S can be reduced to an object of type N→ {0, 1}.
Definition 3.2 (Krull functional). Fixing parameters F and r, a Krull functional ψ : {0, 1}S →
{0, 1, 2, 3} × N is a functional which for any input P ∈ {0, 1}S satisfies

ψ(P ) = (0, a)⇒ a ∈ F ∧ a /∈ P
ψ(P ) = (1, 0)⇒ r ∈ P
ψ(P ) = (2, [A, x, a])⇒ A ⊆ P ∧A�x a ∧ a /∈ P
ψ(P ) = (3, [a, b, c])⇒ a ◦ b = c ∈ P ∧ a /∈ P ∧ b /∈ P

11



where [x1, . . . , xn] ∈ N denotes some coding of x1, . . . , xn as a single natural number, and we
implicitly associate elements a, b, c ∈ S with indices representing their enumeration.

Note that if the first component of ψ(P ) is 0, 1, 2 or 3, then F 6⊆ P , r ∈ P , P is not an
ideal and P is not prime, respectively.

3.3 The computational challenge

In order to realize our conclusion (C) that r ∈ 〈F 〉, we simply need to exhibit some A ⊆ F and
x such that A�x r. Thus our overall challenge is to compute A and x in terms of realizers for
our two main assumptions (A) and (B), in other words to give a pair of functionals A(ι, τ, η, ψ)
and x(ι, τ, η, ψ) such that fixing F ⊆ S and r

(ι, τ, η) a cover structure ∧ ψ a Krull functional w.r.t. F and r

⇒ F ⊇ A(ι, τ, η, ψ) �x(ι,τ,η,ψ) r.

This will be the goal of the next section.

4 The main algorithm

We now present our algorithm for solving the computational problem outlined in the previous
section. Just as the main component of the proof of Krull’s theorem is the use of a maxi-
mal ideal, our algorithm is based around the step-by-step construction of an ‘approximate’
maximal ideal. As we will see, an approximation suffices for finding some A and x which
satisfy F ⊇ A �x r, and in this way, the use of Zorn’s lemma is eliminated in favour of a
finitistic process, in a similar spirit to e.g. [62]. Our algorithm is essentially a variant of
update recursion, a well-known method for constructing approximations to choice sequences
which has appeared in many different guises over the years. This goes back at least as far
as Spector [56] (Section 12.1), and has more recently played a role in learning realizability of
Aschieri et al. [1], modified realizability [3] and the functional interpretation [28, 32, 33], and
has also been studied as a recursion scheme in its own right [31]. In particular, the algorithm
carries out recursion by successively extending a current approximation with new elements,
and termination is shown using a continuity argument, as is standard for algorithms of this
kind.

Our construction has some precedent in constructive algebra. For example, [22, Lemma
VI.3.2] presents a simplified construction whereby a maximal ideal is built step-by-step rela-
tive to some enumeration of the underlying ring. However, in this case there is an additional
assumption that all finitely generated ideals are detachable (i.e. decidable), and so the maxi-
mal ideal itself can be recursively constructed. We make no such assumption and must instead
build approximations, via a more complex procedure. The backtracking procedure of Yengui
[62] appears to be closer in spirit to ours, and it would be interesting to establish a more
precise connection with his construction.

4.1 Specifying the algorithm

We will describe our algorithm as a sequential computation on states {πi}i∈N, which starts
in some empty state π0 and successively updates π0 7→ π1 7→ . . . 7→ πk until it terminates in
some final state πk. This final state will contain the information we need for computing A
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and x. We begin by defining the structure of our states. We let [S] denote the set of all finite
subsets of S, and by X we mean the type of x in A�x a.

Definition 4.1. A state is a partial function π : N ⇀ [S] × X. We write πL : N ⇀ [S] and
πR : N⇀ X to denote the projections of π. Furthermore, we define:

(i) dom(π) := {n ∈ N : π(n) is defined} ⊆ N,

(ii) U(π) := {sn : n /∈ dom(π)} ⊆ S.

Remark 4.2. Formally, we envisage partial functions f : N ⇀ Y being represented as total
functions f ′ : N → {0, 1} × Y , where f ′(n) = (1, f(n)) on dom(f) and f ′(n) = (0, 0Y )
otherwise, for some canonical element 0Y ∈ Y . Thus, membership of dom(f) is a decidable
property.

For everything that follows, we now fix some F ⊆ S and element r ∈ S as universal
parameters. In addition to these, the algorithm we describe below will depend on a cover
structure (ι, τ, η) and a Krull functional ψ.

Definition 4.3. We say that a state π is partially maximal if

(a) F ⊆ U(π),

(b) if sn /∈ U(π), i.e. n ∈ dom(π), then πL(n) ⊆ F ∪ U(π)n and πL(n), sn �πR(n) r.

where we recall the notation U(π)n = U(π)∩ {si | i < n} (cf. Definition 2.15). Note that the
empty partial function is trivially partially maximal.

The intuition here is that the set U(π) represents an approximation from above/outside
to a maximal ideal M in the sense of the proof of Theorem 2.13, while the partial function π
provides justification for excluding an element from U(π) - this is the rationale for defining
U(π) to be the complement of the domain of π. To be more precise, recall that the object M
in the proof of Theorem 2.13 satisfies

(i) F ⊆M

(ii) M is a �-ideal

(iii) r /∈ 〈M〉 = M

(iv) if a /∈M then there is some finite A ⊆M and x ∈ X with A, a�x r.

In comparison, if a state π is partially maximal, then U(π) satisfies both (i) and a computa-
tionally explicit form of (iv) above, but not necessarily (ii) or (iii). For instance, the ‘empty’
state ε : N ⇀ [S] × X undefined everywhere gives rise to U(ε) = S, and is thus trivially
partially maximal, but on the other hand satisfies r ∈ 〈U(ε)〉. Our algorithm’s strategy is to
start with the full set S and remove elements step-by-step, in a way that is guided by the
Krull functional ψ. Though we can never construct the full maximal object, at some point we
arrive at a sufficiently good partially maximal state which encodes some A ⊆ F and x ∈ X
with A�x r.

