
On the Computational Content of Termination
Proofs?

Georg Moser and Thomas Powell

Institute of Computer Science, University of Innsbruck, Austria
Email: {georg.moser,thomas.powell}@uibk.ac.at

Abstract. Given that a program has been shown to terminate using a
particular proof, it is natural to ask what we can infer about its com-
plexity. In this paper we outline a new approach to tackling this question
in the context of term rewrite systems and recursive path orders. From
an inductive proof that recursive path orders are well-founded, we ex-
tract an explicit realiser which bounds the derivational complexity of
rewrite systems compatible with these orders. We demonstrate that by
analysing our realiser we are able to derive, in a completely uniform
manner, a number of results on the relationship between the strength of
path orders and the bounds they induce on complexity.

1 Introduction

Proof theory emphasises proofs over theorems, as put most succinctly by Kreisel’s
famous question “What more do we know if we have proved a theorem by re-
stricted means than if we merely know that it is true?”. One application of this
quest in the context of program analysis is the link between termination and
complexity. Is it possible to derive computational content from a given termina-
tion argument, so that we can automatically deduce bounds on the complexity
of our programs?

We study this question in the abstract framework of term rewrite systems
and recursive path orders, which we take to encompass multiset path orders,
lexicographic path orders, and recursive path orders with status. Our main con-
tribution is to analyse the proof that recursive path orders are well-founded
and extract an explicit term in Gödel’s system T which bounds the derivational
complexity of rewrite systems reducing under these orders. Our framework is
uniform in the sense that our term applies to any variant of recursive path order
studied, by just adapting its parameters. We then demonstrate that a simple
analysis of our term allows us to uniformly derive the well-known primitive re-
cursive bounds on the derivational complexity of multiset path orders [1] (see
Theorem 1) and the multiple recursive bounds on lexicographic path orders [2]
(see Theorem 2).

The emphasis of this work is less on the technical results achieved, but in
the method used to achieve them. Our re-derivation of the standard bounds for
? This work is supported by FWF (Austrian Science Fund) project P-25781.

multiset and lexicographic path orders contrasts greatly to the somewhat ad-hoc
originally carried out by Hofbauer and Weiermann, and are much more closely
related to the study of Buchholz [3], which forms the starting point of our work.
However, whereas in [3] complexity bounds are obtained via a suitable formal-
isation of termination proofs in fragments of arithmetic and rely on Parson’s
fundamental work [4], our focus is on extracting an explicit subrecursive bound.
Therefore, not only is our proof completely elementary and self-contained, but
our concrete realising term is amenable to a much finer analysis of complexity
for restricted path orders.

In addition to the aforementioned results, we obtain a novel derivational
complexity analysis of recursive path orders with status [5], where we confirm
that the induced complexity is multiple recursive, which follows as a corollary to
our general boundedness result Theorem 2. This general bound is not surprising
in the context of the well-known multiple-recursive bound on the lexicographic
path orders and follows with relative ease from earlier work [6]. However, our
smooth framework allows us to get rid of the technicalities involved in earlier
work.

Throughout the history of term rewriting, a general link has been sought
between the strength of a termination argument and the complexity of rewrite
systems it admits. An early attempt at such a correspondence is the so-called
Cichon’s principle, which states that the derivational complexity function of a
TRS R for which termination is provable using a termination order of order
type α is eventually dominated by a function from the slow-growing hierarchy
Gα along α, cf. [7]. Unfortunately, while this principle holds for the standard
recursive path orders, it is not true in general, even for its relaxed version as
proposed by Touzet [8] - see [9] for a proof. It is now accepted that the link
between termination orders and complexity is dependent in a much more subtle
way on the structure of the termination proof. Therefore, we believe that ap-
plying proof-theoretic techniques to analyse the computational meaning of path
orders could provide some important insight into the relationship between ter-
mination and complexity. This approach has already been successfully pioneered
in e.g. [10,11], and we hope that the work outlined here constitutes a first step
towards a similarly successful program in the context of rewriting.

2 Recursive Path Orders

We assume familiarity with term rewriting [5,12], and recall only some basic
notation. Let V denote a countable infinite set of variables, F a finite set of
function symbols, and T (F ,V) (T for short) the set of terms constructed from
these. A term rewrite system (TRS)R over T (F ,V) is a finite set of rewrite rules
l→ r. For a given term t, |t| denotes its size (the total number of variables and
function symbols in t), dp(t) its depth (the maximal number of nesting function
symbols) and Var(t) the set of variables in t. The rewrite relation is denoted as
→R and we use the standard notations for its transitive and reflexive closure. The
derivation height of a term s with respect to a well-founded, finitely branching

2

relation → is defined as: dh(s,→) = max{n | ∃t s →n t}. The derivational
complexity function dcR is defined as follows: dcR(n) := max{dh(t,→R) | |t| 6
n}.

