The Equivalence of Bar Recursion and Open Recursion®

Thomas Powell
Institut des Hautes Ftudes Scientifiques

July 15, 2014

Abstract

Several extensions of Godel’s system T with new forms of recursion have been designed for the
purpose of giving a computational interpretation to classical analysis. One can organise many of
these extensions into two groups: those based on bar recursion, which include Spector’s original
bar recursion, modified bar recursion and the more recent products of selections functions, or
those based on open recursion which in particular include the symmetric Berardi-Bezem-Coquand
(BBC) functional. We relate these two groups by showing that both open recursion and the BBC
functional are primitive recursively equivalent to a variant of modified bar recursion. Our results, in
combination with existing research, essentially complete the classification up to primitive recursive
equivalence of those extensions of system T used to give a direct computational interpretation to
choice principles.

Keywords. Godel’s system T, primitive recursive equivalence, bar recursion, open recursion.

1 Introduction

In a landmark paper of 1962, C. Spector extended Godel’s Dialectica interpretation of Peano arithmetic
to countable choice and hence classical analysis by adding to the primitive recursive functionals a novel
form of recursion now know as bar recursion [29]. In its broadest sense, bar recursion is a generalisation
of primitive recursion to well founded trees, and can be informally described by the scheme

BY(s) G(s) if 5 is a leaf of T'
S) =
H(s,\x . BT(sxx)) otherwise.

Spector’s original bar recursion is just one of the first concrete instances of this kind of recursion, and
many new variants have been developed in a number of different contexts. For example, in proof theory
novel instances of bar recursion feature in [1] and [5] in order to give new realizability interpretations to
countable dependent choice, while in computability theory a form of bar recursion was used in [18] to
exhibit a continuous functional with a recursive associate which is nevertheless not S1-S9 computable.
More recently, bar recursion in the form of products of selection functions has been shown to have
deep connections with game-theory and the computation of so-called generalised Nash equilibria in
unbounded sequential games [14, 15]. The relationship between these many variants of bar recursion
has been thoroughly investigated in [6, 8, 17, 20, 24].

*The results of this paper form Chapter 12 of the author’s PhD dissertation [25]

In 1998, Berardi et al. [1] proposed a beautiful alternative to bar recursion - referred to here as the
BBC-functional (or just BBC) - in order to give an efficient computational interpretation to countable
choice. Their idea was a symmetric form of recursion, in many ways analogous to bar recursion but
in which recursive calls are made over extensions of finite partial functions as opposed to extensions
of finite sequences. Despite its apparent simplicity, the behaviour of the BBC-functional is seemingly
much harder to understand than bar recursion. An early attempt by Berger [2] to justify BBC in a
standard domain-theoretic type structure resorted to a complex non-constructive argument involving
Zorn’s lemma. A more satisfactory framework was subsequently developed by the same author in
[3] where it is shown that BBC is a simple instance of a general schema of open recursion over the
lexicographic ordering - a computational analogue of the principle of open induction which in turn
forms the contrapositive to the well-known minimal bad sequence argument. Nevertheless, in contrast
to bar recursion, relatively little is understood about open recursive functionals, and in particular their
relationship to bar recursion remains unknown.

In this article, we prove that both open recursion and even the apparently weaker BBC functional
are primitive recursively equivalent to a class of bar recursive functionals that includes the modified
bar recursion of [5] and the more recent implicit product of selection functions of [17]. As an imme-
diate consequence we obtain a new proof of the totality of BBC and open recursion, and also verify
that neither of these are S1-S9 computable in the total continuous functionals. More importantly, in
combination with previous results, we essentially complete the classification of the well-known com-
putational interpretations of analysis according to primitive recursive equivalence. Moreover, we give
direct constructions of open recursion and BBC as single instances of bar recursion, and vice-versa,
and in doing so hopefully shed some light on the qualitative relationship between these functionals,
which may in turn lead to an improved understanding of how they compare in practice when used to
extract realizers from proofs.

The organisation of this paper is fairly straightforward. In the remainder of this section we provide
some essential preliminary material, before moving onto a brief survey of bar recursion and open
recursion in Section 2. Sections 3 and 4 contain our main results: the definability of open recursion
from bar recursion and the definability of bar recursion from the BBC-functional, respectively.

1.1 Heyting arithmetic in all finite types

In this paper we study recursion over all finite types. Our formulation of the finite types contains base
types N and B for natural numbers and booleans, function types p — 7 (which we sometimes denote
as 7°), product types p x 7 and finite sequence types p*. We will also make use of a type p=p+1 in
order to represent partial sequences as the type p'' (we assume that it is decidable whether or not a
given point is in the domain of a partial sequence). We write z: p or z” when z has type p.

A discrete type is any type that can be encoded in N. For example, all of B, N and Bx N are discrete,
but N — N is not. The topological significance of the discrete types in the context of the continuous
functionals is discussed in [11]. The restriction on some types being discrete will be important later in
order to ensure that the defining equations of certain recursors are consistent with Heyting arithmetic.

We work in the standard theory E-HA® of fully extensional Heyting arithmetic in all finite types
(see e.g. [21, 30] for details), which contains variables and quantifiers for all types, induction for
arbitrary formulas, and the usual non-logical constants with their defining axioms, including symbols
R, for primitive recursion in all finite-types:

R#(0) =y
RYZ(n+ 1) = z,(RY*(n)).

There are various ways of formulating equality at higher-types precisely. In [21], E-HA® comes equipped

with predicates =y and =g for equality between numbers and booleans, while equality for compound
types is defined in terms of these. In particular, for function types we have

f=posr g =V (fr =, gx).

Extensionality of higher-type equality is given via the axioms

VT Py (e =p y = fu =1 fy).

The terms of E-HA® are otherwise known as Godel’s system T, although the theory T technically refers
to a quantifier-free fragment of E-HA® (see [30]). The set-theoretic functionals represented by the closed
term of E-HA® are the Godel primitive recursive functionals of all finite types, and these substantially
expand the usual class of primitive recursive functions which allow only primitive recursion of lowest
type: in particular the Ackermann function is already definable from Ry_,y.

The theory E-HA® allows us to carry out M-abstraction and definition by cases. Furthermore,
quantifier-free formulas in the language of E-HA® can be given characteristic functions using the re-
cursor, and can therefore be used as clauses in definitions by cases. The symbol 0, will denote the
canonical zero object of type p, while for product types m; and (,) denote the usual projection and
pairing functions. Given t: py X p; we write ¢; := m;t, and sometimes for sequences a: (pg x p1) we
write «; := An.m;a(n). For finite sequence types, |- | denotes the length function and * the concate-
nation of two sequences i.e. s*t:= (So,...,8m—1,t0,...,tn—1). For a single object x: p we will write
s x x instead of s * (x). We also write s x a for the concatenation of s with an infinite sequence .

For partial sequences u: p'' we write u(n) = L for u(n) = [1], and u(n) = 2” for u(n) = [z];, where
[]; and [], are the coprojections into p + 1. We say that v is defined at n whenever u(n) = z for
some z”, and denote the set of defined values of u as dom(u). The predicate n € dom(u) is decidable.
Finally, we will make use of the following basic recursive operations and notational conventions:

e For a: pV we define tail,(a) := Mk.a(n + k), and for ¢: pN' — 7 and s: p* we define ¢, :=
Ao (s *).

e The overwrite function for finite sequences @ : p* x pN — p" is defined by

Sn if n <|s]

(s @a)(n) := {

a(n) otherwise,
and similarly, overwriting partial functions u: p" is defined by

(n) if n € dom(u)
(n

It will always be clear from the context which of these we mean.

u
a(n) otherwise.

(u@a)(n) := {

e For a: p" we define [o](n) := (a(0),...,a(n — 1)) and for s: p* we define §:= s @0,. We also
define &, 7 := [(n).

e There is a bounded search operator u: BY x N — N satisfying

least i < n(ai =0) if it exists
N(aa n) = .

0 otherwise.
z ifb=0

e The term ‘z” if b of type p is an abbreviation for)
0, ifb#0.

1.2 Models of E-HA”

A standard interpretation of E-HA® is the type-structure 8% of all set theoretic functionals. However,
extensions of E-HA“ with bar recursion typically only exist in structures that admit some kind of
continuity, such as the total continuous functionals C¥ of Kleene [19] and Kreisel [22]. In order to keep
our paper self-contained and as general as possible we refrain from working in any specific model, but
when necessary we will extend E-HA® with the following sequential continuity axiom for discrete types
7, which is valid in C¥:

Cont : VF' =7 o/ INVB([0](N) =, [8](N) = Fa =, FB).

Not all models of bar recursive functionals need satisfy Cont, in particular Spector’s bar recursion
exists in the strongly majorizable functionals M*“ ([7]), which only satisfies the weaker condition

VF?' =N 03N (F(a, N) < N).

However, some level of continuity seems necessary to reason about stronger forms of recursion such as
modified bar recursion and open recursion. We leave open the question of whether or not our main
results can be verified using a strictly weaker axiom than Cont.