Informally, the following result says that assuming that r lies in the intersection of all
prime ideals containing F , then r ∈ 〈U(π)〉 whenever a state π is partially maximal. We then
use this fact to exclude some new element from U(π), thus updating our approximation to a
maximal ideal with one that is ‘better’.
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Lemma 4.4. Suppose that (ι, τ, η) is a cover structure and ψ a Krull functional. Then there
exists a functional gι,τ,η,ψ(π) ∈ [S] × X such that whenever π is partially maximal, then
(A, x) := gι,τ,η,ψ(π) satisfies U(π) ⊇ A�x r.

Proof. We consider ψ(U(π)) and show that in each possible case we can produce some (A, x)
satisfying U(π) ⊇ A �x r. First note that ψ(U(π)) = (0, a) is not possible, since by partial
maximality of π we have F ⊆ U(π).

– If ψ(U(π)) = (1, 0) then r ∈ U(π) and thus A := {r} and x := ι(r) work.

– If ψ(U(π)) = (2, [B, y, si]) then B�y si for B ⊆ U(π) and si /∈ U(π). Since π is partially
maximal, the latter implies πL(i), si �πR(i) r for πL(i) ⊆ F ∪ U(π)i ⊆ U(π). Thus it
follows that A := B ∪ πL(i) and x := τ(B, πL(i), si, r, y, πR(i)) do the trick.

– If ψ(U(π)) = (3, [si, sj , c]) then si /∈ U(π), sj /∈ U(π) but c ∈ U(π), and thus πL(i), si�πR(i)

r and πL(j), sj �πR(j) r. Therefore we have

πL(i) ∪ πL(j), c�η(πL(i),πL(j),si,sj ,c,πR(i),πR(j)) r

and since πL(i), πL(j) ⊆ U(π) and also c ∈ U(π) we see that A := πL(i) ∪ πL(j), c and
x := η(πL(i), πL(j), c, si, sj , πR(i), πR(j)) do the trick.

Putting all this together, we have A ⊆ U(π) and A �x r for (A, x) = gι,τ,η,ψ(π), where
gι,τ,η,ψ(π) is the functional which simply decides which case we are in and returns the relevant
witness.

Lemma 4.5. Suppose that F ⊆ U . Then whenever A, x are such that U ⊇ A �x r, one of
the following two cases holds:

(a) A ⊆ F , or

(b) A * F and setting n := max{i : si ∈ A\F} and B := A\{sn} we have sn ∈ U\F and
B ⊆ F ∪ Un and B, sn �x r,

where we recall that Un := U ∩ {si : i < n}.

Proof. We have sn ∈ U\F by the assumption A ⊆ U . To see that B ⊆ F ∪ Un, suppose that
si ∈ B. If i > n then si ∈ F by maximality of n, and otherwise if i < n then we must have
si ∈ Un, since si ∈ A ⊆ U . But since B, sn = A we also have B, sn �x r.

Having established some basic properties relating to states and cover structures, we are
now ready to define our main algorithm.

Definition 4.6. The binary operation ] takes as input a state π together with a tuple
(n,B, x) ∈ N× [S]×X and returns a new state given by

π ] (n,B, x) := m 7→


π(m) if m < n and m ∈ dom(π)

(B, x) if m = n

undefined otherwise

Note in particular that we have

U(π ] (n,B, x)) = U(π)n ∪ {sm : m > n}.
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We are now ready to define the main update recursive algorithm.

Definition 4.7. The sequential algorithm (πk)k∈N is defined as follows. Let π0 be the empty
partial function, and given that we have reached state πk:

1. Let Ak ∈ [S] and xk ∈ X be defined by (Ak, xk) := gι,τ,η,ψ(πk), for gι,τ,η,ψ as in Lemma
4.4.

2. If Ak ⊆ F , the algorithm terminates in state πk.

3. Otherwise, let nk ∈ N and Bk ∈ [S] be given by

nk := max{i : si ∈ Ak\F}
Bk := Ak\{snk

}

define πk+1 := πk ] (nk, Bk, xk), and repeat steps 1-3 for k 7→ k + 1.

4.2 Termination and correctness

Having specified our algorithm, there are two things left to do: We need to demonstrate that
whatever we choose as our parameters, the algorithm eventually terminates, and moreover,
we must show that our final state contains the desired output. We begin by dealing with
termination. For this, we make use of a continuity argument.

Definition 4.8. Let f : (N⇀ [S]×X)→ Y be some functional from states π to objects y ∈ Y ,
and suppose that X,Y are both equipped with an coding into the natural numbers N. Then
in particular, since states can be represented as total functions N → {0, 1} × [S] × X (see
Remark 4.2), which can in turn be encoded as functions N → N, then f can be encoded as
an object of type (N→ N)→ N. We say that f is computable if its underlying representation
can be computed on an oracle Turing machine.

Definition 4.9. A functional g : (N ⇀ [S]×X) → [S]×X from states to pairs in [S]×X is
continuous if for any state π there exists some N such that

∀π′(π =N π′ ⇒ g(π) = g(π′)).

Here, π =N π′ is shorthand for ∀i < N(π(i) = π′(i)), and π(i) = π′(i) means that both sides
are either undefined, or defined and equal to the same value. Note that π =0 π

′ for any π, π′.

Whenever a functional g is computable in the sense of Definition 4.8, it must also be
continuous: The intuition here is that given some oracle Turing machine which simulates g,
for any input π the output g(π) is computed in a finite number of steps, during which the
input state π can only be queried a finite number of times. In particular, if g can be defined
within certain restricted calculi such as Gödel’s System T, a so-called modulus of continuity
can even be computed in this case (see [58], or [34, 61] for a more recent treatment of this
fact).

Lemma 4.10. Suppose that the cover structure (ι, τ, η) consists of computable functions, and
the Krull functional ψ is computable in the sense of Definition 4.8. Then the functional gι,τ,η,ψ
given in Lemma 4.4 is also computable, and therefore continuous.

Proof. Since membership of dom(π) is decidable, it is clear that the functional π 7→ ψ(U(π))
is computable. Once we have computed ψ(U(π)), the functional gι,τ,η,ψ is nothing more than
a simple case distinction, which is computable in the cover structure (ι, τ, η).
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Theorem 4.11. Fixing global parameters F and r, let (ι, τ, η) be a computable cover structure
and ψ a computable Krull functional. Then running our algorithm from Definition 4.7, there
is some sufficiently large K ∈ N such that AK ⊆ F and thus the algorithm terminates in state
πK .