Well-founded path orders are a powerful method for proving the termination
of rewrite systems, and recursive path orders are one of the best known of these.
For an arbitrary relation > defined on some set X, we let >mul and >lex denote
respectively the multiset and lexicographic extensions of > to finite tuples Xn.
We write <mul for the reverse of >mul, and analogously for all other annotated
inequality symbols used below.

Definition 1 (Recursive path order). Let � be a well-founded precedence
(i.e. a proper order) on a finite signature F . The recursive path order (RPO)
�rpo with respect to some status function τ : F → {mul, lex} is defined recursively
as follows: we say that t = f(t1, . . . , tn) �rpo s if one of the following holds:

(a) ti �rpo s for some i = 1, . . . ,m;
(b) s = g(s1, . . . , sm) with f � g and t �rpo si for all i = 1, . . . , n;
(c) s = f(s1, . . . , sn), t �rpo si for all i = 1, . . . , n and (t1, . . . , tn) �rpo,τ(f)

(s1, . . . , sn).

Here �rpo denotes the reflexive closure of �rpo.

Recall that the multiset path order �mpo is the instance of RPO for which
τ(f) = mul for all f , and analogously for the lexicographic path-order. We say
that a TRS R is compatible with �rpo for some suitable choice of � and τ if R ⊆
�rpo. It is easy (but tedious) to show that �rpo is closed under both substitutions
and contexts, and therefore from compatibility we obtain that →R ⊆ �rpo. In
the latter case, we say that R is reducing with respect to �rpo. It is well-known
that �rpo is well-founded, so any TRS compatible with �rpo is terminating.

There are two well-known basic strategies to show that a RPO is well-
founded. One can either appeal to some variant of the minimal-bad-sequence
argument to show that there cannot exist an infinite descending chain of terms
t0 �rpo t1 �rpo . . ., either in the form of Kruskal’s theorem or directly applied
to path orders as in [13], or alternatively one can take what is essentially the
contrapositive of this statement and proceed via a series of nested inductions on
terms, as in e.g. [3,14]. This second approach is most amenable for the purposes
of program extraction, so we sketch the inductive proof below.

Theorem 1. �rpo is well-founded.

Proof. Let t ∈WF denote that t is a well-founded term, i.e. there are no infinite
descending sequences starting from t. We prove that

∀f ∈ F ∀t1, . . . , tn ∈WF . f(t1, . . . , tn) ∈WF︸ ︷︷ ︸
A(f)

. (1)

Then, since we trivially have x ∈WF for all variables x, we obtain ∀t(t ∈WF)
from (1) by well-founded induction over the structure of terms. Therefore it
remains to prove ∀fA(f). Let us fix, for now, f ∈ F and t1, . . . , tn ∈ WF and
make the following assumptions:

3

(A) ∀g ≺ fA(g)
(B) ∀(s1, . . . , sn) ≺rpo,τ(f) (t1, . . . , tn)(s1, . . . , sn ∈WF→ f(s1, . . . , sn) ∈WF),

where we note that ≺rpo,τ(f) is only ever applied to tuples of well-founded terms.
We prove that f(t1, . . . , tn) ∈WF is well-founded by showing that

∀s(s ≺rpo f(t1, . . . , tn)→ s ∈WF︸ ︷︷ ︸
B(s)

) ,

using induction over J, where J denotes the immediate subterm relation. Let
us fix s and assume that ∀s′ J s B(s′). Then if t = f(t1, . . . , tn) �rpo s there are
three possibilities:

(a) ti �rpo s for some i = 1, . . . , n, in which case s ∈ WF by assumption that
ti ∈WF;

(b) s = g(s1, . . . , sm) with f � g and t �rpo si for all i. Then by our induction
hypothesis we must have s1, . . . , sm ∈WF, and therefore by assumption (A)
we have g(s1, . . . , sm) ∈WF too;

(c) s = f(s1, . . . , sn) with t �rpo si for all i and (t1, . . . , tn) �rpo,τ(f) (s1, . . . , sn).
Then again s1, . . . , sn ∈ WF, and this time by assumption (B) we have
f(s1, . . . , sn) ∈WF.