In addition to continuity, we will also require the following schema of relativised bar induction:

S(()
Bl, : NVa € STInP([a](n)) — P({)),

AVs € S(Vx(S(sxx) — P(s*x)) = P(s))

where P and S are predicates over p* with S quantifier-free, and o € S and s € S are shorthand
for ¥nS([a](n)) and S(s) respectively. The axiom schema of relativised quantifier-free bar induction
QF-BI is bar induction for P also restricted to being quantifier-free. In most cases we will not need to
relativise the bar induction at all, simply taking S(s) = true.

For a detailed discussion of bar induction in the context of intuitionistic mathematics see [30].
Classically, bar induction follows from dependent choice, and is therefore valid in type-structures
of continuous functionals since the type p" is interpreted as the space N — C, of all sequences of
continuous objects.

2 Extensions of the (Godel primitive recursive functionals

In this article we consider extensions of system T by functionals F, indexed by tuples of types p,
defined by recursive equations of the form a

FB(.I‘(), e ,xk—l) = QB(FB’ Loy« ,.fﬂk_l)

where €, is some primitive recursive functional. We make an important distinction between the
functional F, and its defining axiom, which we label F3*[®]. The latter we consider a formula with one
free variable ®, given by -

Fax[q)] : VZL'(), ce ,xk,l(q)(xo, N 71';6,1) = QB(CI)7£L'0, ey (Ekfl)),

L

which simply says that the object @ satisfies the defining equation of F,. By E-HA® + F, we implicitly
mean the extension of E-HA” with a new constant F, that satisfies F3*[F,], although we do not assume
that F, is a unique solution to F3*[®].

Definition 2.1. The hierarchy of functionals F = {F,},ex primitive recursively defines the hierarchy
G = {G, }sey relative to some collection of additional axioms A if for each ¢ € Y there exist types
Py(@)s---sp, (o) € X and a closed term ¢ € E-HA™ such that

E-HAY + A + FEO(g) +...+ Fﬁn—l(g) (= G?[t(Fﬁg(Q% R Fp (U))].

—n—1'—

For brevity, we simply write G <t F over A, and when A is empty, just G <t F.

Remark 2.2. 1. We say that G <1 F in some model 7% of E-HA” whenever G <t F over A with
T E A. For example, if A = Cont + QF-BI then G <t F is valid in the continuous functionals
cv.

2. If G <t F and F <t G over A then we say that F and G are primitive recursively equivalent
(F =1 G) over A. Tt is easy to show that the relation <t is transitive, and therefore =t is an
equivalence relation on modes of recursion. If F =1 G over A then the corresponding extensions
of system T can be identified in any model of E-HA* + A.

Our notion of definability between modes of recursion in all finite types may appear to be quite a
weak property in that we impose no restriction on the level of types. If we have proved that F > G by
establishing that F, > G, for all p, we might have just as well done so via the weaker result F,_., > G,
for instance. However, as we will see in Section 2.2, primitive recursive definability is indeed a non-
trivial and subtle property that yields interesting insights into the relationship between extensions of
system T.

Moreover, in all the results that follow, we establish strictly more than definability of the main
hierarchies, and succeed in showing that

E-HA® + A + F (o) F GX[t(F y(0))],

for each ¢, in other words defining G, in terms of just one object F,(, in the hierarchy F, where p(o)
is uniform in ¢. In addition, our constructions are instance-wise in the sense that t(F,(s)) contains
only a single instance of F .

The remainder of this section is essentially a survey of the extensions of system T that form
the subject of this paper, along with some essential preliminary results. In order to provide some
context into the proof theoretic significance of these forms of recursion we also mention some of their
applications as bullet points e, although none of these facts are directly relevant or necessary for this
work.

2.1 Implicit forms of bar recursion

We begin by introducing the key variant of bar recursion that will feature in our definability results,
the so-called implicit product of selection functions, or IPS, introduced by Escardé and Oliva in [13].
This is our chosen representative of a class of equivalent bar recursive extensions of system T which
includes the more widely known modified bar recursion, but not Spector’s bar recursion, as we discuss
in Section 2.2. One of the characterising features of this class is that the recursion takes place over a
non-computable tree whose leafs correspond to points of continuity of the parameters.

The defining equation of IPS is given by

e, * ,pi €, g,
|PSp;i(s'°)i=s@ IPSpq(s *es(Ax . q(lPSp,Z(s *x)))) (1)

\T

where ¢: p* — ((p — 7) — p) and q: p — 7. The type p ranges over all finite types, but the type 7
is restricted to the discrete types, otherwise the defining axiom becomes inconsistent with E-HA®, as

we explain below. Because the parameters € and ¢ don’t change during recursive calls we put them in
the superscript for clarity, and we omit both types and fixed parameters when there is no danger of
ambiguity.

By using the abbreviation as := e5(Az . ¢(IPS;%(s * x))), we can write the defining axiom for IPS
a little more concisely as

a(gp") £ ,
IPSJ9(s”) i= s QIPS)%(s * as).

We use this abbreviation throughout the rest of the paper, beginning with the proofs of the following
straightforward but absolutely crucial properties of IPS, which are adapted from analogous properties
of Spector’s bar recursion highlighted in [29]. We explore the intuition behind these results afterwards.

Lemma 2.3. Let o := IPS®%(s). Then o = IPS*([a](n)) for all n > |s|.

Proof. Induction on n. For n = |s| the result is obvious since [a](|s|) = s. For the induction step we
see that

2 1PS([a](n)) = [a](n) @ IPS([a](n) * aja)(m)) = IPS([a](n) * afa)(n)):
the last equality holding since [a](n) is a prefix of IPS([a](n) * ajq)(n)). But then
a(n) = IPS([a](n) * a[a](n))(n) = Q[a](n)
and so a = IPS([a](n + 1)). O

Theorem 2.4. Define a: p and ps: p — T by

a = IPS=1(())
ps = Az . q(IPST(s x x)).

Then for all n we have

Proof. For the first equality we have

a(n)=IPS([a](n))(n)
= ([a](n) @IPS([a](n) * afa)(n))) (1)
= €la)(n)(Az . q(IPS([a](n) *)))
= €la](n) (Pla)(n));

where the first step follows directly from Lemma 2.3. For the second we have

Ploj(n)(a(n)) = q(IPS([a](n +1))) =q(a).
0

We now pause for a moment to give some insight into the recursor IPS, which can be described
quite intuitively using concepts from the world of sequential games. This link between bar recursion
and game theory is due to Escard6 and Oliva, and is explored in much more detail in e.g. [13, 14], so
the reader is invited to consult these works in conjunction with the rapid summary we give here.

Let us first imagine that the type p represents a type of ‘moves’, and 7 a type of ‘outcomes’. We
view infinite sequences «: p" as plays in an infinite sequential game, and the parameter g of IPS as

assigning an outcome to each play (because the outcome type 7 is always discrete, a continuous ¢ only
ever depends on a finite initial segment of each play, ensuring that the game is well-founded).

A strategy next: p* — p in a sequential game is a procedure that chooses a next move from a finite
initial play s: p*, and the corresponding strategic extension §,: p of s is the recursive application of
next i.e. a(n) = s, for n < |s| and a(n) = next([a](n)) otherwise. The parameter e of IPS can be
seen to represent a selection function, that for each finite sequence of moves s: p*, dictates an optimal
next move a;. A strategy next is optimal if it satisfies

next(s) = es(Ax . ¢(Bssz))

where B4, is the strategic continuation of s x. The strategic continuation of an optimal strategy is
an optimal continuation.

Together, € and g can be viewed as defining a sequential game. In this language, it can be shown as
a direct consequence of Lemma 2.3 and the defining equation (1) that IPS®? is a backtracking recursor
with the property that IPS(s) is the optimal continuation of the finite initial play s in this game.
Theorem 2.4 simply makes it explicit that o = IPS(()) is optimal at every point in the sequence.

In [13, 14], IPS is constructed in a slightly more elaborate way as an infinite iteration of a binary
product operation on selection functions - from which its name derives. This makes the game-semantics
of the recursor more perspicuous. Here, on the other hand, our chief concern is syntactic simplicity,
so we avoid this construction and define IPS directly without resorting to any additional machinery,
although our variant is completely equivalent (see [25, Appendix A] for details). While the rather
technical instances of IPS considered in the paper do not correspond to particularly natural games, a
game-theoretic reading of IPS can be extremely helpful for understanding the basic behaviour of this
form of recursion.

On a more abstract level, the equations (2) characterise IPS as a functional that constructs a kind
of ‘sequential equilibrium’ between the selection functions ;. Optimal plays in sequential games form
one example of this kind of equilibrium, but it also appears in other contexts, most importantly in
giving a computational content to the axiom of choice. The basic idea here is that the e serve as ‘local’
realizers for the premise of the axiom and the bar recursion is used to combine them into a ‘global’” a
realizer « for the conclusion. Again, this is all discussed in considerable detail in elsewhere, and here
we conclude our brief discussion by simply stating together the following striking pair of applications
of IPS.

e |IPS solves the modified realizability interpretation of the negative translation of both countable
and countable dependent choice, and can therefore be used to extract computational content
from proofs in classical analysis [12, 16].

e IPS computes Nash-equilibria in a general class of implicitly-controlled infinite sequential games,
as defined in [14, 15].