Proof. We begin by showing that for each n ∈ N, the value of πk(n) can change only finitely
many times as k →∞. To this end, we define a sequence j0 ≤ j1 ≤ . . . satisfying ∀m ∈ N:

∀k ≥ jm (πk =m πjm).

This by induction on m. We set j0 := 0, and assuming that jm has been defined, we split our
construction into two cases:

– If πk(m) is undefined for all k ≥ jm then jm+1 := jm does the trick.

– Otherwise πj(m) = (A, x) for some j ≥ jm, and we set jm+1 := j. To see that this works,
it suffices to show that πk(m) = (A, x) for all k ≥ jm+1. Suppose that this were not the
case, and take the minimum k ≥ jm+1 with πk(m) = (A, x) but πk+1(m) 6= (A, x). But
by definition, as m ∈ dom(πk) this can only happen if m ≥ nk (cf. Definitions 4.6–4.7),
and since snk

∈ Ak ⊆ U(πk) and thus πk(nk) is undefined, we cannot have m = nk and
therefore m > nk. But now - again by definition - we have πk+1(nk) = (Bk, xk) 6= πk(nk)
(the latter being undefined), and since nk < m this contradicts πk+1 =m πk and thus
the construction of jm.

Next, we define the state π∞ to be the limit of the πjm i.e. π∞(m) := πjm+1(m). In particular,
we have π∞ =m πjm for all m ∈ N. Now, by continuity of gι,τ,η,ψF,r

(which follows from Lemma
4.10) there exists some N ∈ N such that setting (A, x) := gι,τ,η,ψF,r

(π∞) we have

∀π′ (π∞ =N π′ ⇒ (A, x) = gι,τ,η,ψF,r
(π′)).

In particular, for all k ∈ N we have

π∞ =N πk ⇒ (A, x) = (Ak, xk). (2)

Let M := max({i+ 1 : si ∈ A} ∪ {N}) and define K := jM so that

π∞ =M πK and ∀k ≥ K (πk =M πK). (3)

We claim that AK ⊆ F . If this were not the case, then we would have πK+1 = πK ]
(nK , BK , xK) for snK ∈ AK\F ⊆ U(πK) and so in particular πK+1(nK) = (BK , xK) while
πK(nK) is undefined. Now, since N ≤ M , and π∞ =M πK by (3), then also π∞ =N πK
and thus by (2) we have (A, x) = (AK , xK). But this implies that snK ∈ AK = A and thus
nK < M , but since by (3) it follows that πK+1 =M πK , this contradicts πK+1(nK) 6= πK(nK).
Thus we have established AK ⊆ F and we’re done.

In all of the examples that follow, we consider instances of (ι, τ, η) and ψ which are
clearly computable, and so termination of our algorithm in each case follows directly from
the above theorem. It remains, however, to show that the algorithm is correct, which follows
by demonstrating that all reachable states are partially maximal.

Lemma 4.12. Suppose that (ι, τ, η) is a cover structure and ψ a Krull functional. For each
k ∈ N the state πk is partially maximal.
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Proof. Induction on k. For k = 0 we have U(π0) = S and thus π0 is trivially partially
maximal. Let’s now suppose that πk is partially maximal, and appeal to the notation of
Definition 4.7. By Lemma 4.4 we have U(πk) ⊇ Ak �xk r. Assume that Ak * F (else
the algorithm terminates and we’re done). By Lemma 4.5, we see that Bk, snk

�xk r for
Bk, snk

⊆ F ∪ U(πk)n. But since snk
/∈ F we have (as πk is partially maximal):

F ⊆ U(πk)\{snk
} ⊆ U(πk)nk

∪ {sm : m > nk} = U(πk ] (nk, Bk, xk)) = U(πk+1).

Now take some sm /∈ U(πk+1). There are two possibilities. Either m < nk and so sm /∈ U(πk),
in which case by the induction hypothesis we have

πk+1,L(m) = πk,L(m) ⊆ F ∪ U(πk)m = F ∪ U(πk+1)m

and similarly πk+1,L(m), sm �πk+1,R(m) r. On the other hand, if m ≥ nk, then we must have
m = nk. Then (using Lemma 4.5 (b)) we have

πk+1,L(nk) = Bk ⊆ F ∪ U(πk)nk
= F ∪ U(πk+1)nk

and πk+1,L(nk), snk
�πk+1,R(nk)r follows directly fromBk, snk

�xkr and the fact that πk+1(nk) =
(Bk, xk).

We now come to the main result of this section.

Theorem 4.13 (Main theorem). Fixing F and r, let (ι, τ, η) be a computable cover structure
and ψ a computable Krull functional, and consider the algorithm given in Definition 4.7.
Consider the pair (AK , xK) where πK is the algorithm’s final state (which always exists by
Theorem 4.11). Then F ⊇ AK �xK r.

Proof. By Lemma 4.12, the final state πK is partially maximal, and thus by Lemma 4.4, we
have AK�xK r. But since πK is the final state, the condition AK ⊆ F must be satisfied. This
completes the proof.

Looking back to the computational challenge outlined in Section 3.3, our main theorem
states that the problem is solved by setting

A(ι, τ, η, ψ), x(ι, τ, η, ψ) := AK , xK

which are in turn obtained from the final state πK of our sequential algorithm. In the
remainder of the paper, we now turn our attention to concrete instantiations of our algorithm.
We focus on two main case studies in which our relation � and cover structure are implemented
in a particular way. In each of these case studies we give specific examples where a Krull
functional is introduced.

5 Case study I: Radical ideals in commutative rings

In this section we develop the study of radical ideals already briefly mentioned in Corollary
2.14. Here we take S := {sn : n ∈ N} to be some countable commutative ring whose
ring operations can all be represented by computable functions on natural numbers. We also
adopt the convention that finite subsets A ⊆ S are uniquely represented by finite sequence
[a0, . . . , ak−1], containing no repetitions and ordered in terms of their coding.
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Definition 5.1. For the remainder of this section, we define X := S∗ ×N>0 where S∗ denotes
the set of all finite sequences of elements of S, and define our main relation A�x,e a as

A�x,e a :⇔ (|A| = |x|) ∧ (A · x = ae)

where |A| denotes the length of A i.e. for A = [a0, . . . , ak−1] we have |A| := k (the same for
x), A · x = a0x0 + . . .+ ak−1xk−1, and A · [] = 0S in the case that A = ∅.