This establishes B(s), and thus by J-induction we obtain ∀sB(s) and hence well-
foundedness of f(t1, . . . , tn). We now carry out two further inductions to elimi-
nate the assumptions (A) and (B) in turn. First, from (A)→ (B)→ (t1, . . . , tn ∈
WF→ f(t1, . . . , tn) ∈WF) and well-founded induction over (WF,�rpo,τ(f)) we
obtain (A) → A(f), and this yields ∀fA(f) by induction on (F ,�), and we’re
done. ut

2.1 A Finitary Formulation of Theorem 1

In general, we know that an arbitrary rewrite system R compatible with some
�rpo must terminate by well-foundedness of �rpo. However, for a fixed rewrite
system, the full strength of Theorem 1 is never used, since unlike �rpo the rewrite
relation →R is only finitely branching. Rather, R will always lie in some fini-
tary approximation of �rpo, where the size of this approximation will depend
in some suitable sense on the ‘size’ of R. Thus, in order to successfully analyse
the complexity of the termination proof, we are not interested in analysing the
well-foundedness of �rpo itself, but only these finitary approximations to it.

A precise characterisation of the approximation of �rpo needed to prove well-
foundedness of a given TRS is established by Buchholz in [3], and we reformulate
his idea below in a slightly simplified way (the simplification being possible
because here we do not consider varyadic function symbols).

In what follows, we use the abbreviation RPO(>, t, s) for the statement that
one of the conditions (a)-(c) in Definition 1 holds for s, t and >. Thus one defines
�rpo by f(t1, . . . , tn) �rpo s iff RPO(�rpo, f(t1, . . . , tn), s).

4

Definition 2. The approximation �k of �rpo is recursively defined as follows:
we have t = f(t1, . . . , tn) �k s iff

RPO(�k, f(t1, . . . , tn), s) ∧ dp(s) 6 k + dp(t) ∧ Var(s) ⊆ Var(t) ,

where dp(t) denotes the depth of t.

We call �k finitary because by definition for each t there are only finitely
many s for which t �k s. The proof of the next theorem can essentially be read-
off from Buchholz’s proof in [3]. However, our later proof extraction is based on
the simplified proof given here.

Theorem 2 (Buchholz [3]). Any R compatible with an �rpo is contained in
�k for some k depending on R.

Proof. It is first shown that

(i) t �rpo s implies tσ �dp(s) sσ for any substitution σ,
(ii) tj �k s implies f(t1, . . . , tn) �k f(t1, . . . , tj−1, s, tj+1, . . . , tn) for any f .

Property (i) is most easily established as in [3]; as usual t �rpo s implies that
Var(sσ) ⊆ Var(tσ). Furthermore, induction on �rpo yields that t �rpo s im-
plies dp(sσ) 6 dp(s) + dp(tσ). Yet another induction over �rpo derives (i),
and property (ii) is similarly straightforward. Now, for a given R let k :=
max{dp(r) : l → r ∈ R}. It is then clear that if R is compatible with �rpo

then t →R s implies t �k s, since by (i) we have lσ �k rσ for all rules l → r,
and therefore C[lσ] �k C[rσ] by induction on (ii). ut

3 Bounding the Derivational Complexity of R

We now construct a term which forms a recursive analogue to Theorem 1, but
takes into account the fact that we only need to consider finitary approximations.
Let R, a RPO �rpo compatible with R and a suitable approximation �k of �rpo

be fixed for the remainder of the paper.

3.1 Term and Tree Encodings, Gödel’s system T

We assume that the terms T of our rewrite system can be primitive recursively
encoded into N, and write s <T t to denote that the code of s is less than the
code of t. Let T ? denote the set of all finite trees of terms. For T ∈ T ? we write
rt(T) to denote the root of T , and write S ⊂ T if S is an immediate subtree of
T . Again, we assume that T ? has been primitive recursively encoded into N.

In what follows we work in the standard language of system T in all finite
types ρ: terms are built from the usual arithmetic constants, λ-abstraction and
application, and Gödel’s primitive recursor Rhρ(n) = hn(λm < n . Rhρ(m)) whose
output can have arbitrary type ρ. It is clear that recursion over the decidable
relations J and ⊂ can be defined in terms of the recursor of base type N, since

5

without loss of generality we can assume that if s J t then s <T t, and similarly
for ⊂. Therefore terms build up from these forms of recursion are primitive
recursive in the usual sense. On the other hand, given a well-founded lifting
⊂∗ of ⊂ to tuples (T ?)n (where in the sequel ⊂∗ will be either the multiset or
lexicographic lifting) we let TR⊂∗ denote the transfinite recursor over ⊂∗ of base
output type. We leave open for now how this can be formally defined within
system T as this will depend on the lifting.