Before we move on we quickly show that IPS can also be expressed as a solution to an alternative,
but equivalent defining axiom, which is essentially an unwinding of Lemma 2.3. This alternative
formulation of IPS is extremely convenient, and in the remainder of the paper we freely use the fact
that IPS satisfies both (1) and (3) below.

Lemma 2.5. The implicit product of selection functions can be alternatively defined using course-of-
values recursion as

IPS™(s) £ 5 @ An . &, (Ao . g(IPS™ (£, #))) ®)
where t,, := [IPS*(s)](n).

Proof. What we mean by this is that any functional satisfying the defining axiom (1) also satisfies (3)
and vice-versa. Suppose that IPS is defined as in (1). Then IPS(s)(n) = s, for n < |s|, and for n > |s|
we have, by Lemma 2.3,

IPS(s)(n) = (tn, QIPS(t, x ay,))(n) = ar, = ¢, (Ax . q(IPS(t, *))).

Therefore IPS satisfies (3). For the converse, if IPS is defined as in (3), let ¢, := [IPS(s)](n) and
tn = [IPS(s * a,)](n) for as := e;(Ax . q(IPS(s * x))). We show by induction that t,, = ¢, for all n.
Clearly this is true for n < |s|, and for n = |s| we have IPS(s)(]s|) = as = IPS(s*as)(|s|) by definition.
Finally, for n > |s| we have

IPS(s)(n) = &1, (Az . q(IPS(t, x))) "2 &5 (\x . q(IPS(E, * x))) = IPS(s * a,)(n)
and therefore t,,,1 = t,41. Thus IPS(s) = IPS(s * a), and since s is a prefix of IPS(s * as) we have
IPS(s) = s @QIPS(s * as). O

Finally, we pause again to explain why IPS exists in the type-structure C* of continuous functionals
- by which we mean that for each p, 7 there exists an element ®, , of C, (where ¢ is the type of IPS, ;)
such that IPST* [®, -] holds in C*. Recursive extensions of system T can usually be justified in the
continuous functionals via a domain theoretic argument (see e.g. [4, 5]), where by Ershov’s well-known
result [10] one identifies the total continuous functionals C¥ as the extensional collapse of the total
elements of the partial continuous functionals €. The model C¥ has the property that any continuous
functional C, — C, has a fixpoint, and so in particular any functional defined as a fixpoint of a
primitive recursive equation has an interpretation in C*. To show that it exists in C¥ it is sufficient to
prove that a solution in C* is total. For IPS this can be done via the following reasoning:

Suppose for contradiction that there are total arguments e, ¢ and s such that IPS®%(s) is
not total in C%. Then there must be some total 2 such that IPS®9(s*xg) is also not total,
and repeating this argument, by dependent choice there exists a total sequence « such that
IPS(s * [a](n)) is not total for each n.

But since 7 is discrete, by the continuity axiom in C* there is a point N such that
q(s*[a](N) @ B) = q(s x) for any sequence 3, and therefore by Lemma 2.5

IPS(s* [a](N)) =s*[a](N) @QAn .ep, (Ax . q(s * a))
which is total, and thus contradicts the construction of a.

Note that without the restriction on the type 7 being discrete, this argument would no longer be
valid. A straightforward counterexample is given by IPSy n—n, whose defining axiom is no longer even

consistent with E-HA“. This can be seen by setting ¢: N¥ — NN as the identity, and ES(pN”NN) =
p(0)(|s| + 1) + 1. Then there is no natural number n satisfying n = IPS(())(0).

We now move on to discuss some equivalent formulations of implicit bar recursion, the first of which
in particular is crucial for later sections.

2.1.1 The simple product of selection functions

The simple implicit product of selection functions ips has defining equation

ips;1(s) = s @ips,%(s * as)

where now ¢ has type N — ((p — 7) — p) and a, := ¢/ (Az . q(ips(s * x))). This differs from IPS in
that now the selection functions |, only have access to the length of s, not the values of its elements.
Note that as with the dependent product we can rephrase ips using course-of-values recursion as

ips®i(s) = s QAn . e, (A . q(ips(tn * x)) 4)

where t,, := [ips(s)](n). The simple product has a significance of its own in proof theory as it is
sufficient to give a computational interpretation to countable (as opposed to countable dependent)
choice:

e ips solves the modified realizability interpretation of the negative translation of countable choice
[12].

In [17] it is proven that ips is actually primitive recursively equivalent to the full product IPS, although
one must raise the type of ips to obtain the equivalence. This fact means that in order to define IPS
it is sufficient to define the simple product ips. We take advantage of this in Section 4 when defining
IPS from BBC, and so given its importance in this paper we outline the equivalence proof below.

The proof also forms a convenient warm up for later proofs, which follow the same general pattern
of a main construction followed by a routine and somewhat tedious verification involving Cont+ QF-BI,
seemingly necessary to confirm that certain inessential alterations of the arguments of the bar recursion
have no effect on the outcome.

Theorem 2.6 (Escardé-Oliva [17]). >1 IPS, - over Cont + QF-BI.

ipsp*—m,r
Proof. We rephrase the proof given in [17] so that it applies to our slightly altered definition of IPS
and ips. For parameters e: p* — ((p — 7) — p) and ¢: p¥ — 7 for IPS,, ,, define

En(pP P P27). es(\z . p(Au.z))

(a0 = g({a)})

where {a}: p" is defined recursively as {a}(n) := a(n)([{a}](n)) (and similarly for finite sequences).
Now set

N .
(s) = {ips, L, (5)}

where 5, := Au.s,. We claim that IPS7 [®,]. Setting t, = [®(s)](n) = [{ips(5)}](n) and T;, =

[ips(3)](n), for n < |s| we have

@(s)(n) = ips(5)(n)(tn) = 5n(tn) = sn,
while for n > |s| we have (using (5))
®(s)(n) = ips(5)(n)(tn)

=&\ q({ips(Th *)})
er, (Axf . q({ips(T), * Mu.x)})

@) e, Az . q({ips({T}, * Au.z})}))

2, (A . q({ips(t, *7)}))
= e, (Az . q(P(tn * 2))).

)(tn)
)

Here (i) follows from the fact that {7, * Au.x} = t,, * z (a simple induction argument), while (4) is
derived using QF-BI on the formula

P(R) == q({ips(T * R)}) = q({ips({T} * R)})

for T := T, * Au.z. For arbitrary 8: (p* — p)", let N be a point of continuity of gy on tailir {1 * 5}
(where tail, («) := Ak.a(n + k)). Then

q({ips(T" * [B](N))})

q{T = [Bl(N) @ ...})
a[{T = BH(TI+N)@ ...)
q({T'} * [tailjp {T x B}(N) @ ...)

and similarly

a({Ty = [BI(NV) @ ...})
=q[{T+B}(TI+N)@..)
= q({T} * [tail {T'* B}(N) @ ..

and therefore P([8](IN)) holds by Cont. For the induction step, assuming as bar induction hypothesis
VfP(Rx f), we have

a({ips({T} * [B](N))})

q({ips(T = R)}) = q({ips(T * R * ar«r)})

@) q({ips(T * R x am*R)})

LH. q({ips({T} * R « am*R)})
= q({ies({T} * R)})

B

where for (i7) we have
ar«r = E7)+|r|(ASf - q({ips(T * R * f)}))

B.I.H. - T
= Grrr (A - q{ips({T} * R x f)}))
= ATTeR
We have established YG3IN P([5](N)) and also VR(VfP(Rx f) — P(R)), so by bar induction (trivially
relativised) we obtain P(()) and hence (4). O

2.1.2 Modified bar recursion

The implicit product of selection functions is predated by the more widely known modified bar recursion
[5, 6], which is in turn based on the realizer for dependent choice given in [1] (not to be confused with
the BBC functional of the same paper). Modified bar recursion has the defining equation

MBRY4(s”") := q(s @ py(Az” . MBR(s * z)))

for ¢: p* = ((p — 7) — p") and q: p" — 7, where as with IPS the type 7 is required to be discrete. In
[1, 5] MBR is shown to interpret the axiom of dependent choice, while its relationship to other forms
of bar recursion is analysed in [6]. Strong normalization for MBR is established in [4], while concrete
applications for the extraction of programs in mathematical analysis are given in e.g. [27, 28]. It is
not too difficult to show that IPS is interdefinable with MBR.

Theorem 2.7. IPS =1 MBR instance-wise over Cont + QF-BI.
Proof. This is proved in [17, §5]. O

10

2.2 Spector’s bar recursion

In the previous section we introduced the implicit product of selection functions IPS and showed that
in terms of primitive recursive equivalence it has the same computational strength as its simple version
ips and modified bar recursion MBR. In order to put this paper’s main results in context and to present
a more complete picture of the classification of bar recursors, in this section we briefly discuss various
explicit forms of bar recursion that turn out to be weaker than the implicit forms.