Let A,B be finite subsets of S represented by [a0, . . . , ak−1] and [b0, . . . , bl−1] respectively.
Then the representation of A∪B is obtained from [a0, . . . , ak−1] and [b0, . . . , bl−1] by merging
both lists, sorting them and deleting repeated elements (for the case A∩B 6= ∅). In a similar
fashion, if x, y ∈ S∗ satisfy |A| = |x| and |B| = |y|, there is some z ∈ S∗ computable from
x, y,A,B such that |A ∪B| = |z| and

(A ∪B) · z = A · x+B · y.

We use the operator ∗ to denote the function which takes x, y,A,B and returns such a z, so
that

(A ∪B) · (x ∗A,B y) = A · x+B · y.

Lemma 5.2. Let ◦ denote the ring multiplication in S. Then relations � and ◦ can be given
a computable cover structure (ι, τ, η).

Proof. We deal with each property in turn.

– Since a1S = a1 we clearly have {a}�ι(a) a for ι(a) := ([1S ], 1).

– Assume that A�x,e1 a and B, a�y′,e2 b and so in particular A ·x = ae1 and there is some
y ∈ S∗ and u ∈ S computable from y′ such that B ·y+au = be2 . Now we claim for each
n ∈ N there is some yn ∈ S∗ computable in a, b, y, u, e2 satisfying B · yn + anun = bne2 .
For n = 1 we just set y1 := y, whereas for the induction step we note that

b(n+1)e2 = (B · yn + anun)be2

= B · be2yn + anun(B · y + au)

= B · (be2yn + anuny) + an+1un+1

and so we can set yn+1 = be2yn + anuny. Now, in particular we have

be1e2 = B · ye1 + ae1ue1 = B · ye1 +A · ue1x = (A ∪B) · (ue1x ∗A,B ye1)

and so we can set

τ(A,B, a, b, x, e1, y
′, e2) := (ue1x ∗A,B ye1 , e1e2).

– Assume that A, a�x′,e1 c and B, b�y′,e2 c and so in particular there are x, u computable
from x′ and y, v computable from y′ such that A · x + au = ce1 and B · y + bv = ce2 .
Then we have

ce1+e2 = (A · x+ au)ce2

= A · ce2x+ au(B · y + bv)

= (A ∪B) · (ce2x ∗A,B auy) + abuv

= (A ∪B, ab) · (ce2x ∗A,B auy) ∗A∪B,ab [uv]

and therefore we can set

η(A,B, a, b, c, x′, y′) := ((ce2x ∗A,B auy) ∗A∪B,ab [uv], e1 + e2).
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This completes the proof.

Theorem 5.3. Suppose that for parameters F ⊆ S and r ∈ S we are given a computable Krull
functional ψF,r. Then instantiating the algorithm from Definition 4.7 on the cover structure
(ι, τ, η) above and ψF,r, the algorithm terminates in some state πk from which we obtain
(Ak, (xk, ek)) (as in step 1 of Definition 4.7) with Ak ⊆ F , |Ak| = |xk| and Ak · xk = rek .

Remark 5.4. In the case that F = {0S} the algorithm terminates in some state with Ak ⊆ {0S}
in which case we must have rek = 0S .

We now give some examples of situations giving rise to a concrete Krull function, which
then yield fully determined algorithms for computing witnesses for existential statements.

5.1 Nilpotent coefficients of invertible polynomials

Our first example has been studied from the perspective of dynamical algebra in [21, cf. II.2
Lemma 2.6] and in a more general form in [63], and was already discussed in [36]. We recall
it here and describe it using our new notation.

Let S be a commutative ring and f =
∑n

i=0 aiX
i be a unit in S[X]. Then ai is

nilpotent for each i > 0.

This fact is traditionally established by showing that ai ∈ P for each prime ideal P ⊆ S and
then using Corollary 2.14. To this end, assume for contradiction that ai /∈ P for some prime
ideal P and i > 0, and let g =

∑m
i=0 biX

i be an inverse of f . Let us write gf =
∑m+n

i=0 ciX
i.

Then we have a0b0 = c0 = 1 and for any i > 0

0 = ci = a0bi + . . .+ ai−1b1 + aib0

and therefore
ai = −a0(a0bi + . . .+ ai−1b1)

from which it follows that bj /∈ P for some 0 < j ≤ i. Pick k, l to be the maximum indices
such that ak, bl /∈ P , noting in particular that k + l > 0. This implies that

0 = ck+l = a0bk+l + . . .+ ak−1bl+1 + akbl + ak+1bl−1 + . . .+ ak+lb0

and from maximality of k, l it follows that akbl ∈ P , a contradiction.
A closer inspection of this argument allows us to produce a Krull functional ψ{0S},ai for

any i > 0 witnessing that for any P either P is not a prime ideal or ai ∈ P . We now describe
such a functional ψ{0S},ai as an algorithm, assuming that f together with an inverse g as above
are given explicitly. Note that whenever the basic ring operations together with membership
of P are computable, the functional is computable.

Lemma 5.5. Let S be a countable commutative ring. Suppose that f =
∑n

i=0 aiX
i ∈ S[X]

has an inverse g ∈
∑m

i=0 biX
i ∈ S[X]. For i > 0 define the functional φ(i, P ) by the following

algorithm:

1. Check if 0S /∈ P . If so, return (0, 0S).

2. Check if ai ∈ P . If so, return (1, 0).
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3. Check if b1, . . . , bi ∈ P . If so then [b1, . . . , bi] · [−a0ai−1, . . . ,−a20] = ai /∈ P and from this
we can directly compute x such that {b1, . . . , bi}�x,1ai. Return (2, [{b1, . . . , bi}, (x, 1), ai]).

4. Compute k, l maximal with ak, bl /∈ P .

5. Check if akbl ∈ P . If so return (3, [ak, bl, akbl]).

6. Else [bk+l, . . . , bl+1, ak+1, . . . , ak+l] · [−a0, . . . ,−ak−1,−bl−1, . . . ,−b0] = akbl and thus
we can compute x such that A := {bk+l, . . . , bl+1, ak+1, . . . , ak+l} �x,1 akbl. Return
(2, [A, (x, 1), akbl]).