3.2 Computing Derivation Trees

Let t be a term and let Φk(t) denote the finite tree T with root t, whose branches
(t, t1, . . . , tn) are precisely �k-derivations t �k t1 �k . . . �k tn from t; terms
will be denoted by lower-case letters and derivation trees by upper-case letters.
Finiteness of Φk(t) follows since �k is well-founded and finitely branching. We
now show how Φk(t) can be computed. Let t = f(t1, . . . , tn) for some f ∈
F and terms t1, . . . , tn, and suppose that for each g ≺ f we have a function
Fg : (T ?)m → T ? where m = ar(g) that satisfies

Fg(Φk(s1), . . . , Φk(sm)) = Φk(g(s1, . . . , sm)) for all s1, . . . , sm . (A)

Suppose, in addition, that we have a function Gt1,...,tn : (T ?)n → T ? satisfying

Gt1,...,tn(Φk(s1), . . . , Φk(sn)) = Φk(f(s1, . . . , sn)) for all s ≺k,τ(f) t . (B)

Here ≺k,τ(f) abbreviates the τ(f)-extension of the approximation ≺k and t =
t1, . . . , tn.

Lemma 1. Given T1, . . . , Tn ∈ T ? define the function HFg≺f ,Gt,T1,...,Tn : T →
T ? (where Fg≺f , Gt, T1, . . . , Tn are treated as parameters) by subterm recursion
as follows (suppressing parameters):

H(s) :=


Ti[s]

for the least i such that s is equal to ei-
ther rt(Ti) or some child of rt(Ti) in Ti,
if such an i exists

Fg(H(s1), . . . ,H(sm)) if s = g(s1, . . . , sm) for g ≺ f
Gt(H(s1), . . . ,H(sn)) if s = f(s1, . . . , sn)

[] otherwise ,

where [] denotes the empty tree and T [s] the subtree of T with root s. Then

HFg≺f ,Gt,Φk(t1),...,Φk(tn)(s) = Φk(s) ,

for all s ≺k t, assuming (A) and (B).

Proof. By induction on J. If s ≺k t there are three possibilities. First, if s �k ti
for some i then either s = ti or s is a child of ti in Φk(ti), and so H(s) =

6

Φk(ti)[s] = Φk(s). Otherwise, suppose s = g(s1, . . . , sm) for g ≺ f and si ≺k t
for all i, by the induction hypothesis we obtain H(si) = Φk(si) and therefore

H(s) = Fg(Φk(s1), . . . , Φk(sm)) = Φk(g(s1, . . . , sm)) ,

by assumption (A). Similarly, if s = f(s1, . . . , sn), where for all i, si ≺k t and
(s1, . . . , sn) ≺k,τ(f) (t1, . . . , tn), then the induction hypothesis together with (B)
yields

H(s) = Gt(Φk(s1), . . . , Φk(sn)) = Φk(f(s1, . . . , sn)) .

From this the lemma follows. ut

Let t be a term and let (Si)i∈I be a finite collection of trees. Then the tree
t ∗
∏
i∈I Si is the finite tree with root t and immediate subtrees Si.

Lemma 2. Define the function KFg≺f ,Gt : (T ?)n → T ? as follows:

KFg≺f ,Gt(T1, . . . , Tn) := t′ ∗
∏
s≺kt′

HFg≺f ,Gt,T1,...,Tn(s) ,

where t′ = f(rt(T1), . . . , rt(Tn)). Then assuming (A) and (B) we have

KFg≺f ,Gt(Φk(t1), . . . , Φk(tn)) = Φk(t) .