Perhaps the most well-known of this kind of bar recursion is Spector’s bar recursion [29], which in
its most general form has defining equation

GBR%T,W(SP*) il 7(s) if p(3) < |s]
. ds(AzP . GBR®"™?(s %)) otherwise.

where ¢: p* — ((p = 7) = 7), 7: p* = 7 and ¢: p¥ — N. Spector’s bar recursion exists in continuous
models due the fact that infinite sequences « eventually reach a point n such that p(a;m) < n (this
is a direct consequence of Cont), although it also exists in the type structure of strongly majorizable
functionals M* that contains non-continuous functionals [7]. Because the underlying tree is given
explicitly in this way, the outcome type 7 can now be arbitrary.

Spector also identified a special instance SBR, of bar recursion (definable from GBR, ,+) that has
defining equation
0 if p(5) < |s]

N
SBRQNP pry @
p (S) S {SBR¢’7W(S * as) otherWiSe

for as := ¢s(Ax . SBR(s * x)). More recently Escardé and Oliva cast these variants in terms of their
products of selection functions, showing that GBR is essentially a product of quantifiers EPQ (see
[17, 14]) while SBR is directly equivalent to an explicit product of selection functions given by

0 if (8) < |s]
EPS®??(sxas) otherwise

S0 (o) 2
EPS;1%(s) =s @ {

where a; := e5(Ax . ¢(EPS(s*x))). This latter form of recursion is clearly analogous to IPS - the only
difference being the addition of an explicit stopping condition - and as with IPS the special variants of
Spector’s bar recursion have a profound significance in both proof theory and the theory of generalised
sequential games.

e Both SBR and EPS solve the Dialectica interpretation of the negative translation of countable
and countable dependent choice (originally due to Spector [29], adapted for EPS in [12]).

e EPS computes Nash-equilibria in a general class of explicitly-controlled infinite sequential games,
as defined in [14, 15].

Remark 2.8. As with IPS, one can define a simple (and equivalent) form eps of EPS, which is sufficient
to solve the Dialectica interpretation of the negative translation of countable choice.

Theorem 2.9. All of the above variants of Spector’s bar recursion are primitive recursively equivalent
over QF-BIl + Spec, where
N N J—
Spec : V¢? 7N o” 3N(¢(a, N) < N).

In particular, since C¥; M* |= Spec these equivalences hold in both C* and M.

Proof. The equivalences EPS =1 SBR and EPQ =1 GBR are trivial, while eps =1 EPS is due to [17]
and SBR =1 GBR is due to [24]. O

11

A number of further formulations of GBR that appeared in the decades following Spector’s paper
were shown to be equivalent in [8]. Together with Theorem 2.9 the result is that we now know that
most variants of Spector’s bar recursion are equivalent.

2.2.1 Implicit bar recursion is strictly stronger than explicit bar recursion

It was first proved by Berger and Oliva [6] that while modified bar recursion defines Spector’s bar
recursion, the converse is not true. The reasons for this are rather technical, but we do our best to
outline them in brief below. The reader is encouraged to consult the original papers for details.

It is a well known fact that there are elements of the model C* which have recursive associates but
are not S1-S9 computable in C¥. The canonical example of this is the FAN functional which locates
points of uniform continuity for functionals on boolean sequences:

FAN[®] : Vg™ ", 0, B([a](B(q)) = [B](@(q)) = a(a) = q(B)).

A more extreme example is the so-called I'-functional of Gandy and Hyland [18] defined by
T9(s™) 2 g(s % 0% A . T(s * (n + 1)),

which despite having a simple recursive defining equation is not S1-S9 computable even in the FAN
functional. Berger and Oliva [6] prove that MBR of lowest type is equivalent to the T'-functional, and
therefore MBR cannot be S1-S9 computable either (in the same paper they also give a direct proof of
this fact by showing that MBR S1-S9 defines the FAN functional).

On the other hand, GBR is S1-S9 definable in C* by the recursion theorem, so by the fact that
S1-S9 computable functionals are closed under primitive recursion we obtain:

Theorem 2.10 (Berger-Oliva [6]). MBR is not primitive recursively definable from GBR over any
theory A wvalidated by C*.

As an immediate corollary it holds more generally that no extension of T primitive recursively
equivalent to MBR in C“ is definable from an extension of T primitive recursively equivalent to GBR
in C¥, so in particular IPS is not definable from GBR.

It may seem strange that IPS and MBR are defined recursively (which is permitted in S1-S9) but
nevertheless not computable like GBR. The subtle reason for this lies in the S8 rule for functional
application, which requires the input to be a total object before the outcome is total. One can show
that a fixpoint of the defining equation for GBR is indeed a computable functional by bar induction,
since eventually we reach a point such that GBR(s) = r(s) and r(s) is total. However, a fixpoint for
MBR cannot be shown to be computable in the same way: while at points of continuity we may indeed
have MBR(s) = ¢(s @ ¢s(Ax . MBR(s * z))) = ¢(5), this reasoning does not work in the S1-S9 rules
because S8 requires all of s @ ¢p;(Ax . MBR(s % z)) to be defined before it returns a value for MBR(s).
Thus S1-S9 computability in C* separates the explicit from the implicit forms of bar recursion.

2.2.2 Kohlenbach’s bar recursion

A somewhat different instance of explicit bar recursion is given by Kohlenbach in [20] and also discussed
in detail in [5, 6]. This has the defining equation

KBRd’mW(SP*) T r(s) if o(5) = »(5)
nr ds(\z . KBR?"?(s % x)) otherwise.

12

where 5§ = s @ 1,5. As with GBR, the presence of an explicit stopping condition means that KBR it is
S1-S9 computable and therefore does not define MBR. However, the other direction also fails to hold as
M is known to be a model of MBR [5] but not of KBR (for the same reason, KBR is not definable from
GBR either). One can take two important morals from KBR: Firstly it is a straightforward example
of a mode of recursion that is disjoint from both implicit bar recursion and Spector’s bar recursion,
highlighting the fact that these classes far from encompass all recursive extensions of system T, and
secondly that even a small adjustment to the defining equations of a form of recursion (in this case
a simple alteration of the stopping condition) can lead to a very different extensions of system T. In
many cases it is not at all obvious from the defining equations whether or not given extensions of T
are equivalent.

2.3 The BBC functional and open recursion

We now define the second main subject of our paper, namely a family of extensions of system T based
not on bar recursion, but open recursion. By open recursion we mean recursion over the lexicographic
ordering on infinite sequences. However, before we define and discuss this form of recursion properly, we
introduce the instance that is perhaps most well-known in proof theory - the Berardi-Bezem-Coquand
realizer of countable choice [1], which we have abbreviated the BBC functional.

In one sentence, the BBC functional is an alternative to bar recursion, that instead of making
recursive calls on extensions of finite sequences, makes them on updates of partial sequences. Let us
make this more precise: Given a partial sequence u: p"' (cf. Section 1.1 for the type p) and an element
x: p, the partial sequence u? is defined by

" (m) 5| ifm=n
ul(m) =
" u(m) otherwise.

We call u? an update of u whenever n ¢ dom(u). The BBC functional has the defining equation

R N
BBCSY (u”) &= u @A . g, (Az . q(BBC(u)))

where e: N — ((p — 7) — p) and ¢: p¥ — 7, and as with implicit bar recursion the type 7 is required
to be discrete.

Remark 2.11. The BBC functional is often defined slightly differently in the literature. In particular
in [1] it takes as input only partial sequences with finite domain. We follow [2] in generalising it to
allow partial functions with arbitrary domain as this appears to be a slightly more elegant formulation
that can be directly related to open recursion, although we point out that our main proof that BBC
defines ips in section 4 only uses an instance of BBC with finite domain.

Despite having a relatively simple defining equation, the BBC functional can be rather elusive to
understand. Let us recall the defining equation of the simple variant of implicit bar recursion, which
is

ips=9(s”) = s @ An . ep(Ax . q(ips(ty *))) (5)

where t,, := [ips(s)](n). This is the form of implicit bar recursion most obviously related to BBC,
and by putting them side by side we are able to see more clearly the essential differences between bar
recursion and the BBC functional.

To begin with, both forms of recursion are related in that they complete a partially defined input
by using the selection functions &,,, and make recursive calls ‘backwards’ by adding one more piece of
information to this input. However, while for bar recursion this input is always a finite sequence s, and

13

recursive calls are made on extensions s * x of this sequence, for the BBC functional the input can be
an arbitrary partial function u, and recursive calls are made over updates u? of this partial function.
This leads to a form of recursion that behaves very differently to bar recursion.

One striking feature of this difference is the ‘forgetful’ nature of BBC. The sequence o = ips((}) is
computed sequentially: from (5) we have

a(n) =ep(Ax . q(ips({a(0),...,a(n —1),z)))),

in other words, once ((0), ..., a(n—1)) are computed they are fixed and all later entries are computed
relative to this initial segment. On the other hand, for § = BBC(@) (where 0 is the partial function
undefined everywhere) we have

B(n) = e,(Az . ¢(BBC(0},))),

in other words, the values of (8(0),...,8(n — 1)) are ignored when computing B(n), which is done via
a separate recursion tree.