Then ψ{0S},ai(P ) := φ(i, P ) is a Krull functional w.r.t. {0S} and ai.

Proof. A straightforward checking of each case. The first two cases are trivial, and the third
follows from the assumption that {b1, . . . , bi} ∈ P and ai /∈ P . Step 4 is well defined since ai /∈
P and bj /∈ P for some 0 < j ≤ i. For the final case, we have {bk+l, . . . , bl+1, ak+1, . . . , ak+l} ⊆
P by maximality of k and l.

Corollary 5.6. Let S be a countable commutative ring. Suppose that f =
∑n

i=0 aiX
i ∈

S[X] has an inverse g ∈
∑m

i=0 biX
i ∈ S[X] and take some i > 0. Suppose the algorithm

from Definition 4.7 is instantiated on the cover structure from Lemma 5.2 and the functional
ψ{0S},ai defined in Lemma 5.5. Then the algorithm terminates in some state πk from which
we obtain ek with aeki = 0S.

5.2 The theorem of Gauss-Joyal

We consider a second construction, this time arising from the following result, see e.g. [2],
which is commonly called the Gauss-Joyal theorem [6, 7, 21]:

Let S be a commutative ring and f =
∑n

i=0 aiX
i, g =

∑m
i=0 biX

i ∈ S[X] be two
polynomials with fg =

∑n+m
i=0 ciX

i. Then

aibj ∈
√

(c0, . . . , ci+j)

for all i = 0, . . . , n and j = 0, . . . ,m.

This is proven using Theorem 2.13 for F := {c0, . . . , ci+j}, observing (cf. Corollary 2.14) that

〈{c0, . . . , ci+j}〉 =
√

(c0, . . . , ci+j).

It therefore suffices to show that aibj ∈ P for each prime ideal P with F ⊆ P . Suppose for
contradiction that aibj /∈ P and thus ai, bj /∈ P and define k, l to be the minimum such that
ak, bl /∈ P . Since P is prime we also have akbl /∈ P . Observe as in Section 5.1 that

ck+l = a0bk+l + . . .+ ak−1bl+1 + akbl + ak+1bl−1 + . . .+ ak+lb0.

Noting that k+ l ≤ i+ j we have ck+l ∈ F ⊆ P , and by minimality of k, l it therefore follows
that akbl ∈ P , a contradiction.

Lemma 5.7. Let S be a countable commutative ring. Suppose that f =
∑n

i=0 aiX
i, g =∑m

i=0 biX
i ∈ S[X] are polynomials with fg =

∑n+m
i=0 ciX

i. Define the functional φ(i, j, P ) by
the following algorithm:
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1. Check if ck /∈ P for some k = 0, . . . , i+ j. If so, return (0, ck).

2. Check if aibj ∈ P . If so, return (1, 0).

3. Check if either ai ∈ P or bj ∈ P . If so, return in the first case (2, [{ai}, ([bj ], 1), aibj ])
and in the second (2, [{bj}, ([ai], 1), aibj ]).

4. Compute k, l minimal with ak, bl /∈ P .

5. Check if akbl ∈ P . If so return (3, [ak, bl, akbl]).

6. Else [ck+l, a0, . . . , ak−1, bl−1, . . . , b0]·[1S ,−bk+l, . . . ,−bl+1,−ak+1, . . . ,−ak+l] = akbl and
thus we can compute x such that

A := {ck+l, a0, . . . , ak−1, bl−1, . . . , b0}�x,1 akbl.

Return (2, [A, (x, 1), akbl]).

Then for all i = 0, . . . , n and j = 0, . . . ,m the functional ψ{c0,...,ci+j},aibj (P ) := φ(i, j, P ) is a
Krull functional w.r.t {c0, . . . , ci+j} and aibj.

Proof. Another straightforward case distinction. For the final case, the inclusion

{ck+l, a0, . . . , ak−1, bl−1, . . . , b0} ⊆ P

follows by minimality of k, l and the fact that k + l ≤ i+ j and thus ck+l ∈ P by the failure
of the first case.

Corollary 5.8. Let S be a countable commutative ring. Suppose that f =
∑n

i=0 aiX
i, g =∑m

i=0 biX
i ∈ S[X] are polynomials with fg =

∑n+m
i=0 ciX

i and take some 0 ≤ i ≤ n and
0 ≤ j ≤ m. Suppose the algorithm from Definition 4.7 is instantiated on the cover structure
from Lemma 5.2 and the functional ψ{c0,...,ci+j},aibj defined in Lemma 5.7. Then the algorithm
terminates in some state πk from which we obtain (Ak, (xk, ek)) with Ak ⊆ {c0, . . . , ci+j} and
Ak · xk = (aibj)

ek .

6 Case study II: Valuation rings and integral closures

We now give a very different application of our main computational results, focusing on
valuation rings. For the rest of the section, we let S be some countable field whose operations
are computable, and fix some subring E ⊆ S whose members can be constructed in an explicit
way. Given any subset U ⊆ S, as usual E[U ] denotes the subring of S containing E which
is generated by U . An element a ∈ S is called integral over some arbitrary subring R ⊆ S if
there exists some monic polynomial p ∈ R[X] such that p(a) = 0. We denote by R ⊆ S the
integral closure of R in S, i.e. the set of all elements of S which are integral over R.

Definition 6.1. We now instantiate our main relation by

A�p a :⇔ p monic ∧ p(a) = 0

where here p ∈ E[A][X] ranges over all polynomials with coefficients in E[A].
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Note that for A = {a1, . . . , ak}, the elements of E[A] are precisely those of the form
f(a1, . . . , ak), where f ∈ E[X1, . . . , Xk] is some multivariable polynomial with coefficients in
E. Thus polynomials p ∈ E[A][X] are formally represented by tuples of polynomials over E,
which are in turn represented by tuples of objects in E. However, in this section we do not
go into detail as to how everything is formally encoded, and from now on, whenever we write
A�p x we work directly with some p ∈ E[A][X] rather than its formal representation.