Proof. First, we remark that KFg≺f ,Gt is primitive recursive in Fg≺f and Gt,
since s ≺k t is a primitive recursive predicate, and

∏
s≺kt a finite search bounded

by some primitive recursive term, by definition of ≺k. Now, due to Lemma 1 we
have

KFg≺f ,Gt(Φk(t1), . . . , Φk(tn)) = t ∗
∏
s≺kt

HFg≺f ,Gt,Φk(t1),...,Φk(tn)(s)

= t ∗
∏
s≺kt

Φk(s) ,

and this is just the tree whose branches are �k-derivations t �k s �k . . . �k sn,
which is exactly Φk(t). ut

Lemma 3. Define function F
Fg≺f
f : (T ?)n → T ? using the transfinite recursor

over ⊂τ(f) as follows

F
Fg≺f
f (T1, . . . , Tn) := K

Fg≺f ,Ff �(S1,...,Sn)⊂τ(f)(T1,...,Tn)(T1, . . . , Tn) .

Then assuming (A), for all t1, . . . , tn we have

F
Fg≺f
f (Φk(t1), . . . , Φk(tn)) = Φk(f(t1, . . . , tn)) .

Proof. By induction on ≺k,τ(f); suppose for all (s1, . . . , sn) ≺k,τ(f) (t1, . . . , tn)
the lemma is true. Then (B) holds for Gt1,...,tn = Ff �(S1,...,Sn)⊂τ(f)(Φ(t1),...,Φ(tn))
and by Lemma 2 we have

Ff (Φk(t1), . . . , Φk(tn)) = Φk(f(t1, . . . , tn)) .

This completes the induction step, so the result holds for all arguments t1, . . . , tn.
ut

7

Lemma 4. For each f ∈ F there exists a function Ff : (T ?)n → T ? for n =
ar(f) satisfying

Ff (Φk(t1), . . . , Φk(tn)) = Φk(f(t1, . . . , tn)) .

Proof. By Lemma 3 we construct Ff in terms of Fg for g ≺ f assuming (A), and
since ≺ is well-founded this construction is well-defined and correct for all f . ut

Theorem 3. There exists a function F : T → T ? primitive recursive in TR⊂τ(f)
for f ∈ F such that

F (t) = Φk(t) ,

for all terms t.

Proof. Define F using subterm recursion as

F (t) :=

{
[x] if t = x

Ff (F (t1), . . . , F (tn)) if t = f(t1, . . . , tn) .

Then theorem follows by Lemma 4 and induction over the structure of t. ut

3.3 Derivational Complexity

Let |·| : T ? → N denote the recursive function which returns the length of the
longest branch of trees in T ?.

Theorem 4. Suppose that the TRS R is compatible with RPO for some suitable
status function τ . Then its derivational complexity is bounded by a function
primitive recursive in TR⊂τ(f) for f ∈ F .

Proof. By Theorem 2, if R is compatible with RPO then it is compatible with
�k for some k, and so by Theorem 3 →R derivations from t are contained
in the tree F (t), where F is primitive recursive in the TR⊂τ(f) . In particular,
dh(t,→R) 6 |F (t)|, and therefore

dcR(n) 6 max
|t|6n
|F (t)|

which is primitive recursive in F since we can bound the search |t| ≤ n because
we only need to search over a finite number of variables. ut

We can now re-derive, in a completely uniform way, some of the well-known
complexity results concerning recursive path orders. To do this, first let TRmul(n)

denote multiset recursion of lowest type over tuples (x1, . . . , xn) : Nn of size n,
and TRlex(n) lexicographic recursion. Then we have the following.

Lemma 5. (a) TRmul(n) is definable from the Gödel recursor of lowest type;
(b) TRlex(n) is definable from the Gödel type 1 recursor.

8

Proof. Part (a) is straightforward, as one can easily find a (primitive recursive)
encoding of Nn into N that preserves the multiset order.

For (b) we use induction on n. It’s clear that TRlex(1) is just primitive re-
cursion in the usual sense. Now, assuming that TRlex(n−1) has been defined, use
this to construct the functional hH : N → (N → Nn−1 → N) → Nn−1 → N,
parametrised by H : N→ Nn−1 → (N→ Nn−1 → N)→ N, and defined by

hHxFx := Hxx

(
λy,y .

{
hHxFy if y = x ∧ y <lex(n−1) x

Fyy if y < x

)
.

Now by unwinding definitions we see that the term Rh1 : N→ Nn−1 → N satisfies

Rh(x1)(x2, . . . , xn) = H(x1)(x2, . . . , xn)(λy <lex(n) x . R
h(y1)(y2, . . . , yn)) ,

where now x = (x1, . . . , xn). But this is just recursion over lex(n). ut

Corollary 1 (Hofbauer [1]). If R is compatible with MPO then R has prim-
itive recursive derivational complexity.