One can see this more concretely by considering simple binary versions ipsy;, and BBCypiy, in which
the value of the parameter ¢ depends only on the first two elements of its input. Let (ag,a1) := ipsp;, ({))
and (bg, b1) := BBCpin({)). By unwinding the definitions we see that

ap = eo(Az . q(z,e1(Ay - q(z,y)))) = bo,

but while a1 = g1 (Az . ¢(ag, x)), the value of b; does not depend on by but is calculated symmetrically
as

br =e1(A\z . q(eo(Ny - q(y, 7)), 2)).

The BBC functional was originally conceived as an alternative way of giving a computational interpre-
tation to classical analysis, where its ‘demand-driven’ manner of ignoring information that it doesn’t
need was seen as a clear advantage over bar recursion, which is always forced to compute every value
up to the point in question:

e BBC solves the modified realizability interpretation of the negative translation of countable choice
(due to [1] but see also [2]).

This result also highlighted the arbitrary nature of bar recursion, in that its widespread use in giving
a computational interpretation to classical analysis was largely down to convention, while interesting
and potentially better alternatives for the purpose of program extraction could be developed. Nev-
ertheless, over the years it is bar recursive extensions of system T that have received the majority of
attention in proof theory and computability theory, while in particular the BBC functional, arguably
no less interesting from a mathematical perspective than implicit bar recursion, has remained poorly
understood. Only later in [2] was it shown to even exist in a standard domain-theoretic model, and so
far it has eluded any convincing game semantics along the lines of Escardé and Oliva [14]. However,
an important step towards establishing at the very least a secure theoretic framework for the BBC
functional was made by Berger [3], who demonstrated that BBC is just a simple instance of open
recursion: recursion over the lexicographic ordering on sequences.

2.3.1 Open recursion and update recursion

Suppose that <: p x p — B is a well-founded, decidable binary relation. The lexicographic ordering
<jex OVer < is the binary relation on infinite sequences defined by

a<iexf = In([a](n) = [B](n) A a(n) < B(n)).

14

A general schema of open recursion in all finite types was formulated in [3] as

N .
OR{, <) -(a”") £ Fa(An,y, 3. OR" ([a](n) +y @ B) if y < a(n)),
where F: pN x (N x p x p — 7) — 7 and 7 is restricted to being discrete. At first sight, it is not
clear that open recursion should exist even in continuous models, since the lexicographic ordering is
not well-founded apart from in trivial cases. For example, for the well-founded relation 0 < 1 on B,
we have the following infinite chain over <jey:

10000. .. >1ex 01000. .. >1ex 00100. .. >jex .. -

and so in particular, induction over <.y is not generally valid. However, induction over <jeyx is
meaningful - and classically derivable from the axiom of dependent choice - provided that we restrict
ourselves to a class of open formulas. Induction over <jex for open predicates was first considered by
Raoult [26], and later studied by Coquand [9] and Berger [3], among others. In the language of all
finite types, it is given by the schema

Ol(,,<) @ Va(VB<iexaO(B) — O(a)) — YaO(a).

In informal terms, an open formula is one whose negation is a piecewise property on finite initial
segments of « i.e. =0(a) <> VnB([a](n)) for some predicate B. In this case, the contrapositive of
open induction follows directly from the minimal-bad-sequence of Nash-William [23], and indeed open
induction can be seen precisely as an inductive analogue of the minimal-bad-sequence construction
(see [3] for details). For this reason, open induction has a deep significance in mathematics, and in
particular it is a form of induction that allows us to directly prove both the famous Kruskal tree
theorem and Higman’s lemma [23]. Open recursion is a computational analogue of open induction,
and in [3] it is shown to give a direct realizability interpretation to open induction.

We refrain from going into any further detail here on the proof theoretic background of open
recursion. Our aim is simply to convince the reader that it is an interesting and important extension
of system T, firstly because it is related to a key induction principle, and secondly, of course, because
it is in some sense a generalised form of the BBC functional.

Returning now to the existence of open recursion, it is reasonable to think that if open induction
is classically valid for a restricted class of formulas, then open recursion is well-founded in some
analogously restricted setting. This is precisely why we insist on the outcome type 7 being discrete.
In this case, the totality of OR(«) becomes an open predicate, and totality of OR can be proven by
open induction, via the following informal argument (due to [3]):

Given a total argument F', the statement
O(a) := a is total = OR"(a) is total

is an open predicate, since by the continuity axiom and the fact that 7 is discrete, totality
of ORF (a) depends only on an initial segment of . But for a total, V5<jexa O(B) clearly
implies totality of OR’ (a), therefore totality of ORY follows from open induction.

We conclude this section by finally explaining how open recursion is linked to the BBC functional.
In [3], Berger identifies an important special case of open induction over partial sequences called update
induction, given by

ul, : VuﬁN(Vv <up u O(v) = O(u)) = YuO(u)

15

where O ranges over open predicates. Here v <, u when v is an update of u i.e. is of the form u} for
n ¢ dom(u). Update induction follows from an instance of open induction of type p over the trivially
well-founded relation 1 < z for x € p. Analogously, one can define the update recursor UR as

N

URY (u”) = Gu(An,x . UR(uy) if n ¢ dom(u))
where G: pN x (N x p — 7) — 7 and 7 is discrete. The following proof theoretic results are all due to
[3]:
e Open recursion solves the modified realizability interpretation of open induction;
e Update recursion solves the modified realizability interpretation of update induction;

e The negative translation of countable choice is intuitionistically derivable from update induction,
and the corresponding update-recursive realizer of countable choice is the BBC-functional.

The last of these results is striking as it reveals BBC to be a special case of update recursion that
naturally arises from the proof that Ul implies countable choice. On the level of definability, the
relationship between all three forms of recursion can be given as follows.

Theorem 2.12. OR(ﬁ7<)7T >1 UR, ; >1 BBC,, ;. instance-wise, where the relation < on p is given by
1 <z forall x € p.

Proof. For the first inequality we define ®§_ (u) := ORZ - (u) where

Fu(PNXﬁX’jN) = Gu(An,z” . Pnzu)

and it is straightforward to show that URY [®, -]. For the second inequality we set

Vol (u) :=u@An . ep(Ax . URgT(uI))

n

where R
Gu(PN*P27) = q(u @ \n . g,(\z . Pnx))

and again it is straightforward to prove that BBCY' [V, ,]. O

2.4 Summary

In Sections 2.1 and 2.2 we gave short survey of some of the work done towards understanding and
classifying the many variants of bar recursion, while in Section 2.3 we outlined similar work in the
context of open recursive functionals. However, none of this research addresses the relationship between
bar recursion and open recursion. That is the purpose of this paper, and in the remaining sections
we show that open recursion, update recursion and the BBC functional are in fact all equivalent to
modified bar recursion.

3 Defining open recursion from IPS

We first show that open recursion is definable from implicit bar recursion. Before we do so we outline
our construction on an informal level, for the simple case of the Cantor space, although the reader is
encouraged to skim through this description at first and consult it in conjunction with the main proof
that follows.

16

Suppose that we want to build a term ® = ¢(IPS) satisfying the defining equation for open recursion
on BY (lexicographically ordered based on the relation 0 < 1), which is

dF (o) = Fu(Mn,y, 8. ®([a](n) xy @B) if y =0 A an) = 1).

Our main idea is to define ®(a) = qF(IPSf:T’qF(Q)) where 0 = BY x (B x BY — 7) and %, ¢ will be

suitably defined in terms of a and F' respectively. Now, IPSEa’qF(Q) will be a sequence (Ag, A$): o
where Ag: (BY)N and A¢: (B x BY — 7)Y denote the first and second projections of this sequence.
We will define the selection functions e to ensure that for the first components, A5(0) = a and
A§(n+1) = Ap(n), and so in other words

IPS(()) = (e, AT(0)), (e, AT(1)), - - -, (e, AT (n)), ..).
The second components, A¢(n): B x BY — 7 are more complicated to construct, but the aim is that
AT (n)yp = ®([a)(n) xy @ p) if y =0 A a(n) = 1.

Then, we can simply put ¢(A4p, A1) = Fja (An,y,B . A%nyB) where A§ is the diagonal sequence
An.Ag (n)n = a. Now, the functional Af(n) is constructed using the selection function e4(,), which
has access to the functional

Daosony = A7, 9)7 - ¢ (IPSE™1 ([A%)(n) (3, 9))).

If a(n) = 0 we simply define A¥(n) = 0. On the other hand, if a(n) = 1 we set

AS(n)yB = Dfaeiin ((6,0)) = g7 (IPS™" ([4°] () * (6,0))).
where 6 = [a](n) xy @ 8. We claim that

¢" (IPS*™1" ([4%)(n) % (5,0)))) ¢" (IPS*" 4" ([4°] () = (6,0))) “2* ¢" (1P 4" (())) = &7 (3),

the first equality (+) following from a continuity argument, the intuitive idea being that under ¢" the
sequences [A%](n) and [A%](n) are treated in the same way whenever [a](n) = [6](n).