Lemma 6.2. For any U ⊆ S we have 〈U〉 = E[U ]. In particular, the �-ideals of S are
precisely the integrally closed subrings R ⊆ S which contain E.

Proof. Suppose that a ∈ E[U ]. Then there is some monic polynomial p(X) = Xn +
bn−1X

n−1 + · · · + b0 ∈ E[U ][X] such that p(a) = 0. Now, for any coefficient bi ∈ E[U ]
it follows that bi ∈ E[Ai] for some finite Ai ⊆ U , and thus p ∈ E[A][X] for A :=

⋃n−1
i=0 Ai. So

we conclude a ∈ E[U ] iff A�p a for some finite A ⊆ U , or in other words a ∈ 〈U〉.

We recall that P is a prime ideal iff P is an integrally closed subring E ⊆ P ⊆ K with the
additional property that c ∈ P ∨c−1 ∈ P for all c ∈ K \{0}. To see this, in one direction from
cc−1 = 1 ∈ P we have c ∈ P ∨ c−1 ∈ P , and in the other, if ab ∈ P for a, b 6= 0 (otherwise it
is trivial) then either a ∈ P and we are done, or a−1 ∈ P and thus b = a−1ab ∈ P .

Subrings P ⊆ K with the property c ∈ P ∨ c−1 ∈ P are called valuation rings. Note that
a valuation ring P is automatically integral closed, since if cn + an−1c

n−1 + · · ·+ a1c+ a0 = 0
is an integral equation for an element c ∈ K \ {0} and a0, . . . , an−1 ∈ P , then either c ∈ P
and we are done or c−1 ∈ P . But then multiplying the integral equation with c−n+1 ∈ P
gives: c = −an−1 − · · · − a1c−n+2 − a0c−n+1 ∈ P .

Lemma 6.3. Let ◦ denote multiplication in S. Then � and ◦ can be given a computable
cover structure (ι, τ, η).

Proof. We deal with each property in turn.

– We clearly have {a}�ι(a) a for ι(a) := X − a.

– Suppose that A�p a and B, a�q b where deg(p) = n and deg(q) = m. Then we have

p(a) = an + pn−1a
n−1 + · · ·+ p1a+ p0 = 0,

where pi ∈ E[A], and similarly

q(b) = bm + q̃m−1b
m−1 + . . .+ q̃1b+ q̃0 = 0,

for q̃j ∈ E[B, a]. In particular, from the q̃j we can compute some l ∈ N and q0, . . . , ql ∈
E[B][X] with deg(qj) < m and

P2(a) := ql(b)a
l + · · ·+ q1(b)a+ bm + q0(b) = 0,

where now P2 ∈ E[B, b][X] is a polynomial of degree l. This means that the resultant
res(p, P2) = 0 because p and P2 have a as common root. Recall that the resultant is
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the determinant of the Sylvester matrix given by

1 pn−1 . . . p0 0
. . .

. . .
. . .

0 1 pn−1 . . . p0
ql(b) . . . q1(b) bm + q0(b) 0

. . .
. . .

. . .

0 ql(b) ql−1(b) . . . bm + q0(b)



 l rows

n rows

Considering the resultant as a polynomial in b we obtain a polynomial r ∈ E[A,B][X]
with r(b) = 0. To see that this polynomial is monic, observe that each summand of
the determinant of the Sylvester matrix selects l elements from {1, pn−1, . . . , p1, p0} and
n elements from {ql(b), . . . , q1(b), bm + q0(b)}. The pi are constant in b and the degree
of the qi is smaller than m. So each non-zero summand has degree smaller than mn,
except for the product of the diagonal entries which is given by

1l(bm + q0(b))
n = bmn + . . .

and thus r is monic.

– Suppose that A, a�p c and B, b�q c with deg(p) = n and deg(q) = m. Then similarly
to the previous part, we can compute from p some k ∈ N and p0, . . . , pk ∈ E[A][X] such
that

P1(c) := pk(c)a
k + · · ·+ p1(c)a+ cn + p0(c) = 0

where deg(pi) < n. Similarly from q we can compute some l ∈ N and q0, . . . , ql ∈
E[B][X] with

P2(b) := ql(c)b
l + · · ·+ q1(c)b+ cm + q0(c) = 0

where deg(qj) < m. Now, multiplying P1(c) by bk and defining pi := pi · (ab)i, where
now pi ∈ E[A, ab][X] but still deg(pi) < n, we obtain

P3(b) := (cn + p0(c))b
k + p1(c)b

k−1 + · · ·+ pk−1(c)b+ pk(c) = 0.

Since P3(b) = P2(b) = 0, the resultant res(P3, P2) ∈ E[A,B, ab][c] is equal to zero.
From this resultant we can compute a polynomial Q ∈ E[A,B, ab][X] with Q(c) =
res(P3, P2) = 0. Thus A ∪ B, ab�Q c provided we can show that Q is monic. Here the
relevant Sylvester matrix is given by

cn + p0(c) p1(c) . . . pk(c) 0
. . .

. . .
. . .

0 cn + p0(c) p1(c) . . . pk(c)
ql(c) . . . q1(c) cm + q0(c) 0

. . .
. . .

. . .

0 ql(c) . . . q1(c) cm + q0(c)


Each non-zero summand of the determinant of this matrix involves the multiplication
of l coefficients from P3 and k coefficients from P2 and thus the degree in c of each
summand bounded by nl + mk. But since deg(pi) < n and deg(qj) < m this degree is
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actually smaller than nl + mk, except for the product of the diagonal entries with is
given by

(cn + p0(c))
l(cm + q0(c))

k = cnl+mk + ...

and thus the determinant is monic when considered as a polynomial in c.

In this setting of valuation rings and integral closures we have the following formulation
of Theorem 4.13:

Theorem 6.4. Suppose that for F ⊆ S and r ∈ S we have a computable Krull functional
ψF,r. Then the algorithm of Definition 4.7 on the computable cover structure given in Lemma
6.3 and ψF,r terminates in some state πk from which we obtain (Ak, pk) with Ak ⊆ F and
such that pk ∈ E[Ak][X] is monic with pk(r) = 0.