Proof. This follows from Lemma 5 (a) and the observation that TR⊂mul
is defin-

able from TRmul since (T ?,⊂) can be recursively encoded in (N, <). ut

Corollary 2 (Weiermann [2]). If R is compatible with RPO then R has mul-
tiply recursive derivational complexity.

Proof. This follows analogously to Corollary 1, this time using Lemma 5 (b).
The fact that type one functions definable from the Gödel level 1 recursor are
multiply recursive is folklore, see e.g. [15]. ut

4 Conclusion

The most important feature of our work is not the rederivation of known com-
plexity bounds, but in the manner in which we were able to do this. By con-
structing a concrete realising term F as a computational analogue to Theorem 1
which computes finitary �k-derivation trees, we provided a bridge which re-
lates the proof-theoretic complexity of well-founded recursive path orders to the
derivational complexity of rewrite systems compatible with these orders.

A crucial point that we want to explore in future work is that our realising
term is uniformly dependent on the parameters of the recursive path order used
to prove termination, along with the size of the rewrite system, and any restric-
tion in these parameters will cause a corresponding restriction in the complexity
of F . Therefore a further, more detailed analysis of the structure of the realiser
should enable us to obtain more refined complexity bounds.

For example, it follows from Weiermann’s original derivational complexity
analysis of the lexicographic path order that the induced multiple recursive
bound allows parametrisation in the maximal arity of the function symbols,
cf. [2], see also [16, Chapter 8]. Similar results follow from Hofbauer’s analysis

9

of the multiset path order, cf. [1]. We expect that these and similar finer charac-
terisations of the derivational complexity induced by specific parameters of the
recursive path orders can be obtained with relative ease in our context. More
generally, we hope to extend these results and in particular derive new criteria
on path orders which guarantee feasible complexity of rewrite systems.

As another example, one could study restricted variants of the lexicographic
lifting on tuples which do not require type 1 recursion to define the corresponding
recursor, giving us strengthenings of the multiset path order which allow us to
prove interesting closure properties for the primitive recursive functions, an idea
initiated by Cichon and Weiermann in [17].

References

1. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS 105 (1992) 129–140

2. Weiermann, A.: Termination proofs for term rewriting systems with lexicographic
path ordering imply multiply recursive derivation lengths. TCS 139 (1995) 355–
362

3. Buchholz, W.: Proof-Theoretic Analysis of Termination Proofs. APAL 75 (1995)
57–65

4. Parsons, C.: On a number theoretic choice schema and its relation to induction.
In: Proc. Intuitionism and Proof Theory. (1970) 459–473

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

6. Moser, G., Weiermann, A.: Relating derivation lengths with the slow-growing
hierarchy directly. In: Proc. 14th RTA. Volume 2706 of LNCS. (2003) 296–310

7. Cichon, E.A.: Termination orderings and complexity characterisations. In: Proof
Theory, Cambridge University Press (1992) 171–193

8. Touzet, H.: Encoding the Hydra battle as a rewrite system. In: Proc. 23rd MFCS.
Volume 1450 of LNCS. (1998) 267–276

9. Moser, G.: KBOs, Ordinals, Subrecursive Hierarchies and All That. JLC (2015)
to appear.

10. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
Primitive-Recursive Bounds with Dickson’s Lemma. In: Proc. 26th LICS, IEEE
(2011) 269–278

11. Berardi, S., Oliva, P., Steila, S.: Proving Termination with Transition Invariants
of Height ω. In: Proc. 15th ICTCS. (2014) 237–240

12. TeReSe: Term Rewriting Systems. Volume 55 of Cambridge Tracks in Theoretical
Computer Science. Cambridge University Press (2003)

13. Ferreira, M.C.F., Zantema, H.: Well-Foundedness of Term Orderings. In: Proc.
4th CTRS. Volume 968 of LNCS. (1995) 106–123

14. Goubault-Larrecq, J.: Well-Founded Recursive Relations. In: Proc. 15th CSL.
Volume 2142 of LNCS. (2001) 484–498

15. Weiermann, A.: How is it that infinitary methods can be applied to finitary math-
ematics? Gödel’s T: A case study. JSL 63 (1998) 1348–1370

16. T-Arai: Some results on cut-elimination, provable well-orderings, induction, and
reflection. APAL (1998) 93–184

17. Cichon, E.A., Weiermann, A.: Term Rewriting Theory for the Primitive Recursive
Functions. APAL 83 (1997) 199–223

10

	On the Computational Content of Termination Proofs