We now give the construction in full generality for lexicographic orderings induced from arbitrary
well-founded relations <. In this case we need access to recursors R(,), for well-founded recursion
over (p, <) in all finite-types ¢’, which have the defining equation

RY, <)o (") = g:(Ny . R(y) if y < @)
We need not assume anything about the strength of < for the proof to be valid, in which case our
definability relation becomes >t g_, that is, definability in E-HA® 4+ R, although if the reader prefers
she can assume that R(, o, is already definable in E-HA® in which case we end up with primitive

recursive definability in the usual sense. In particular, as we confirm in Section 3.1, for the special
case of the BBC functional, the whole construction is done in system E-HA®.

Theorem 3.1. IPS, - >71ir, _, OR(, <)+ (instance-wise) over Cont + QF-BI.

Proof. Suppose that F: p x (N x p x pN — 7) — 7 is some parameter for OR(, <) ,. Let 0, :=
PN x (p x pN — 7). Define ¢ o — 7 by

q" (Ao, A1) := Fa,(An,y, B . Ainyp)

17

where Ag: (PN, A1 (px pN — 7)Nand Ay := An.Agnn. For s: p*, v: pY define the selection function
€sy:(c—=T) =0 by

Ean (77T = (1)

where the functional f7? is defined using R, <) ,x s as
ST i= 2y, Bp(sxy @B, fP) ify <a.

Note that if x is minimal with respect to < then f$? = 0. Now, given a: p" define the dependent
selection function ¢*: ¢* — ((0 — 7) = 0) by

. x
€t 1= Efo,(axto)(It])

Ny * *
£

where t) An < [t].motn and (fg) i= An < |t|.(tp)nn. Finally, define

®F . (a) == " (IPSS7" (1))

Then OR{},) -[®(5,<),7]- To prove this, we show that if A% := IPSEa’qF(Q) then:
(a) Agn = « for all n and all a;
(b) A¢n = My, 3. ®F([a](n) xy @ B) if y < a(n) for all n and all a.
The result then follows since
3" (a) = ¢F (45, A7)

= Faa(A\n,y,8 . ATnyB)

a),(b .

(@) Fo(On,y, . o7 ([o](n) xy @ B) if y < a(n)),
where the last equality is justified by the substitutions

AY = An.Afnn @ An.a(n) =«
and o
b .
Ay, B AtnyS = An,y, . @7 ([a](n) xy @ B) if y < a(n).

Therefore it remains to prove (a) and (b). First, note that by Theorem 2.4, for all n, a we have

AN = €faa)n) (Plac)(m)) ©)

P?Au](n)(Aan) = (JF(AQ)
where piiaj(,) = Az . qF(IPSEa’qF([AO‘](n) * z)). We prove (a) by induction, since for arbitrary o we
have, by (6):

AGO =0 (P))o = €0,a(P))o =

o
I.H.

Ag(?’l + 1) = E[OéAO‘](n-‘rl) (p&a](n—i-l))o é[a](nJrl),a(p[Djﬁlﬂ](n-l-l))O = Q.

In particular note that
A% = efpe)(n) (Pl) = Elalm).a (Plac)m)

18

for all o, n. For (b), then, we see that

1nyﬂ = 5[a](n) 04(Dla« (n))lyﬂ

[a](n),pfac)(n
:fa(n) Plac)(n) "

o [](n),Pfaci(n)y -
[Aa](n)([al(n) xy @B, fy Plac) if y < a(n)

(*) 5](” a)(n
:p[(5 f(;(n) s ())1fy<o¢()
(+) [6](n)47 (n
= (n)(d Fs(ny MY if y < aln)

?A‘S](n)(5.0 (PLasy(my)) i y < a(n)

= [Aé](n)(A n) if y < a(n)
D F(A%) if y < a(n)

*

= ®"([a](n) xy @P) if y < a(n)

where for (%) we have simply defined § := [o](n) * y @ 3. All that remains is to prove (+) which
follows from the claim that pﬁ‘&”‘](n) = p‘[sA(;] (n)" This claim is proved using a fairly straightforward bar
induction argument, and is given as Lemma A.1. O

—~
@

—
Z

3.1 A bar recursive construction of BBC

An immediate consequence of the previous result is the following.
Corollary 3.2. IPS, . >7 UR,; >7 BBC, ; (instance-wise) over Cont + QF-BI.

Proof. By Theorem 2.12, UR, . is definable from an instance of OR(; «) - on the well-founded relation
1 < z. Clearly recursion over < is definable in system E-HA®, therefore the result follows directly
from Theorem 3.1. O

By inspecting the proofs of Theorems 2.12 and 3.1, we can give the construction of BBC, ; from
IPS,,, - directly. Given parameters r: p — 7 and 6, (p — 7) — p for BBC, - define ¢*": o™ — 7
and €¥: 0* — ((0 = 7) — 0) (where 0 = 05, := p" x (px p¥ — 7)) by

¢*"(Ag, Ay) i =1r(Ag @M . 5, (AaP . AynaAy))
wpromry o | {wxto)(t]), foP) i [t] & dom((u x to)|t])
=) {((u * 1) ([t]), 0) otherwise.

where f*P := \y,v.p(s*y Qu,0)if y # L. Then ®}7 (u) := q‘svT(IPS‘:T’qM(Q)) satisfies the defining
equation of 7(BBC®" (1)) (which in turn easily defines BBC*"). Using the same notation as in Theorem
3.1, we have

OO (u) = (A @ An . 6,(\x . AtnzAY))

@ r(u@An . d,(A\x . A¥nzu))

9 r(u@QAn . 0,(Az . ®([u)(n) xx Qu)))

=r(u@Ain.d,(Az . d(ul)))

19

where (a) follows since A§n = u for all n and the equality (b) is justified by

Afnau © fIAE)PEan) gy,

= Plau)(n)([u](n) * T Qu,0)
L) (0, 0)
2 Dl iy (4")
T2 gragav)

= P(uy)

where we use the abbreviation w := [u](n)*(1,2) @u = uZ. The steps labelled (i) follow from definition
of € and the fact that n ¢ dom(u) and n € dom(w) respectively. Step (+) follows from Lemma 2.3.

4 Defining IPS from BBC

By combining our work of the previous section with the existing results outlined in Section 2 we obtain
the sequence

We now close the circle by proving that BBC >t ips. As in the previous section, we begin with an
informal discussion of our construction.

One obvious problem with building ips from BBC is the issue of dependency: as we discussed in
Section 2.3, the BBC functional returns a sequence in which each element is computed independently
of the others, ips computes its output sequentially. We solve this problem by simulating ips, . with

p,T
BBCv ;. This instance of BBC returns a sequence of partial sequences i.e. an infinite matrix over the

type p.

Our idea is to compute ips({)) as just the first column of this matrix, i.e. BBC(0)(0) (we simply
ignore the columns BBC(@)(n) for n > 0). Now, while ips is computed in the first column, for the
recursive calls of ips we shift the computation to the next column, so to compute ips(t, *) we look at
BBC({t,,*x))(1) where (¢, *x) denotes a partial function N — p given by (¢, *z)(0) = t,xx* (L, L,...
and (t, * z)(n) is undefined (on the higher level) for n > 0. Note that we only appeal to what BBC
outputs in column 1 during a recursive call in the computation of column 0. In order to carry out
this subcomputation in column 1, we again move to the next column whenever we need to make
a recursive call, so we only look at what BBC outputs in column 2 during a nested recursive call
for column 0 followed by column 1, and so on. The basic idea is that ips is computed using only
part of the whole BBC functional: in order to compute BBC(()) we only need to know the value of
BBC((u, L, L,...))(1) for various partial functions u, for which in turn we only need to know the value
of BBC((u,v, L, L,...))(2) for various v and so on. Thus the whole computation is contained inside
just one particular tree of recursive calls in BBC.

Without further ado, we now give the general construction. First we need some notation. Given a
finite sequence s: p* let 5: g denote its embedding as a partial function i.e.

3(n) = {sn if n <|s|

1 otherwise.

In the following we will often, however, omit this notation and just write s when it is obvious that
we're treating it as a partial function.

20

Theorem 4.1. BBCji . >7ips, . (instance-wise) over Cont + QF-BI.

Proof. Suppose we are given parameters ¢,: ((p — 7) — p) and ¢: p" — 7 for ips, . First, define
q: (p")" = 7 by

() = q(d(v))
where d: (p")N — p is constructed using a bounded search as

p | ymn for least m < n with n € dom(ym)
d(y)(n) == : .
0 if no such m exists.
Second, using course-of-values recursion of type p define the family of selection functions &,: (5"

7) — p" by &, := & where

_>

g N —
E(pP) = Nk en(Na? . plEy * 1))
where 7, :=,- [(p)](k). Note that &(p) is a total sequence (though officially embedding in the type

p") and hence 5, can be viewed as an element of type p*, even though each recursive call on p is a
partial sequence. Finally, define

. [dABBCHT (0)) ifs|=0
PLL(s”) == ’

RS

d(B BCZ’NQT ({(3))) otherwise.