6.1 Kronecker’s Theorem

We now conclude by giving a concrete example of a Krull functional, which we obtain by
analysing a proof of Kronecker’s theorem due to Coquand and Persson [10] which was revised
by Lombardi [19]. Kronecker’s theorem is stated as follows:

Let E be some subring of S and a0, . . . , am, b0, . . . , bn be nonzero elements of S
and ck :=

∑
i+j=k aibj . Then any akbl is integral over E[c0, . . . , cm+n].

We prove this result using Theorem 6.4 with F = {c0, . . . , cm+n}. It suffices to show that
akbl ∈ P for any valuation ring P containing F . So we fix such a valuation ring P and we
first prove the following lemma:

For any u1, . . . , un ∈ S \ {0} with (u1 + · · · + un)−1 ∈ P it follows that u−1i ∈ P
for at least one i.

This is proved by induction: If n = 0, the premise (u1 + · · · + un)−1 ∈ P is never true since
u1 + · · ·+un = 0 is not invertible. For the induction step, suppose that w := (u1 + · · ·+un +
un+1)

−1 ∈ P , note that
1 = (u1 + · · ·+ un)w + un+1w

and thus
u−1n+1w

−1 = u−1n+1v + 1,

where v := u1 + · · · + un. If v = 0, we have directly u−1n+1 = w ∈ P . If v 6= 0 then
v−1w−1 = 1 + v−1un+1 and thus

(v−1w−1 − 1)(u−1n+1w
−1 − 1) = 1 ∈ P.

So either (v−1w−1 − 1) ∈ P and thus v−1 ∈ P , in which case we are done by the induction
hypothesis, or u−1n+1w

−1 − 1 ∈ P and thus u−1n+1 ∈ P .
Continuing with the proof of Kronecker’s theorem, as in [10] we define the order ≤P on

S \ {0} by x ≤P y iff yx−1 ∈ P . Since P is a subring, this ≤P is reflexive and transitive, and
since P is a valuation ring and we thus have either yx−1 ∈ P or xy−1 ∈ P , the preorder ≤P
is a total preordering on S \ {0}.

In particular, there exist i0 and j0 such that ai0 ≤P ai and bj0 ≤P bj for all i, j. We
take i0 and j0 maximal with this property. As x ≤P y and x′ ≤P y′ imply xx′ ≤P yy′,
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we have ai0bj0 ≤P akbl and so akbl ∈ P follows from ai0bj0 ∈ P (because if x ≤P y then
x ∈ P ⇒ y ∈ P ). Now, suppose for contradiction that ai0bj0 /∈ P , and note that

ai0bj0 = ci0+j0 −
∑

i+j=i0+j0
i 6=i0

aibj .

We have
ci0+j0a

−1
i0
b−1j0 −

∑
i+j=i0+j0

i>i0

aibja
−1
i0
b−1j0 −

∑
i+j=i0+j0

j>j0

aibja
−1
i0
b−1j0 = 1 ∈ P

where all terms of the sum, except ci0+j0a
−1
i0
b−1j0 , cannot be zero, since ai, bj 6= 0. We assume

first ci0+j0 6= 0, then we apply the lemma above to all the terms of the sum and get:

– If c−1i0+j0ai0bj0 ∈ P then ai0bj0 ∈ P , a contradiction, because we have ci0+j0 ∈ P by
assumption.

– If a−1i b−1j ai0bj0 ∈ P for some i > i0 then by bj0 ≤P bj we have ai ≤P ai0 but this is not
possible by the maximality of i0.

– If a−1i b−1j ai0bj0 ∈ P for some j > j0 then by ai0 ≤P ai we have bj ≤P aj0 but this is not
possible by the maximality of j0.

In the other case we have ci0+j0 = 0 and therefore∑
i+j=i0+j0

i>i0

aibja
−1
i0
b−1j0 +

∑
i+j=i0+j0

j>j0

aibja
−1
i0
b−1j0 = 1 ∈ P.

Also here we use the lemma above to this sum but this time we only have to consider the cases
a−1i b−1j ai0bj0 ∈ P for some i > i0 or for some j > j0. But in both cases we get a contradiction
analogously to the first case.

Inspired by the proof above, we build a Krull functional which represents its computational
content. We break down our construction into a series of lemma, whereby we denote by a
partial Krull functional a Krull functional which is defined on some specified subset of {0, 1}S .

Lemma 6.5. For s = [u1, . . . , un] ∈ (S\{0})∗ and given P ⊆ S with u−1i /∈ P for all i,
(u1 + . . .+un)−1 ∈ P and 1 ∈ P we define the functional φ1(s, P ) ∈ {0, 1, 2, 3}×N recursively
on the length of s as follows:

1. Set w := (u1 + . . .+ un)−1 and v := u1 + . . .+ un−1, so that 1 = vw + unw. Note that
v = 0 implies that u−1n = w ∈ P , a contradiction, so v−1 exists.

2. Check if u−1n w−1−1 ∈ P . If so, return (2, [{u−1n w−1−1, w}, X−(u−1n w−1−1)w−w, u−1n ]).

3. Check if v−1w−1 − 1 ∈ P . If so, consider the following two cases:

(a) If v−1 /∈ P return (2, [{v−1w−1 − 1, w}, X − (v−1w−1 − 1)w − w, v−1]),
(b) If v−1 ∈ P then go back to Step 1 with s = [u1, . . . , un−1].

4. Return (3, [v−1w−1 − 1, u−1n w−1 − 1, 1]).
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Then for any given s the function φ1(s, P ) is a partial Krull functional in all such P as above.

Proof. The proof uses the computations which directly precede Lemma 6.5: We assume that
1 ∈ P . For Step 1 we can assume that n ≥ 2, else we would have u−11 /∈ P and u−11 ∈ P . In
Step 2, if u−1n w−1− 1 ∈ P then {u−1n w−1− 1, w} ⊆ P and X− (u−1n w−1− 1)w+w = X−u−1n
clearly works as output in this case. An entirely analogous argument deals with 3a. For 3b,
from v−1 = (u1 + . . .+un−1)

−1 ∈ P we can reason inductively: Note that we can still assume
that n−1 ≥ 2, since otherwise we would have u−11 ∈ P , a contradiction. The final case follows
from (u−1n w−1 − 1)(v−1w−1 − 1) = 1 ∈ P .

Lemma 6.6. Define the functional φ2(s, P ) ∈ {0, 1, 2, 3} × N recursively on the length of
s := [u1, . . . , un] and for all P satisfying 1 ∈ P , ui 6= 0 for all i and ∀i∃jui �P uj.:

1. Search for some i ≤ n such that ui ≤P uj for all j < n. If none exists, repeat this
process with input [u1, . . . , un−1] and P . Take also k < n with un 6≤P uk (exists by the
third property of P ).

2. Check un �P ui i.e. uiu
−1
n /∈ P . If so, return (3, [uiu

−1
n , unu

−1
i , 1]).

3. Otherwise return (2, [{uiu−1n , uku
−1
i }, X − uku

−1
i · uiu−1n , uku

−1
n ]).

Then for any s := [u1, . . . , un] the function φ2(s, P ) is a partial Krull functional in all P with
the three properties from above.

Proof. Let s and P be given with the properties as in the lemma. By Step 1, we can assume,
that there is some i ≤ n with ui ≤P uj for all j < n. By the third property of P , we must
have ui 6≤P un. As 1 ∈ P and therefore un ≤P un, there exists k < n with un 6≤P uk, where
we again used the third property of P . If now uiu

−1
n /∈ P then neither uiu

−1
n nor u−1i un are in

P and therefore P is not prime with witness (uiu
−1
n )(u−1i un) = 1 and so the output of Step

2 is justified. If uiu
−1
n ∈ P then uku

−1
i , uiu

−1
n ∈ P but (uku

−1
i )(uiu

−1
n ) = uku

−1
n /∈ P so P

cannot be an ideal, and this justifies the output in Step 3.

Lemma 6.7. For 0 ≤ k ≤ m and 0 ≤ l ≤ n define the functional φ(k, l, P ) by the following
algorithm.

1. Check if ci /∈ P for some i = 0, . . . ,m+ n. If so, return (0, ci).

2. Check if 1 /∈ P . If so, return (2, [∅, X − 1, 1]).

3. Check if akbl ∈ P . If so, return (1, 0).

4. Search for the maximal i0 such that ai0 ≤P ai for all i. If this doesn’t exist, return
φ2([a0, . . . , am], P ).

5. Search for the maximal j0 such that bj0 ≤P bj for all j. If this doesn’t exist, return
φ2([b0, . . . , bn], P ).

6. Check if ai0bj0 ∈ P . If so, return

(a) (2, [{a−1i0 a
−1
j0
akbl, ai0bj0}, X − akbl, akbl]) if a−1i0 a

−1
j0
akbl ∈ P ;

(b) (2, [{aka−1i0 , blb
−1
j0
}, X − a−1i0 b

−1
j0
akbl, a

−1
i0
b−1j0 akbl]) otherwise.
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7. Check if ci0+j0 6= 0 and ai0bj0c
−1
i0+j0

∈ P . If so, return (2, [{ci0+j0 , ai0bj0c−1i0+j0}, X −
ai0bj0 , ai0bj0 ]).

8. Check if −ai0bj0(aibj)
−1 ∈ P for some i, j with i + j = i0 + j0 and either i > i0 or

j > j0.

(a) If i > i0 and ai �P ai′ (such an i′ exists by maximality of i0), return

(2, [{−ai0bj0(aibj)
−1, ai′a

−1
i0
, bjb

−1
j0
}, X − ai0bj0(aibj)

−1 · ai′a−1i0 · bjb
−1
j0
, ai′a

−1
i ]).

(b) Analogously if j > j0 and bj �P bj′.

9. If ci0+j0 6= 0, return φ1(ci0+j0ai0b
−1
j0

:: s, P ) where :: is the list concatenation and the

list s enumerates all elements −aibj(ai0bj0)−1 for i + j = i0 + j0 but either i > i0 or
j > j0. If ci0+j0 = 0 just return φ1(s, P ).

Then for any k, l the functional ψ{c0,...,cm+n},akbl(P ) := φ(k, l, P ) is a Krull functional in P
relative to F := {c0, . . . , cm+n} and r := akbl.

Proof. Cases 1-3 are clear, while for cases 4 and 5 we appeal to Lemma 6.6: The premise
of the lemma holds for the ai and bi, respectively, in place of the ui, since nonexistence of a
maximal i0 in particular means that there is no i with ai ≤P aj for all j, and similarly for j0.
From cases 6 onwards, we therefore may assume that i0 and j0 are maximal indices with the
desired properties, namely ai0 ≤P ai for all i ∈ N, but for i > i0 we have ai �P ai′ for some
i′, and similarly for j0.

Case 6 follows by definition, noting that for (b) we have {aka−1i0 , blb
−1
j0
} ⊆ P by the defining

property of i0, j0, and case 7 is similarly straightforward. Now we have ai0bj0 /∈ P . For case
8 (a) we use in addition to maximality of i0 and j0 also that ai0 ≤P ai′ and bj0 ≤P bj , and
analogously for (b).

For the final cases, we note that

1 = ci0+j0(ai0bj0)−1 +
∑

i+j=i0+j0
i 6=i0
j 6=j0

−aibj(ai0bj0)−1.

If ci0+j0 6= 0 then by the failure of case 7 we must have ai0bj0c
−1
i0+j0

/∈ P and thus ci0+j0ai0b
−1
j0

::

s = [u1, . . . , up] where (u1 + . . . + up)
−1 = 1 ∈ P and for each q we have u−1q /∈ P , where

here we use the failure of case 8 that ai0bj0(aibj)
−1 /∈ P for i > i0 or j > j0. Thus the result

follows from Lemma 6.5. If ci0+j0 = 0 then an analogous but simpler application of Lemma
6.5 does the trick.

Corollary 6.8. Let E be some subring of a field S, and a0, . . . , am, b0, . . . , bn be nonzero
elements of S and ck :=

∑
i+j=k aibj. Take some k and l. Suppose that the algorithm

from Definition 4.7 is instantiated on the cover structure from Lemma 6.3 and the functional
ψ{c0,...,cm+n},akbl defined in Lemma 6.7. Then the algorithm terminates in some state πk
from which we obtain (Ak, pk) with Ak ⊆ {c0, . . . , cm+n} and pk some monic polynomial with
coefficients in E[Ak] ⊆ E[c0, . . . , cm+n] such that p(akbl) = 0.
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PhD thesis.
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