We prove that ips3", [®, -]. To cut down on excessive syntax, given a sequence (ug, . . . , ux—1) of finite se-

quences u; : p*, we shall write BBC((ug, ..., ur—1)) for BBC applied to the partial array (wo, ..., Ux—1),
whose type is partial sequence N — p, so in our shorthand we define ips(s) := d(BBC((s))) for |s| > 0.
Note that the input type of BBC has undefined elements on two levels: undefined elements of the
argument correspond to undefined ‘columns’, while defined columns of type p" may themselves have
undefined entries.

To verify our construction, first observe that for |s| = 0 we have

() 2 An . 2(Af . G(BBC(D))))(n)
—_—
— . en(Az . G(BBC(T7))
=M. e,(Az . q(d(BBC({t, * x)))))
@ en(Az . q(2(t,, * 2)))

where for (i) we have t,, = [£o(p)](n) = [®(())](n) = t,,. Here (i) follows because n € dom(BBC()(0)) =
dom(ép(p)) for for all n and therefore d(BBC(0))(n) = BBC(0)(0)(n) = £y(p)(n). Similarly, for |s| > 0

we have

o(s) 2 s @n . & (Af . G(BBC((s))))(n)

P

=s5sQ@Mn.e,(\r.q(BBC((s >t;)))
=5Q@Xn . g, (Az . q(d(BBC((s,t, * x)))))

(st
®sa@m. en(Ax . q(d(BBC((s Q (%, * z))))))
tn *

=s5QMn.eg,(Az . q(P(s @ (r))))

W 5 @A e0(Ae © g(Bltn)

21

where for (i7) we have (for n > |s]|)

Again, (i) follows because n € dom(BBC((s))(0)) = dom(3) iff n < |s| and n € dom(BBC((s))(1)) =
dom(&;(p)) otherwise. Therefore

d(BBC((s)))(n) = { ifn < s

£1(p)(n) otherwise.
All that remains is to justify (+), which follows from the claim that
@(BBC((s, 1, * x))) = 4(BBC((s @ (I, x))))

We prove this claim via another fairly routine continuity argument in Lemma A.2 below. O

5 Concluding remarks

Together, our results from Sections 3 and 4 establish the following:

Theorem 5.1. Fach of open recursion, update recursion and the BBC functional are primitive recur-
sively equivalent to IPS, or alternatively modified bar recursion, over Cont + QF-BI

Sec. 3 (3]
MBR [17] IPS [17] Ps Sec. 4 BBC
6]
Y
KBR oo W GBR 2] SBR 7] EPS

Figure 1: Summary of definability results

In Figure 1 we provide a simple map of the main definability results mentioned in this paper (the
dotted arrows representing directions whose converses are false). Our diagram is a simplification of
all the known definability results which concern extensions of system T (see [8, 5, 17] for example),
although most variants of bar recursion found in the context of proof theory nevertheless fall into one of

22

the two main equivalence classes represented by either IPS or GBR. The results of this paper unify the
well-known recursive extensions of system T attached to proof interpretations, showing the equivalence
of two very different styles of recursion that up until now have mostly been treated separately.

Moreover, our proofs achieve strictly more that the equivalence of bar recursion and open recursion,
in the sense that we give explicit and fairly elementary instance-wise constructions in both directions,
which can be verified in an entirely standard and relatively weak theory which is validated by a variety
of constructive models of system T, such as the Kleene-Kreisel continuous functionals C¥.

Theorem 5.1 allows us to lift many of the known properties of IPS and MBR to the open recursive
functionals. In particular, we obtain a new proof that open recursion and BBC exists in C% - namely as
a consequence of the existence of IPS - without having to resort to open induction. Also, by Theorem
2.10 we obtain the following:

Corollary 5.2. None of open induction, update induction nor the BBC functional are S1-S9 com-
putable over the total continuous functionals.

Corollary 5.2 can actually be viewed as a negative result, as it confirms that while the BBC
functional and open induction have both been proposed in order to obtain programs from classical
proofs that are more direct or efficient in some way, nevertheless the Dialectica interpretation and
Spector’s bar recursion remain optimal in the sense that they produce computable witnesses from
proofs in classical analysis. An obvious challenge for future research is to construct ‘explicitly well-
founded’ analogues to these forms of recursion that are both direct and computable.

We leave open the possibility that our results can be improved at the level of types, and in particular
do not claim to have provided any insight into how the specific instances of recursion used to interpret
choice principles compare in terms of efficiency or computational complexity. We also leave open the
question of whether or not we could weaken the theory Cont + QF-BI so that our equivalences would
hold over non-continuous structures such as the majorizable functionals M%.

It would be interesting to develop a semantic framework along the lines of [14] in which the known
extensions of system T can be compared, and also to explore the construction of more exotic variants
of bar recursion like KBR in order to exhibit a richer variety of extensions of T and learn more about
them. For now, however, we have succeeded in relating two well-known and important extensions of
the primitive recursive functionals.

Acknowledgments. Earlier versions of this work were read by Martin Hyland, Ulrich Kohlenbach
and Paulo Oliva, whose helpful and insightful comments have led to a much improved presentation.
The author is also grateful to Ulrich Berger and Martin Escardé for several interesting discussions on
the topic of this paper. The main part of this research was carried out while the author was in receipt
of an EPSRC doctoral training grant, and the final paper written during a LabEx CARMIN research
fellowship at IHES.

A Omitted proofs

Lemma A.1. Let A* and py* be defined as in Theorem 3.1 as

A% = 1PS=H4" ()
P = Az qF(IPSEa’qF (t*2))

Then if [a](n) = [6](n) then p‘[)‘Aa](n) = p‘fAs](n) for arbitrary o, 0 and n, provably over Cont + QF-BI.

23

Proof. We use induction on n, with an auxiliary bar induction needed to establish the main induction
step. Suppose that [o](n) = [0](n), and assume for the main induction hypothesis that

vm < n,a! & ([0')(m) = [8')(m) = Py) = Plasr i)

We want to prove that p&a](n)z = p?A(;](n)z for all z: o, which we do using an auxiliary QF-BI on the

formula i . S
P(t7) := ¢ (IPST ([A%](n) x z x t)) = ¢F (IPS® ([A%)(n) * z x 1))

(with S(t) = true), the result following from P(()). The main induction hypothesis is used to verify
that A¢m = A{m for all m < n. To see this, note that

ATm = Ela)(m).a (Pfas)(m))1
_ f([lo(‘lr(;“)vpf?w]<m)
r.H. 810m)00 45 0y
= Js(m)
= &15)(m) .6 (PLas) (my)1
= A’{m.

This enables us to establish the bar for the auxiliary bar induction: For an arbitrary infinite sequence
B: o" let N be the point of continuity of q[ia](n) , on B. Then

¢" (IPS*" ([A%](n) % 2 % [B](N))) = " ([A%](n) * z * [B](N) @IPS™" ([A*)(n) * 2 * [B](N)))

g ([A°](n) x 2 % [B(N) @ IPS™ ([A%](n) x = x [BI(N))

(@) .
= Pzl a o (AT] () x 21 % [Bi](N) @ Cy)
(i1) S

- F[AS](n)*Zo*[Bo](N) Q Co ([41](n)

* 21 % [B1](N) Q Ch)
= ¢"([4%)(n) * = % [B](N) @ IPS=" ([4%](n) * 2 * [B](N)))
= ¢" (IPS" ([A%](n) * z * [B](N)))

Here for (i) we simply use the abbreviation C := IPSEJ([A‘S](n) * z % [B](N)) and definition of ¢f" and
(i1) follows by the fact that [A$](n) = [A3](n) and [Ag](n) = [a](n) = [§](n) = [AJ](n). Now the bar
induction step is straightforward. Assuming that Vz'P(t % 2’) we have

¢ (IPS" ([A%](n) * z % 1)) = ¢" (IPSZ" (JA%](n) * 2 x t x a))
BLH (F(1PS=([A%)(n) % 2 * t * a))
@ P UPS ([A%)(n) * 2 + t % ')
= " (IPS=" (A% (n) * 2 % 1))

24

where for (x) we have

@ = efyai(myumnt (A2 7 (IPST([A%](n) # 2 % 2')))
PLI o myennt A2 - a7 (IPSZ ([A%)(n) % 2 £ % 2'))
~ 65
= gm_’t,()\z’ P (IPSE ([A%](n) * z x t % 2')))

~ 56
= 5m7t,(/\z’ g (IPST ([A%](n) * 2z % t % 2')))

= D isymyeane (A2 - qF (PSS ([A%)(n) % 2 % % 2'))
/
=a

where ¢’ denotes tail element of the non-empty sequence z * . This completes the bar induction step
Vt(Vz'P(txz') — P(t)) and along with the preceding continuity argument establishing VB3N P([B](V))
we obtain by bar induction P({)) and hence Plaain) = p‘[iqa](n), assuming throughout the main, normal
induction hypothesis. So in turn this completes the main induction step, thereby obtaining by normal
induction Vn, o, §([a](n) = [6](n) = p{ya;n) = p‘[sAg](n)), so we're done. O

Lemma A.2. Whenever 0 < |s| < |t|, we have G(BBC™((s,t))) = G(BBC*((s @t))), provably in
Cont + QF-BI.

Proof. Recall that in the argument of BBC, the terms (s,¢) and (s * t) are shorthand for (s,¢) and
(s @ t) respectively, so written informally we’re asserting that

50 to S0
Si ti Si
1L tiq tiv1
G(BBC | . .) = ¢(BBC .)
tj tj
1 1

where all other columns are undefined (on the higher level). We prove this using bar induction on

sequences u: (p*)* relativised to those consisting only of non-empty sequences i.e. S(u) = Vi <
|u|(Jus| > 0). For our main predicate P, first define u®,u®: (p*)* with |u®| = |u°| = |u| recursively in
BBC as ;

ut o= (BN ABBC((s, b ut) DI (k)

uf = [E(Af - G(BBC((s @t u, ... ,uf y)!,))I(k:) *us
where k; := |t| —|—Z§;t |uj|. The purpose of these constructions is actually to simplify the bar induction:

the first k; entries of u? (and analogously uf) represent ‘dummy’ variables that would be computed by
BBC((s,t,u?,...,ul_y)) in the (i + 2)th column but ignored by the outcome functional §. We carry
out bar induction on the quantifier-free predicate

P(u) := ¢g(BBC({s,t) xu®)) = G(BBC({s Q) x u)).

The lemma then follows from P(()). First, to establish the bar, suppose that a: (p*)Y is an infinite
sequence of non-empty sequences, and let N be a point of continuity of ¢ on the sequence é: pV
defined by

a(n) =ap*ag *xag*....

25

Because the «; are non-empty, [@](V) is a prefix of ag * ... * ay_1, and therefore by unwinding the

definition of d we see that (s @ t)*[a](N) is a prefix of both d(BBC((s, t)*[a](N)*)) and d(BBC(({s @ t) x
[a](N)°)). Thus by continuity we have

G(BBC((s,1) x [a](N)*)) = 4(BBC((s @1) x [a] (N)?)).

For the bar induction step, take an arbitrary sequence u of non-empty finite sequences. Again, by
definition of d we have

d(BBC((s,t) xu®)) = (s @) * ug * ... Uy -1 *

where
B(n) = Ejupr2(\f - GBBC(((s,t) xu®)], 1)) (kjuy + 1)

p

tk|u\+"*ﬂm

= gk‘“ﬁn()\x . G(BBC(({s,t) * u')lu‘Jr2)))
= €k, +n (A7 . G(BBC((s,) * u® * <£k‘u‘+n %, 2))))
@) - .
= kpy+n(Az . G(BBC((s, 1) * (ux ([B](n) %,))*)))-
Note that these formulas feature sequence concatenation of both type p and p*, which we have high-

lighted. For (i) we clearly have u? = (ux* ([8](n)*,2))? for i < |u| since the operation (—)* is recursive
on sequences, and for ¢ = |u| we have

£k|u|+n *p T = <g|u\+2(p)(0)’ s 7§|u|+2(p)(k\u| - 1)> * <é\u|+2(p)(k|u\)a s 75|u\+2(p)(k\u| +n— 1)> *T
= [EO\ - ABBC((5, 1) u)y) (K) (1B)(n) % 2)
= (ux ([B](n) * 2))jy-
By an analogous argument we have
d(BBC((s @t) xu°)) = (s Qt) s ug * ... % up 1 %3
where
B'(n) = ery, 4n (A . GBBC((s @)+ (ux ([8](n) %,))°))).
We now use the bar induction hypothesis to prove that 8(n) = 8'(n) for all n. We use this main

bar induction hypothesis to prove the induction step in an auxiliary course-of-values induction over N.
Suppose as a course-of-values induction hypothesis that §(m) = '(m) for all m < n. Then

B(n) = ey +n(Az . G(BBC({s, 1) * (u* ([B](n) *, 2))*)))
PE oy in(Oa L G(BBC((s @) x (ux ([B](n) %, 2))°)))
ey (M G(BBC((s @) # (u ([8](n) %, 2))°)))
B'(n).
Therefore 8 = 3/, and we finally have
q(BBC((s, 1) * u®))

q((s Q) *ug * ... % upy—1 *)
q((s Qt) s ug * ... % upy—1 * 3)
G(BBC((s @t) xu®))

This completes the bar induction. O

26

References

1]

2]

S. Berardi, M. Bezem, and T. Coquand. On the computational content of the axiom of choice.
Journal of Symbolic Logic, 63(2):600-622, 1998.

U. Berger. The Berardi-Bezem-Coquand functional in a domain-theoretic setting. Unpub-
lished results, available from author’s webpage at http://www.cs.swan.ac.uk/~csulrich/recent-
papers.html, 2002.

U. Berger. A computational interpretation of open induction. In F. Titsworth, editor, Proceedings
of the Nineteenth Annual IEEE Symposium on Logic in Computer Science, pages 326-334. IEEE
Computer Society, 2004.

U. Berger. Strong normalization for applied lambda calculi. Logical Methods in Computer Science,
1(2):1-14, 2005.

U. Berger and P. Oliva. Modified bar recursion and classical dependent choice. Lecture Notes in
Logic, 20:89-107, 2005.

U. Berger and P. Oliva. Modified bar recursion. Mathematical Structures in Computer Science,
16(2):163-183, 2006.

M. Bezem. Strongly majorizable functionals of finite type: A model for bar recursion containing
discontinuous functionals. Journal of Symbolic Logic, 50:652—-660, 1985.

M. Bezem. Equivalence of bar recursors in the theory of functionals of finite type. Archive for
Mathematical Logic, 27:149-160, 1988.

T. Coquand. Constructive topology and combinatorics. In Constructivity in Computer Science,
volume 613 of LNCS, pages 159-164, 1991.

Y. L. Ershov. Model C of partial continuous functionals. In Logic Colloquium, pages 455-467.
North Holland, Amsterdam, 1977.

M. Escardé. Synthetic topology of data types and classical spaces. ENTCS, 87:21-156, 2004.

M. Escardé and P. Oliva. Computational interpretation of analysis via products of selection
functions. In Proceedings of CiE 2010, volume 6158 of LNCS, pages 141-150. 2010.

M. Escardé and P. Oliva. Selection functions, bar recursion and backward induction. Mathematical
Structures in Computer Science, 20(2):127-168, 2010.

M. Escardé and P. Oliva. Sequential games and optimal strategies. Royal Society Proceedings A,
467:1519-1545, 2011.

M. Escardé and P. Oliva. Computing Nash equilibria of unbounded games. In Proceedings of the
Turing Centenary Conference, Manchester, volume 10 of EPiC Series, pages 53-65, 2012.

M. Escardé and P. Oliva. The Peirce translation. Annals of Pure and Applied Logic, 163(6):681—
692, 2012.

M. Escardé and P. Oliva. Bar recursion and products of selection functions. In press, preprint
available from author’s webpage at http://www.cs.bham.ac.uk/~mhe/papers/index.html, 2013.

27

[18]

[19]

[20]

[21]

[25]

[26]

[27]

28]

[30]

R. Gandy and M. Hyland. Computable and recursively countable functionals of higher type.
In R. Gandy and M. Hyland, editors, Logic Colloquium 1976, pages 407-438. North-Holland,
Amsterdam, 1977.

S. C. Kleene. Countable functionals. In A. Heyting, editor, Constructivity in Mathematics, pages
81-100. North-Holland, Amsterdam, 1959.

U. Kohlenbach. Theory of Majorizable and Continuous Functionals and their Use for the Extrac-
tion of Bounds from Non-Constructive Proofs: Effective Moduli of Uniqueness for Best Approxi-
mations from Ineffective Proofs of Uniqueness (German). PhD thesis, Frankfurt, 1990.

U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics.
Monographs in Mathematics. Springer, 2008.

G. Kreisel. Interpretation of analysis by means of functionals of finite type. In A. Heyting, editor,
Constructivity in Mathematics, pages 101-128. North-Holland, Amsterdam, 1959.

C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the Cambridge
Philosophical Society, 59:833-835, 1963.

P. Oliva and T. Powell. On Spector’s bar recursion. Mathematical Logic Quarterly, 58:356—365,
2012.

T. Powell. On Bar Recursive Interpretations of Analysis. PhD thesis, Queen Mary University of
London, 2013.

J.-C. Raoult. Proving open properties by induction. Information Processing Letters, 29:19-23,
1988.

M. Seisenberger. On the Constructive Content of Proofs. PhD thesis, Ludwig Maximilians Uni-
versitdt Miinchen, 2003.

M. Seisenberger. Programs from proofs using classical dependent choice. Annals of Pure and
Applied Logic, 153(1-3):97-110, 2008.

C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an
extension of principles in current intuitionistic mathematics. In F. D. E. Dekker, editor, Recur-
sive Function Theory: Proc. Symposia in Pure Mathematics, volume 5, pages 1-27. American
Mathematical Society, Providence, Rhode Island, 1962.

A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, volume
344 of Lecture Notes in Mathematics. Springer, Berlin, 1973.

28

